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ABSTRACT. The paper extends a result in Dutta and Ray’s (1989) theory of
constrained egalitarianism initiated by relying on the concept of proportionate
rather than absolute equality. We apply this framework to redistributive systems in
which what the individuals get depends on what they receive or pay qua members
of generally overlapping groups. We solve the constrained equalization problem
for this class of models. The paper ends up comparing our solution with the
alternative solution based on the Shapley value, which has been recommended
in some distributive applications.
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1. INTRODUCTION

The body of work on distributive inequality called “inequality the-
ory” is almost exclusively normative. It investigates ways of com-
paring distributions of achievements or resources, such as the Lorenz
ordering and its variants, regardless of whether or not these distribu-
tions are actually available. This separation of normative issues and
feasibility considerations is typical of standard microeconomics, as
the basic model of the consumer illustrates. By assumption, the con-
sumer’s preference ordering is defined over all logically conceivable
commodity baskets, whether they are feasible or not. But – of course
– standard microeconomics does not stop at the stage of clarify-
ing the agents’ objectives; the next step is to discuss the agent’s
choices, given the constraints. Inequality theorists do not often take
this further step. There does not yet exist a theory of constrained
egalitarianism that can be compared with the familiar theories of
constrained optimization in microeconomics.

Yet a pathbreaking paper has laid down the foundations of a
theory of constrained egalitarianism. Dutta and Ray (1989) have
defined a concept of an egalitarian distribution subject to particip-
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ation constraints. The resulting analysis is an admixture of norm-
ative and positive considerations, in which the latter stem from the
fact that coalitions can defect and prevent the grand coalition from
achieving its egalitarian aims. In particular, Dutta and Ray show how
the Lorenz ordering can be maximized on the core of a transferable
utility (TU) cooperative game. Using the essential assumption that
the considered game is convex, they demonstrate that, despite being
partial, the Lorenz ordering admits of a unique greatest element
on the core, and they provide a simple algorithm to compute this
solution.1 The abstract terminology of TU games used by Dutta and
Ray already suggests that their analysis should be widely applicable.
The present paper will make this even clearer by extending their
result in two directions.

First we propose a generalized version of Dutta and Ray’s ori-
ginal method to the case where agents have different “weights”, and
thus some norm of proportionate justice, rather than straightforward
equality, should be approximated given the constraints. This exten-
sion is in keeping with the work in inequality theory applying the
Lorenz ordering to households having different sizes or different
needs.2 Our formulation of proportionate constrained egalitarianism
formally applies to any convex TU cooperative game, and it will be
explained as such.

Second, we single out a class of simple redistributive problems,
to be called here basic transfer problems, in which the issue of con-
strained equalization naturally arises, and the Dutta–Ray method of
resolution turns out to be often applicable. Essentially, these prob-
lems involve a “centre” which transfers money to, or receives money
from, possibly many, and in general overlapping, groups of agents.
What each agent (it may be either an individual or a decision-making
entity of any sort) eventually receives depends on both its share
in the various groups it belongs to and on what these groups get
from, or pay to, the centre (the “basic transfers”). The question of
constrained egalitarianism arises not because there are participa-
tion constraints, but because we assume that while striving towards
equality, the centre regards the existing procedure of basic transfers
as being unalterable.

Finally, we derive some informative consequences of the propor-
tionate equalization principle for the basic transfer model. These
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properties put the constrained egalitarianism approach at large in
clear contrast with the alternative approach of the Shapley value,
which has sometimes been recommended to resolve fair division or
cost-sharing problems.

The plan of the paper is as follows. Section 2 briefly explains
the original Dutta–Ray solution for TU games, and then moves to
our proportionate extension; Section 3 introduces the basic transfer
model and shows how it can lead to a convex TU game representa-
tion; Section 4 assesses the normative properties of our solution in
terms of basic transfers and compares it with the Shapley value. An
appendix presents some complementary results and proofs.

2. PROPORTIONATE EGALITARIAN SOLUTIONS IN
TRANSFERABLE UTILITY COOPERATIVE GAMES

2.1. Transferable utility cooperative games

A transferable utility (TU) cooperative game is a pair (N ,v), where
N = {1, . . . , i, . . . , n}, is a fixed population of agents (or players)
and v – the characteristic function of the game – assigns to each
nonempty subset S of N , called a group, or a coalition, a real num-
ber v(S), called its worth. We denote by S the set of possible groups
and put v(Ø) = 0. Then, v is a 2n-dimensional vector.
A game (N, v) is convex if for all groups S, T ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T );
it is superadditive if, for all disjoint groups S, T ,

v(S) + v(T ) ≤ v(S ∪ T );
and monotonic if for all S ⊂ T , v(S) ≤ v(T ).

Since v(Ø) = 0, a convex game is also superadditive, and a su-
peradditive game is monotonic if and only if v(S) ≥ 0 for all S ∈ S.
For any x ∈ Rn and S ∈ S we use the notation x(S) = ∑

i∈S xi .
An allocation for the coalition S is defined to be any vector xS of
R|S|; it is feasible for S if x(S) = v(S); a feasible allocation is an
allocation which is feasible for the grand coalition N .

The usual interpretation of v is that it sets strategic constraints on
possible allocations to individuals, or that a coalition S can block
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any feasible allocation x which would give S less than its worth.
This suggests focusing attention on the core of (N ,v), to be de-
noted by C(N, v), i.e., the set of allocations (the core allocations)
satisfying the constraints:

x(N) = v(N) and x(S) ≥ v(S) for all S ∈ S (1)

It is well known that the core can be empty in general, but con-
vex games have nonempty cores. Alternative interpretations of the
characteristic function, which are more relevant for the games to
be associated with the basic transfer model, are considered in the
second part of the paper.

2.2. The Lorenz criterion

The notion of equality used throughout is the classic one of the
Lorenz (partial) ordering. Given x, y ∈ Rn for some n ≥ 2, x is said
to Lorenz-dominate (L-dominate) y, which is denoted by x ≥L y, if
for all k = 1, . . . , n,

inf{x(S) : |S| = k, S ∈ S} ≥ inf{y(S) : |S| = k, S ∈ S},
or equivalently, if for all k = 1, . . . , n,

x(1) + · · · + x(k) ≥ y(1) + · · · + y(k),

where x(k) (y(k)) denotes the kth component of x (resp. y) in the
increasing order. For any given z ∈ Rn the mapping L(z, .) obtained
by putting L(z, k) = z(1) + . . . + z(k) for all k, and then making a
linear interpolation, is called the Lorenz curve for z. In this termin-
ology, “x L-dominates y” means that the Lorenz curve for x lies
above the Lorenz curve for y. As early as 1929, Hardy, Littlewood
and Pólya (henceforth HLP) proved the following result:

THEOREM 1. For x, y ∈ Rn, the following conditions are equiva-
lent:

(i) There exists a bistochastic (m×m) matrix M such that x =
My;

(ii) for all (continuous) concave functions f : R → R,

f (x1) + . . . + f (xn) ≥ f (y1) + . . . + f (yn);
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(iii) x ≥L y and x(N) = y(N).

(See Hardy, Littlewood and Pólya (1934), and, for easy reference,
Berge (1966, pp. 193–194), or Marshall and Olkin (1979, pp. 107–
108). It is now fairly well understood that most of the economists’
formal discussions of inequality are either related to or even straight-
forwardly derived from the HLP theorem. This literature is huge
and still on the move, so we will refrain from singling out specific
references. The only technical result we need on the Lorenz ordering
is the HLP theorem itself.

As was explained in the introduction, Dutta and Ray (1989)
showed how to maximize the Lorenz ordering on the core of a con-
vex game. In order to fully appreciate this contribution, the follow-
ing reminder is to the point. Whatever the game (N ,v), the core
C(N ,v) is a compact subset of Rn. Using the HLP theorem, it is easy
to see that if the core is nonempty, there exists at least one maximal
element for ≥L on C(N ,v).3 (We call an element maximal if it is
not strictly dominated by any other element for the given partial
ordering, and greatest if it weakly dominates any other for that or-
dering.) The existence question being readily solved, it remained to
investigate the uniqueness or otherwise of maximal elements. Dutta
and Ray (1989, pp. 625–626) establish a uniqueness property for
convex games:

THEOREM 2. If (N, v) is convex, there is a unique greatest ele-
ment for ≥L in C(N, v).

Observe the way in which this uniqueness property is stated.
It entails, but is stronger than, the property that there is a unique
maximal element. We will refer to the unique greatest element of
Theorem 2 as to the egalitarian solution for (N, v).4 Importantly,
the Dutta–Ray theorem is proved constructively, i.e., by defining an
algorithm which delivers the desired solution.

The conclusion of Theorem 2 collapses when the convexity con-
dition is weakened. Here is an example.5 Let N = {1, 2, 3, 4}. Con-
sider the TU game in which v is the smallest superadditive function
on S compatible with the following data:

v(N) = 100, v(2, 4) = 60, v(3, 4) = 70.
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Then, (15,15,25,45) and (10,20,30,40) are both maximal elements
for the Lorenz ordering on the core, and any convex combination of
these allocations shares this property.

We will present an extension of the theorem which is motivated
by the following conceptual point. The grand theories of distributive
justice rarely, if ever, recommend absolute equality between indi-
viduals. They typically select some individual characteristics – e.g.,
need, work, desert – according to which the society’s worth should
be apportioned among its members.6 Similarly, in “micro-justice”
problems, proportionate rather than absolute equalization will often
emerge as the intuitively plausible notion to adopt. In inequality
theory proportionate equalization is typically introduced in terms
of equivalence scales between households (see Ebert, 1999, and the
references in Section 2 of his paper).

In accord with these motivations, we introduce the notion of a
constrained proportionate egalitarian solution.7 The greatest ele-
ment referred to in Theorem 2 is the best available approximation
in C(N, v) to the equal distribution vector (k, k, . . . , k), with k =
v(N)/n. What we will do is to approximate (α1k, α2k, . . . , αnk)
instead, where α = (α1, . . . , αn) is a vector of positive weights
summing to 1, and for every i, αi is i’s normatively desirable share
of the total worth v(N). What is the technically precise sense in
which distribution vectors in Rn can be said to “approximate” this
proportionate egalitarian norm? Our strategy will be first to guess
what a right approximation x◦ to (α1k, . . . , αnk) may be. It will
then be shown that this particular allocation – let us call it the α-
proportionate solution in order to contrast it with the egalitarian
solution – formally satisfies an existing generalization of the Lorenz
ordering to the proportionate case.

The guess is based on the egalitarian solution for an auxiliary
game which replicates each player i of the initial game as many
times as required by his proportionality coefficient αi in (α1,. . ., αn).
(From now on, we assume that the αi are rational numbers; to extend
the analysis to real numbers would be a purely technical exercise.)
Then, reverting to the initial game (N, v) we obtain a tentative solu-
tion x◦. The analysis will be carried under the assumption that the
initial game (N, v) is not only convex, but also monotonic, which
– in view of an already made observation – amounts to assuming
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that v ≥ 0. We have explained the sense in which the monotonicity
assumption is insubstantial.8

Formally, we fix a given vector of positive integers m = (m1, . . . ,
mn) such that mi/mj = αi/αj , and we associate with (N, v) the TU
game (Nm, vm) defined as follows. The player set is:

Nm = {(1, 1), . . . , (1, m1), . . . , (i, 1), . . . , (i, mi), . . . ,

(n, 1), . . . , (n, mn)}.
We call (i, j) a replica of i. In the notation already introduced for
sums of vector components, the total number of players in the new
game is �i∈Nmi = m(N). We will denote the set of coalitions of
this game by S′, the coalition {(i, 1), . . . , (i, mi)} by [i], and the
coalition

⋃
i∈S [i] by [S]. The characteristic function vm is defined

as follows:
for all S′ ∈ S′, vm(S′) = v(S), where S is the largest coalition in S
such that [S]⊂ S′, i.e., vm(S′) = v({i ∈ N : [i] ⊂ S′}).

This completes the definition of the associated game. However
we need also introduce the mapping Rn → Rm(N):

x → xm = (x1/m1, . . . , x1/m1, . . . , xi/mi, . . . , xi/mi, . . . ,

xn/mn, . . . , xn/mn),

and call a vector y of Rm(N) uniform if y = xm for some x, i.e., if
it gives the same amount to each replica (i, j) of any given i. More
precisely we shall say that y is the uniform image of x.

To assess how far a vector of Rn is from the proportionate equal-
ity ideal we use its uniform image. Given m = (m1, . . . , mn), we
define the m-Lorenz (partial) ordering ≥Lm on Rn by the condition
that:

x ≥Lm y iff xm ≥L ym.

Thus, x is declared to be closer to proportionate equality than y if
and only if their respective uniform images in Rm(N) are ranked in
the appropriate way by the ordinary Lorenz criterion.

At this point it is necessary to check that the particular choice of
m is irrelevant:

Fact 1. Ordering ≥Lm only depends on weights α.
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Proof. Consider another vector m′ such that m′
i/m′

j = αi/αj =
mi/mj , for all i, j .

Since xi /mi ≥ xj /mj iff xi /m′
i ≥ xj /m′

j , the Lorenz mappings
L(xm, .) and L(xm′, .) satisfy L(xm, k) = L(xm′, k′) whenever k =
�i≤i0 m(i) and k′ = �i≤i0 m

′
(i) for some i0. Thus, for any x, y and

such k, k′, L(xm, k) ≥ L(ym, k) iff L(xm′
, k′) ≥ L(ym′

, k′).
However, by linearity of L(xm,.) and L(ym,.), if L(xm, k) ≥ L(ym,

k) is valid for k = �i≤i0 m(i) and all i0, it is in fact valid for all k;
and similarly for L(xm′, k′) and L(ym′, k′). Therefore, xm ≥L ym

iff xm′ ≥L ym′ hence x ≥L
m y iff x≥Lm

′
y.

Allocations in (N, v) give rise to allocations in (Nm, vm) exactly
as one could expect:

Fact 2: For all x, x ∈ C(N, v), if and only if xm ∈ C(Nm, vm).

Proof. For every S′ ∈ S′,
xm(S′) = �(i,j)∈S′xm(i, j) = �i∈N | [i]∩S′ | .xi/mi ≥ �[i]⊂S′xi ≥
v({i : [i] ⊂ S′}) = vm(S′). Conversely, for every S in S,
x(S) = xm([S]) ≥ vm([S]) = v(S).

Fact 3: (Nm, vm) is convex.

Proof. Take two coalitions S′, T ′ ∈ S′, and consider the largest
coalitions S, T ∈ S such that [S]⊂ S′ and [T ]⊂T ′, so that vm(S′) =
v(S) and vm(T ′) = v(T ). Then, vm(S′ ∩T ′) = v(S ∩T ) and (using
monotonicity of v) vm(S′ ∪T ′) ≥ v(S ∪T ). The convexity property
for S, T then leads to the same property for S′, T ′.

From Theorem 2 for the convex game (Nm, vm) there is a unique
greatest element x∗ for ≥L in C(Nm, vm). Define x◦ ∈ Rn from x∗
as follows: for all i ∈ N ,

x◦
i =

mi∑

j=1

x∗
(i,j)
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This vector is our notion of an α-proportional solution for the initial
game (N, v). The next facts summarize the properties of x∗ and x◦,
with a view of establishing that x◦ has indeed the properties required
for a solution.

Fact 4: x∗ is a uniform allocation.

Proof. Suppose that y∗ is the vector obtained from x∗ by per-
muting the components of (i, j ) and (i, k), and keeping all other
components the same. For any S′ define T ′ to be S′ if neither (i, j )
nor (i, k) is in S′; otherwise, to be S′ with (i, j ) replaced by (i, k) if
(i, j) ∈ S′, and (i, k) replaced by (i, j ) if (i, k) ∈ S′. Thus T ′ = S′
when both, or neither one, belong to S′. Clearly, vm(S′) = vm(T ′),
and y∗(S′) = x∗(T ′). Hence, y∗(S′) ≥ v∗(S′) for all S′, i.e., y∗ ∈
C(Nm, vm). But y∗ ≡L x∗ (where ≡L denotes the indifference re-
lation of ≥L) so that, by the uniqueness property of x∗ (Theorem 2),
y∗ = x∗.

Fact 4 implies that x∗ = (x◦)m. In view of Fact 1, this means that
x◦ is feasible:

Fact 5: x◦ ∈ C(N, v).

It remains to argue for the normative properties of x◦:

PROPOSITION 1. x◦ is the unique greatest element in C(N, v) for
the m-Lorenz ordering.

Proof. Take any y ∈ C(N, v). From the definition of x◦ and
the optimality property of x∗ = (x◦)m, x∗ ≥L ym, since ym ∈
C(Nm, vm) from Fact 1. Thus, x◦ ≥Lm y.
For uniqueness: If y is a greatest element for ≥Lm in C(N, v), then
ym is a greatest element for ≥L in C(Nm, vm), and ym = x∗ from
Theorem 2, so that y = x◦.



42 JEAN-YVES JAFFRAY AND PHILIPPE MONGIN

3. APPLICATION TO THE BASIC TRANSFER MODEL

3.1. The basic transfer model

In the three examples below, there is always a fixed population of
agents N = {1, . . . , i, . . . , n}, and there is an entity, called the
centre, which is in charge of allocating money between groups of
agents. A group is simply some nonempty subset S of N ; denote by
S the set of possible groups. A system of basic transfers is any as-
signement of a real number ϕ(S) to each S in S. The subset of those
S with ϕ(S)�= 0 will be denoted by S+, and the budget of the centre
by M = �ϕ(S). Given a system of basic transfers, an allocation is
any vector x = (x1, . . . , xn) that redistributes the net receipts of the
groups (which may be a priori positive, zero, or negative) to their
members, and only to their members, in a certain way. Specifically,
an allocation for a basic transfer model (N ,ϕ) should satisfy the set
of inequalities:

∑

T ⊂S

ϕ(T ) ≤
∑

i∈S

xi ≤
∑

T ∩S �=∅
ϕ(T ) for allS ∈ S, (2)

which the examples will serve to motivate. We already observe from
this definition that an allocation x must satisfy the book-keeping
condition that M = �xi . Which allocation actually prevails will de-
pend on both the net receipts of the groups and how the groups share
them between their members. The centre always has the former
information but may lack the latter, even ex post. Thus, in some
applications the centre exactly knows the actual allocation, and in
others it does not.

EXAMPLE 1. Here N is a population of farmers each of which
produces one or several of p products. The farmers are subsidized in
an indirect way. They form groups of producers, which will typically
overlap, and some of these groups receive subsidies from the De-
partment of Agriculture, which they have then to allocate between
their members. If, say, the producers of potatoes are exactly the
same as the producers of carrots, both will count as one and the
same group. Any given farmer may belong to one, several, or none
of the subsidized groups. The transfer to a subsidized group S is



CONSTRAINED EGALITARIANISM IN A SIMPLE REDISTRIBUTIVE MODEL 43

represented by ϕ(S) > 0. We define a basic transfer function on
the whole of S by putting ϕ(S) = 0 if S /∈ S+. In this context
the inequalities (2) indicate that the farmers in S get at least all
the money going to the subsidized subgroups of S, and at most all
the money going to the subsidized groups with which S overlaps.
Hence, these inequalities summarize all possible ways of allocating
money to the individuals by way of the scheme ϕ. If the centre does
not know how the groups S divide the net transfers ϕ(S) between
their members, the actual allocation is unknown and may be any
x satisfying the basic inequalities (2). This is how we motivate the
notion of an allocation adopted here.

EXAMPLE 2. Here the individuals in N are states in a federation,
and the centre is the Federal Institution. The latter collects money
from the states individually in order to fund various joint ventures
between the states. If joint ventures can be identified with subsets of
N , in the same way as groups of producers were in the last example,
we get another instantiation of the basic transfer model. This time,
however, the model has non-uniform sign restrictions. Singletons S

will be assigned nonpositive ϕ(S), while all other groups S receive
nonnegative ϕ(S). Supposing that the Federal Institution has no ex-
ternal resources, the total amount to be allocated is M = �ϕ(S) =
0. The set of possible allocations x is again bounded from below and
above by inequalities (2). If the centre does not know how the states
benefit from a joint project, it can only say that the actual allocation
belongs to the set defined by these inequalities.

EXAMPLE 3. In a straightforward idealization of existing redis-
tributive systems, households pay taxes individually, while they re-
ceive subsidies qua members of one or several categories (e.g., the
category of households with children, that of households with some
disabled member, and so on). If one is happy with this rough picture
and willing to identify categories with subsets of the total household
population N , the resulting basic transfer model will have the same
sign restrictions as in Example 2. However, a slightly more real-
istic description would take into account the fact that households
also pay money to the centre qua members of categories. For in-
stance, there are taxes that only the employed part of the population
has to pay, and similarly with landowners, foreign residents, etc. In
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an improved description of this sort the sign restrictions on ϕ can
become indeterminate. As we explain in the next section, the Dutta–
Ray techniques do not apply to basic transfer models with any sign
restriction.

Whatever the basic transfer model (N, ϕ), the question arises,
is the equal distribution vector (xi=M/n) compatible with the in-
equalities (2)? Since more often than not, equality is not feasible,
this question becomes, how can equality be approximated within
the set of constraints? This problem can be arrived at from rather
different angles, depending on what is assumed on both the centre’s
information and policy goals. Specifically, assume that the centre
does not know what actual allocation prevails. Just for evaluation
purposes, it may wonder how far this unknown allocation is from
equality. To find the most equal allocation(s) compatible with (2)
is one way of answering this question; it amounts to conjecturing
that the best possible case obtains. Alternatively, suppose that the
centre exactly knows what allocation is prevailing. For evaluation
purposes again, it makes sense to compare the actual allocation with
the most equal among all allocations that are compatible with ϕ,
and this leads to solve exactly the same constrained equalization
problem.

Beyond and above evaluation, the centre’s aim might be to pre-
pare a more equal redistributive arrangement. If this is the case, a
relevant question is whether or not the constraints (2) would still
have to apply to the new arrangement. Specifically, suppose that the
centre in Example 1 wants to replace the group distributive scheme
ϕ by an individual distributive scheme x∗. Suppose further that for
institutional or political reasons, the constraints (2) set lower bounds
on what the producers must receive in x∗. For instance, the corn
producers should receive no less than all the money going to the
subgroups of corn producers, and so on. Under these assumptions,
the solution of the constrained equalization problem becomes the
centre’s policy target.

In sum, for reasons which depend on each particular application,
one is led to raise one and the same analytical question, how can
equality be approximated within the inequality set (2)? We will dis-
cuss a natural answer to this question suggested by the possibility of
turning basic transfer models into cooperative games.
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3.2. From basic transfer models to cooperative games

In this section we transform the basic transfer model (N ,ϕ) into a TU
cooperative game (N, v), where v is the characteristic function of
the game, and compare the resulting representation with the original
one.9 We say that (N, v) is the cooperative game associated with the
basic transfer model (N ,ϕ) if:

v(S) =
∑

T ∈S

ϕ(T )vT (S) for all S ∈ S, (3)

where vT (S) = 1 if T ⊂ S and 0 otherwise.10 This definition en-
sures that the notion of a core allocation for (N, v) coincides with
that of an allocation for (N, ϕ). That is, for any x ∈ Rn, the set
of inequalities (1) in Section 2 is equivalent to the present set (2)
given the definition just provided for v. The implication from (2)
to (1) is trivial. To check the reverse implication, notice that given
the equality x(N) = v(N), the set of upper inequalities becomes
redundant with the set of lower inequalities in (2).

In fact, the set of all cooperative games (N, v) and the set of all
basic transfer models (N ,ϕ) can be mapped to each other one-to-
one. That is, if one takes v to be the primitive term, it is possible to
find ϕ such that (3) holds and the two transformations – i.e., from ϕ

to v, and from v to ϕ – are inverse to each other. This observation
was made early on in cooperative game theory (Shapley, 1953) but
can also be found in the formally similar theory of nonadditive belief
functions (Shafer, 1976). Here is the explicit formula to compute ϕ

from v:

ϕ(S) =
∑

T ⊂S

(−1)|S\T |v(T ) for all S ∈ S. (4)

Given that v and ϕ are interdefinable, it is worth saying what inter-
pretation ϕ could receive when v is taken to be the primitive term,
as is the case in standard cooperative game theory. From the direct
formula (3), we get ϕ({i}) = v({i}) for any individual i.
Hence, ϕ({i, j }) = v({i, j }) − v({i}) − v({j }) for any pair {i, j },
and generally:

ϕ(S) = v(S) − �T ⊂S2≤|T |<|S|ϕ(T ) − �i∈Sv({i}). (5)
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For instance, for any triple {i, j, k}, ϕ({i, j, k}) = v({i, j, k}) −
ϕ({i, j })−ϕ({i, k})−ϕ({j, k})−v({i})−v({j })−v({k}). In words,
the ϕ function computes the surplus brought about by a coalition to
its members. Since we have not yet imposed any sign restrictions,
this surplus can be negative. It is obtained by subtracting from the
worth of the coalition v(S) not only the individual worths v({i}),
but also the surpluses that accrue from forming (nonsingleton) co-
alitions smaller than S – as Equation (5) makes clear. In TU game
theory, a construction like this one exists in relation to the Shapley
value.

We have not yet discussed the sign restrictions on ϕ that were
illustrated in Examples 1, 2 and 3 of last section. As it turns out, sign
restrictions on ϕ correspond to recognizable properties of v. The
following equivalences are borrowed from Chateauneuf and Jaffray
(1989, Propositions 2 and 3), who stated them in connection with
the theory of nonadditive belief:

PROPOSITION 2. (i) �{i}⊂T ⊂Sϕ(T ) ≥ 0 for all S ∈ S and i ∈ N

is equivalent to the condition that v is monotonic.
(ii) �{i,j}⊂T ⊂Sϕ(T ) ≥ 0 for all S ∈ S and distinct i, j ∈ S is

equivalent to the condition that v is convex.

We conclude from these equivalences that convexity and mono-
tonicity play a very different role vis-à-vis the basic transfer model.
As (i) shows, it is possible to turn any basic transfer model (N ,ϕ)
into a monotonic one (N ,ϕ′), by putting ϕ′ = ϕ on all nonsingleton
sets, and ϕ′({i}) = ϕ({i}) + c for all i = 1, . . . , n, where c is
some positive constant large enough to make all inequalities in (i)
come true. Any allocation x for (N ,ϕ′) can trivially be turned into
an allocation for the real model (N ,ϕ) by subtracting c from each xi .
Arguably, the normative properties imposed on an allocation should
not be affected by a common translation of only the ϕ({i}), so that
they can be studied as well on the translated model. No such reas-
oning is available for convexity. From (ii) the required translation
would involve changing the value of ϕ for some nonsingleton sets.
When an allocation is found for the translated model, there is no
unique way of reverting to an allocation in the original model.

Example 1 involves setting ϕ ≥ 0, and then corresponds to a
game which is by itself both monotonic and convex.11 In Example
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2, ϕ({i}) ≤ 0 for all i, and ϕ(A) ≥ 0, if |A| ≥ 2, which cor-
responds to an initially nonmonotonic but convex game. However,
taking advantage of the argument in the last paragraph, we can re-
duce this case to the previous one. Finally, Example 3 illustrates that
not every basic transfer model can be turned into a convex game. If
one is unhappy with the heroic assumption that households never
pay money to the centre qua members of categories, the associated
game may or may not be convex, depending on whether or not the
restrictions in (ii) are met.

In standard TU game-theory, where v is the primitive term, the
equivalences of Proposition 2 would have to be reinterpreted in terms
of the surpluses brought about by various coalitions. Thus, property
(i) states that the total sum of surpluses contributed by i to S is
nonnegative, so that to add i to S \ {i} is worthwhile. Similarly,
property (ii) states that the total sum of surpluses contributed by
{i, j } to S is nonnegative, so that it pays to add {i, j } to S \ {i, j }.
Also, as the reader will check, (ii) restates the increasing marginal
worth property of a convex v, that is to say:

[v(S) − v(S \ {i})] − [v(S \ {j }) − v(S \ {i, j })] ≥ 0.

Equivalently:

v(S) − v(S \ {i, j }) ≥ [v(S \ {i}) − v(S \ {i, j })] +
[v(S \ {j }) − v(S \ {i, j })],

or:

v(S) − max[v(S \ {i}), v(S \ {j })] ≥ min[v(S \ {i}),
v(S \ {j })] − v(S \ {i, j }).

4. PROPORTIONATE EGALITARIAN SOLUTION FOR THE BASIC
TRANSFER MODEL

4.1. Proportionate egalitarian solution and share function

It is convenient to frame the discussion in terms of the auxiliary
notion of share function. A share function λ(S, i) for a basic transfer
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model (N ,ϕ) is defined on all S ∈ S and i ∈ N by the conditions
that:

– if ϕ(S) �= 0, λ(S, i) ≥ 0, λ(S, i) = 0 if i /∈ S, and �i∈Sλ(S, i) =
1;

– if ϕ(S) = 0, λ(S, i) = 0 for all i.

A share function λ is meant to describe the way in which the ba-
sic transfers φ(S) are apportioned among the members of S. If the
centre in Examples 1, 2 and 3 knows λ, it exactly knows the amount
each individual ends up with, and conversely. Note that it is not true
generally (i.e., regardless of ϕ) that every conceivable λ determines
what we called an allocation for (N ,ϕ), i.e., a vector x satisfying the
basic inequalities:

∑

T ⊂S

ϕ(T ) ≤
∑

i∈S

xi ≤
∑

T ∩S=∅
ϕ(T ) for all S ∈ S. (6)

Clearly, sign restrictions on ϕ are relevant to whether or not this
property holds. However, what we are interested in is the converse
property. Is it the case that every allocation x for the basic transfer
model (N ,ϕ) can be obtained by dividing the basic transfers ϕ(S)
according to some (possibly nonunique) share function λ? Fortu-
nately, this question has a positive answer for basic transfer models
satisfying the monotonicity and convexity property.12 Capitalizing
on this fact, we will assess the α-proportionate solution x◦ in terms
of its associated λ∗.

PROPOSITION 3. Suppose that a basic transfer model (N ,φ) sat-
isfies the monotonicity and convexity conditions of Proposition 2.
Then, there is a share function λ∗ corresponding to the α-propor-
tionate solution x◦ with the property that for all S ⊂ N ,

i, j ∈ S and x◦
i /αi > x◦

j /αj ⇒ λ∗(S, i) = 0.

If a basic transfer model satisfies the stronger assumption that
ϕ(S)≥0 for all S ⊂ N , the same conclusion holds for all λ cor-
responding to the α-proportionate solution.

Proof. The proof depends on the algorithm used to compute x◦.
See the appendix.
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Normally, at the constrained optimum x◦, some individuals i end
up with more than other individuals j in terms of their desirable
shares. In essence, Proposition 3 says that whenever this is the case,
the i get nothing from participating in a group S in which some
j also participates. In other words, the α-proportionate solution is
an “all-or-nothing” solution. It makes sure that the final solution
gives all of each ϕ(S) to the relatively most deprived individual, and
nothing to the relatively less deprived ones.

4.2. The egalitarian solution vs the Shapley value

In the particular case of egalitarian solutions, where the desirable
shares αi are all equal, this “all-or-nothing” property is even simpler
to state. It puts the constrained egalitarianism approach at large in
sharp contrast with another approach that game theorists and some
economists have endowed with normative significance, namely that
of the Shapley value. There are many equivalent definitions of the
Shapley value of a TU game (N, v), among them a useful restate-
ment in terms of the basic transfer model (N ,φ) uniquely associ-
ated with (N, v). This restatement is all we need here. Specific-
ally, we define the Shapley value of (N ,φ) to be the vector Sh =
(Sh1, . . . , Shn) that results from always sharing ϕ(S) equally bet-
ween the i ∈ S, i.e., by applying the share function: λ(S, i) = 1/|S|
for all S and i.13 From well-known facts in TU game theory, if (N ,ϕ)
satisfies the convexity condition of Proposition 2, this defines an
allocation, so that it becomes meaningful to compare the Shapley
value with the egalitarian solution.

The comparison shows that the Shapley value and the egalitarian
solution obey very different intuitive principles of equalization. The
Shapley value can be said to be “egalitarian” in the formal sense that
the sharing function is symmetric vis-à-vis each individual. This
symmetry property also means that if the procedure to reach an
allocation consists in sharing each ϕ(S) in succession, then the in-
dividuals will be treated equally at each stage of the procedure (in
contradistinction with the iterative procedure described in the Ap-
pendix). So we can find a sense, either formal or procedural, in
which the Shapley value embodies “equality”.14 But in a distributive
context like the present one, it does not seem to be a very plausible
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sense of the words “equality” and “egalitarian”. Here, equality is
a substantive aim to be achieved, i.e., what is at stake is equality of
the distributed worth between the individuals rather than equal treat-
ment of the individuals. Granting this, the Lorenz ordering appears
to be the natural way of making comparisons, and the property stated
in Proposition 3 logically follows. The next example straightfor-
wardly illustrates that these two sharing methods can diverge widely
from each other:

EXAMPLE 4. Take N = {1, 2, 3}, and ϕ(1) = ϕ(2) = ϕ(1, 2) =
ϕ(1, 3) = ϕ(2, 3) = 0, ϕ(3) = 1, ϕ(1, 2, 3) = 3. (This corresponds
to: v(N) = 4, v(1, 3) = v(2, 3) = 1, v(1, 2) = v(1) = v(2) =
0, v(3) = 1.) The convexity condition is satisfied. The Shapley
value is (1, 1, 2). The vector (4/3,4/3,4/3) is feasible and is thus
the egalitarian solution.

We can extend the comparison just made to the proportionate
solution of this paper and the weighted Shapley value, respectively15.
Given any vector β of proportionality coefficients (i.e., with βi > 0
and �βi = 1), we define the β-weighted Shapley value of (N ,φ) to
be the vector Shβ resulting from always sharing the ϕ(S) between
the i ∈ S according to the ratios βi /βj , i.e., by applying the share
function: λ(S, i) = βi/β(S) for all S and i.16 Again, if (N ,ϕ) sat-
isfies the convexity condition, a standard argument ensures that this
defines an allocation, so that comparison with the α-proportionate
solution makes sense. The important fact is that for typically many
basic transfer models, an α-proportionate solution cannot be a Shβ

solution (for β possibly different from α), except in the degener-
ate case where the α-proportionate solution is the unconstrained α-
proportionate solution. We single out a wide class of models (N ,ϕ)
in which this negative conclusion straightforwardly derives from the
previous result:

COROLLARY 1. Suppose that (N ,ϕ) satisfies the condition that
ϕ(S) ≥ 0 for all S ⊂ N , with ϕ(N) > 0. Then, an α-proportionate
solution x◦ cannot be a Shβ allocation for any vector of propor-
tionality coefficients β unless x◦ = (α1k, α2k, . . . , αnk), where k =∑

T ⊂N ϕ(T ).
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Proof. See the Appendix.

This statement is related to the following geometric fact: when-
ever the constraints (2) are binding, the α-proportionate solution
automatically belongs to the boundary of the set of allocations,
whereas the α-weighted Shapley value is an interior point.17 Here
is an example to illustrate this typical situation.

EXAMPLE 5. Take N = {1, 2, 3}, and ϕ(1) = 1, ϕ(2) = 2,
ϕ(3) = 3, ϕ(1, 2) = 0, ϕ(1, 3) = 0.5, ϕ(2, 3) = 0, ϕ(1, 2, 3) = 0.
(This corresponds to: v(1) = 1, v(2) = 2, v(3) = 3, v(1, 2) =
3, v(1, 3) = 4.5, v(2, 3) = 5, v(N) = 6.5.) The sign conditions
of the corollary are satisfied. The vector (6.5/3, 6.5/3, 6.5/3) is not
feasible. The egalitarian solution is (1.5, 2, 3). It can be checked
that the allocation set is the segment in R3 from (1, 2, 3.5) to (1.5,
2, 3), so that the egalitarian solution is an extreme point of this set.
The Shapley value is (5/4, 2, 13/4). Compared with the egalitarian
solution, it is biased towards individual 3. The egalitarian solution
cannot be recovered as a Shβ , although it might be approached
closely by a suitable choice of β.

Examples like this one are worth pondering about, given the well-
documented use of the Shapley value as a sharing device in norm-
ative and public economics applications.18 We think that especially
when it is generalized in the way we proposed here to account for
differences in needs or desert, the egalitarian solution makes more
sense from the broad viewpoint of ethical intuition. At least, we have
tried to identify a class of simple redistributive models in which the
proposed solution has a good standing from this viewpoint.

5. APPENDIX

5.1. An algorithm for the α-proportionate egalitarian solution

Here is a procedure to compute the α-proportionate solution x◦ in
terms of the initial data (N ,φ). It is a straightforward adaptation of
Dutta and Ray’s (1989, p. 625) algorithm, so we have kept as close
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as possible to their notation. We fix any m = (m1, . . . , mn) as in
Section 2.
Step 1. Find the greatest group S1 maximizing:
e(S, ϕ, m) =def

∑
T ⊂S ϕ(T )/m(S) over all S ∈ S.

(There is a unique maximum because of convexity.)
Put x◦

i = e(S1, ϕ, m) for all i ∈ S1.
Step k. Suppose that S1, . . . , Sk−1 have been defined and that Ak−1

=def S1 ∪ . . . ∪ Sk−1 �= N .
Find the greatest group Sk maximizing:
e(S, φ, m) =def ∑

φ(T ))/m(S) where S ⊂ N/Ak−1 and the sum
is taken over all distinct T ⊂ Ak−1 ∩ S, T ∩ S �= ∅.
Put x◦

i = e(Sk, ϕ, m) for all i ∈ Sk.
(Again, there is a unique maximum because of convexity.)
By construction, the sets S1, . . . , Sk, . . . define a partition of N

such that
x◦

i /mi = x◦
j /mj if i, j ∈ Sk for some k, and:

(+) x◦
i /mi > x◦

j /mj if and only if i ∈ Sk, j ∈ Sp for some k < p.

Also, for all k : x◦(S1 ∪ . . . ∪ Sk) = �ϕ(T ), where the sum is over
all T ⊂ S1 ∪ . . . ∪ Sk.

That the algorithm just explained delivers the α-proportionate
solution follows because it coincides with the original Dutta–Ray
algorithm as applied to the auxiliary game (Nm,vm). It is enough to
apply Dutta and Ray’s Theorem 2 (1989, p. 627) to this game.

5.2. Proof of Proposition 3

We prove the existential claim of the proposition by considering
the above algorithm. We can associate a share function λ◦ with the
algorithm in the following way. Consider first S1. The basic transfer
model (S1, ϕ1) with ϕ1(T ) = ϕ(T ) for all T ⊂ S1 satisfies the
same assumptions as (N ,φ). Hence, by Dutta and Ray’s Theorem 2
as applied to this game, the vector x1 ∈ R|S1| such that x1

i = x◦
i

for all i ∈ S1 is an allocation. From a result mentioned in the
text, there is a share function λ1 corresponding to x1. Extending the
argument inductively, we construct a sequence of share functions
λ1, . . . , λp, . . . on Sp, p ≥ 1, which amounts to defining a share
function λ◦ corresponding to x◦.
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Suppose now that x◦
i /mi > x◦

j /mj . From property (+) above

this can happen only if i ∈ Sk and j ∈ Sp for some k < p. Given
the construction just made of λ◦ and the definition of x◦

i in terms
of �ϕ(T ), the condition that λ◦(T , i) > 0 would mean that T ⊂
Ak−1 ∪ Sk = Ak. But this is impossible since T ∩ Sp �= ∅, and
Ak ∩ Sp = ∅. Now, using the assumption that ϕ ≥ 0, we set out to
derive the same conclusion for any share function λ delivering the
solution x◦. Suppose first that p is the index of the last set in the
sequence A1, A2, . . . , i.e., that Ap = S1 ∪ . . . ∪ Sp = N . Then,

x◦(Sp) = m(Sp)e(Sp, ϕ, m) =
∑

ϕ(T ),

where the sum is taken over all distinct T ⊂ N , T ∩ Sp �= ∅, or
equivalently:
where the sum is taken over all distinct T of the form {j } ⊂ T ⊂ N

for all j ∈ Sp.
Now, the given share function λ satisfies the condition that:

x◦(Sp) =
∑

λ(T , j)φ(T ),

where, again, the sum is taken over all distinct T of the form {j } ⊂
T ⊂ N and all j ∈ Sp. Given that φ(T ) ≥ 0 for all such T, the com-
parison between the two formula for x◦(Sp) shows that λ(T , i) > 0,
i ∈ Sk , k < p, is impossible.

Assume now that the result has been proved for all indexes down
from the last to some p + 1 > 1. We show that it holds for j ∈ Sp

as well. Now,

x◦(Sp) =
∑

φ(T ),

where the sum is taken over all distinct T of the form {j } ⊂ T ⊂ Ap

for all j ∈ Sp. Also:

x◦(Sp) =
∑

λ(T , j)φ(T ) +
∑

λ(T ′, j)φ(T ′),

where the first sum is taken over all distinct T of the form {j } ⊂
T ⊂ Ap and all j ∈ Sp, and the second sum is taken over all T ′
of the form {j } ⊂ T ′, T ′ �⊂ Sp, and all j ∈ Sp. By the induction
hypothesis, the second sum is zero, so that we can repeat the pre-
vious argument, and conclude that λ(T , i) > 0, i ∈ Sk, k < p, is
impossible.
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5.3. Proof of Corollary 1

As the inspection of the algorithm shows, x◦ is the nonconstrained
α-proportionate solution if and only if it converges in one step, i.e.,
A1 = N . Otherwise, there are at least two individuals i, j such that
x◦

i /αi > x◦
j /αj . Applying Proposition 3 we conclude that λ(N, i) =

0 for all share functions leading to x◦. This applies in particular to
the share function of that Shβ which coincides with x◦ if there is
any. But there cannot be any such Shβ , since its share function λ

stipulates that

λ(N, i) = βi > 0.
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NOTES

1. There is more to Dutta and Ray’s (1989) contribution to constrained egalitar-
ism than this result; however, we shall focus on it exclusively.

2. The paper by Atkinson and Bourguignon (1987) is a major example. For
further work and references along the same line, see Ebert (1999).

3. For some continuous, strictly concave f , there exists y∗ which maximizes
� f (yi) on the core. Now, suppose that there is x in the core such that x ≥L

y∗. Then, the HLP theorem implies that �f (xi) ≥ �f (y∗
i ), and by strict

concavity of f , x = y∗, so that y∗ is a maximal element.
4. Dutta and Ray’s (1989, pp. 620–21) own definition of an egalitarian solution is

actually more complex than this one. But in the case of convex games (N, v)

their special definition coincides with that of a unique greatest element for the
Lorenz ordering on C(N, v). Since we restrict attention to convex games, the
terminological slip is harmless.

5. Suggested to us by Bhaskar Dutta in private correspondence.
6. This is the famous problem, “Equality of What?”, discussed in Sen (1992, ch.

1).
7. A similar idea is independently introduced and formalized by Hokari (2002).
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8. That monotonicity is an insubstantial assumption in the present context is
further confirmed by the following property of the egalitarian solution. Sup-
pose that v′ results from v by adding to it a uniform measure, i.e., v′(S) =
v(S) + c|S| for all S, where c is a fixed positive number. Then, the egalitarian
solution for (N, v′) is obtained from the egalitarian solution by adding c to
each component (see the socalled weak covariance property in Dutta and Ray,
(1989, p. 633), or in Dutta (1990).

9. For an exposition of cooperative game theory, see, e.g., Moulin (1988).
10. These vT are characteristic functions of special games sometimes referred to

as unanimity games .
11. Actually, ϕ ≥ 0 gives to game (N, v) a stronger property called infinite-order

monotonicity. Such games possess specific properties (Shafer, 1976), which
however are not essential for the results derived below.

12. See Chateauneuf and Jaffray (1989, Proposition 5). The monotonicity condi-
tion is contained in the authors’ definition of a “capacity”.

13. That this definition is equivalent to the more traditional ones in terms of (N, v)
is mentioned in Moulin (1988, exercise 5.10, p. 140).

14. Mas-Colell, Winston and Green (1995, p. 680) take a step in the direction. of
arguing that the Shapley value embodies “egalitarianism”. Other writers have
emphasized the normative appeal of the Shapley value. In an application to
cost-sharing, Champsaur (1975) claims that it is “equitable”.

15. See Kalai and Samet (1988). Hokari (2002) also discusses the weighted Shap-
ley value, and so do Sundberg and Wagner (1992) in the equivalent language
of “p-smears”.

16. This definition of the weighted Shapley is meant to extend the definition just
given for the ordinary Shapley value. We leave it for the reader to check that
it is equivalent to the better-known one in terms of (N, v).

17. In the relative interior sense, of course. If the dimension of the set of alloca-
tions is smaller than n, it may not have an interior in Rn. Example 5 precisely
illustrates this case.

18. Dutta and Ray (1989) are critical of the Shapley value, as illustrated by their
discussion of Champsaur (1975).
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