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a b s t r a c t

Suppose that a group of individuals must classify objects into three or more categories, and does so
by aggregating the individual classifications. We show that if the classifications, both individual and
collective, are required to put at least one object in each category, then no aggregation rule can satisfy a
unanimity and an independence conditionwithout being dictatorial. This impossibility theoremextends a
result that Kasher and Rubinstein (1997) proved for two categories and complements another that Dokow
and Holzman (2010) obtained for three or more categories under the condition that classifications put at
most one object in each category. The paper discusses an interpretation of its result both in terms of Kasher
and Rubinstein’s group identification problem and in terms of Dokow and Holzman’s task assignment
problem.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

While preference aggregation still looms large in the agenda
of social choice theory, there is a small, but growing body of
literature on the aggregation of classifications. The general scheme
is that the members of a group each propose dividing a given
set of objects into categories, and that a collective division of
the set results from these individual proposals by respecting
various conditions of association, which are partly reminiscent of
those usually defined for preference aggregation. In one version
of this scheme, which appears to date back to Mirkin (1975),
the individuals and the collective can partition the set in any
possible ways. (See Chambers and Miller, 2011 and Dimitrov et al.,
2012 for recent developments; the latter paper also surveys the
field.) In another version, which can be traced to Kasher and
Rubinstein (1997), there is a given list of designated categories in
which the objects must be fitted. This version has been explored,
both by Kasher and Rubinstein and followers, in the particular
case where the objects to be classified are the very individuals
who propose the classifications. As a typical application, some
countries legally divide their citizens according to racial, ethnic
or religious criteria. Since the citizens themselves have opinions
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on how this should be done, one may investigate how the legal
division should reflect these opinions. Put in axiomatic form, this
has come to be called the group identification problem. (See, among
others, Samet and Schmeidler, 2003; Dimitrov et al., 2007 and
Miller, 2008.)

The present paper investigates the aggregation of classifications
with designated categories, and hence belongs to the second
branch of analysis, but does not pursue the group identification
problem specifically. Rather, it proves an impossibility theorem
for this second branch at large. In a nutshell, if there are p ≥

3 categories in the list and m ≥ p objects to be classified in
these categories, and if moreover both individual and collective
classifications satisfy the surjectivity (ontoness) restriction that
each category is filled with at least one object, then the collective
classifications are dictatorial if they satisfy a unanimity and an
independence condition. The unanimity condition says that if the
individuals in a profile agree on how to classify an object, the
aggregate for this profile endorses the agreed on classification.
The independence condition says that if there are two profiles and
each individual classifies an object identically in both of them, the
corresponding two aggregates also classify the object identically.
These two conditions are reminiscent of familiar ones in preference
aggregation, but have a unary form, which leads to a distinctive
analytical treatment.

Kasher and Rubinstein (1997, Theorem 2), have stated this
theorem for the special case m ≥ p = 2. They relate it to the
group identification problem, but their proof is in fact independent
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of this context.1 Thus, our work can be seen as an extension of
theirs. To free the impossibility result from the limitation to two
categories is a non-trivial step, as will appear from the proof and
technical comments below. Although Kasher and Rubinstein have
not emphasized this point, it is essential to the impossibility that
the categories, whatever their number p ≥ 2, are never left empty
by either the individual or the collective classifications. This is the
surjectivity restriction mentioned above.

If one is ultimately interested in the group identification
problem, this is a natural restriction to consider. One may expect
lawmakers to confer legal status on a social category only if
they believe it to be applicable at least to some citizens, and
in a country where democratic principles hold, one may further
expect that the categories have been agreed on between the
lawmakers and the citizens prior to being used in practice.
Accordingly, citizens would no more than lawmakers leave any
category unfilled, even though they would no doubt disagree on
its precise extension. The group identification literature alludes
to political examples that seem to warrant this analysis. Kasher
and Rubinstein (1997) implicitly draw inspiration from the legal
religious denominations in Israel, and Miller (2008) explicitly
mentions the racial divisions recognized by the US Census. If
Israeli or US citizens were asked to classify a significant sample
of their respective populations, they would be very unlikely to
leave any of the available categories vacuous, except perhaps
for strategic purposes that we will not consider in this paper.
Concerning the group identification problem, our view is that the
most troublesome idealizing assumption is not surjectivity, but
the very form of the poll, which requires each citizen to classify
any other, whereas most political examples only involve self-
designation.

If one is not particularly interested in this problem, one
may turn to more direct cases of aggregating classifications for
which surjectivity appears to be appropriate. Consider a panel of
astronomerswhomeet to classify distant celestial bodies into stars,
exoplanets, brown dwarfs and other less identifiable objects. Each
astronomer proposes his own classification, and the chair tries to
turn these individual data into an authoritative classification. The
classification is well-established on prior grounds, so if the set of
celestial bodies under consideration is large enough, neither the
individual astronomers nor the chair will leave any of the four
categories empty.2 This is of course a theoretical example, but
it is worth noting that the status of celestial bodies is currently
discussed at a collective level, with aggregative steps – typically
votes – being sometimes taken (for an intriguing account of the
discussions surrounding Pluto, see Marschall and Maran, 2009).

We will provide further motivation for surjectivity while inter-
preting our framework in terms of a collective task assignment prob-
lem, as in Dokow and Holzman (2010). Having this interpretation
in view, these authors investigate the same problem of aggregat-
ing classifications as ours, but make the opposite assumption that
there are m ≥ 3 objects and p ≥ m positions. They show that
if individual and collective classifications satisfy the injectivity re-
striction that each category is filled with at most one object, then
the collective classifications are dictatorial if they satisfy unanimity
(in a reinforced version) and independence. The two impossibility
results complement each other very naturally. Dokow and Holz-
man’s actually belongs to an abstract theory of nonbinary evalua-
tions, which they develop for its own sake, and we had borrowed
this powerful apparatus to carry out our first proof (Maniquet and

1 This two-category case is a corollary to an impossibility theorem proved by
Rubinstein and Fishburn (1986, Theorem 3).
2 Notice that surjectivity here follows as a fact of the situation, and not on

normative grounds. A referee alerted us to this distinction.
Mongin, 2014). For ease of exposition, we have shifted here to the
language and ultrafilter proof technique of standard social choice
theory, but the interested reader may consult this earlier version,
which also discusses the connections between social choice theory
and the recently developed judgment aggregation theory.

2. The formal setup and the theorem

There are a set N = {1, . . . , n} of individuals, a set X =

{1, . . . ,m} of objects, and a set P = {1, . . . , p} of positions (or
categories), with p ≥ 3. The individuals classify the objects by
putting each of them in a position. Formally, classifications are
mappingsX → P . By assumption, there are at least asmanyobjects
as positions, and each classification assigns at least one object to
each position. Formally, m ≥ p, and the set of classifications is the
surjectivity (ontoness) domain:

C = {k : X → P | ∀r ∈ P, ∃x ∈ X : k(x) = r} .

An aggregation function associates a social classification with any
profile of individual classifications:

F : Cn
→ C, (c1, . . . , cn) → F(c1, . . . , cn).

We abridge F(c1, . . . , cn), F(c ′

1, . . . , c
′
n),. . . , as c, c ′. . . . The defini-

tion of F encapsulates a universal domain condition. We introduce
three more conditions axiomatically. Independence requires that if
an object occupies the same positions in two profiles of individual
classifications, x occupies the same position in the associated social
classifications.

Condition 1. Independence: For all (c1, . . . , cn), (c ′

1, . . . , c
′
n) ∈ Cn

and all x ∈ X, if for all i ∈ N, ci(x) = c ′

i (x), then c(x) = c ′(x).

Unanimity requires that if all individual classifications in a
profile give an object the same position, the social classification
give it that position.

Condition 2. Unanimity: For all (c1, . . . , cn) ∈ Cn, all x ∈ X, all
r ∈ P, if for all i ∈ N, ci(x) = r, then c(x) = r.

The last condition states that one individual imposes his
classification to society.

Condition 3. Dictatorship: There is j ∈ N such that for all
(c1, . . . , cn) ∈ Cn, c = cj.

Independence and Unanimity are reminiscent of Independence
of Irrelevant Alternatives and the Pareto conditions in Arrovian
social choice theory. They can be defended normatively by
roughly parallel arguments—Independence being connected with
computational ease and nonmanipulability, and Unanimity with
the individuals’ sovereignty. Dictatorship is meant to be as
undesirable here as it is there. Notice however that the present
conditions are unary, i.e., bear on one object at the time, as
suits a classification aggregation problem, whereas the Arrovian
conditions are binary, as suits a preference aggregation problem.

Theorem 1. If an aggregation function F satisfies Independence and
Unanimity, it satisfies Dictatorship.

The proof of the theorem consists in showing that the set
of decisive subsets of N is an ultrafilter. In the present context,
a subset of N is decisive if for every profile, every object and
every position, when the profile is such that all individuals in this
subset agree to put the given object in the given position, then
society endorses this agreement. This notion of a decisive subset
appears only as Definition 4 in the course of the proof. We first
introduceweaker variant notions of decisiveness that are graded in
logical strength, i.e., Definitions 1–3, exploring their properties in
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a corresponding sequence of lemmas, i.e., Lemmas 2–4. This serves
as a groundwork for the pivotal Lemma 5, which states that the set
of decisive subsets, in the sense of Definition 4, is an ultrafilter. It
then follows by a classic argument that this set identifies a dictator,
i.e., an individual j ∈ N as in the statement of Dictatorship. Both
the use of graded decisiveness notions and the final ultrafilter
argument are very familiar from social choice theory, but we had
to adapt these tools to our unary framework of classifications.3

We will often represent profiles by tables like the following:

N1 N2 · · · N�N1 ∪ N2 ∪ . . .
r
r ′ x
r ′′

The lines are determined by the positions in P , and the columns, by
the individuals, who will be grouped according to some partition
of N . The objects in X appear in the entries; e.g., if x appears in the
entry (r ′,N2), this means that ci(x) = r ′ for all i ∈ N2. We do not
necessarily describe the full content of an entry and never listmore
than three lines at a time. All lemmas below require Unanimity and
Independence, and by the latter axiom, the missing content of a
table can be completed consistently with the chosen data; as this
argument occurs repeatedly, we will sometimes omit it from the
proofs.

We begin with an important preliminary lemma, to the effect
that Unanimity can be logically reinforced, given the surjectivity
domain adopted here. In effect, the reinforcement says that an
object can occupy a position in the social classification only
if it occupies this position in at least one of the individual
classifications.4

Lemma 1. For all (c1, . . . , cn) ∈ Cn, all x ∈ X and all r ∈ P, if
c(x) = r, then ci(x) = r for at least one i ∈ N.

Proof. If this is not the case, there exists an object x and a profile
(c1, . . . , cn) s.t. x appears in 1 ≤ px < p lines, but x is in a social
position different from any of these lines. By Unanimity, we must
have px ≥ 2. Consider anyprofile (c ′

1, . . . , c
′
n) s.t. (i) x appears in the

same entries as in (c1, . . . , cn), (ii) the px lines where x appears are
filledwith px−1 other objects than x, and (iii) the remainingm−px
objects are distributed so that the remaining p − px lines are filled
and each of these objects always appears on a single line. Then, by
Unanimity, them−px objects are in the p−px social positions, and
since by Independence c ′ and c give x the same social position, c ′

has only px − 1 objects to fill the px positions. This contradicts the
fact that c ′

∈ C.5 �

In the next proofs, we will use Lemma 1 as follows. We will
devise profiles in table form such that the entries of a line r contain
only two objects x and y, and then conclude from Lemma 1 that
society can fill r only with either x or y. If our assumptions also
ensure that x’s social position cannot be r , we fully determinewhat
y’s social position is—it must then be r . Variants of this reasoning
serve to prove Lemmas 2–5.

3 As a brief reminder, an ultrafilter U on a set N is a set of subsets of N that does
not contain the empty set, is closed under inclusions and intersections, and is such
that for every subset of N , either this subset or its complement belongs to U . If N is
finite, U has the form of the set of all subsets of N that contain a given element j of
N .
4 In Dokow and Holzman’s (2014) more abstract framework, this property –

labelled Supportiveness – plays a critical role; see below.
5 To illustrate the last step in the proof with p = 3 and m = 4, here is a profile

(c ′

1, . . . , c
′
n) leading to the contradiction:

N1 N \ N1 Society
r x y ?
r ′ y x ?
r ′′ wz wz xwz
Definition 1. Let x ∈ X , N1 ⊆ N and r, r ′
∈ P , r ≠ r ′. The subset

N1 is semi-decisive for r against r ′ over x if, for all (c1, . . . , cn) ∈ Cn,
the two conditions that
• for all i ∈ N1, ci(x) = r , and
• for all i ∈ N \ N1, ci(x) = r ′,
entail that c(x) = r .

Lemma 2. If the subset N1 is semi-decisive for r against r ′ over x,
then for all s, s′ ∈ P and all y ∈ X, it is semi-decisive for s against s′
over y.
Proof. If N1 = N , Unanimity secures the conclusion. If N1  N ,
take any (c1, . . . , cn) as follows:

N1 N \ N1

r x
r ′ x

Take y ≠ x, and s, s′ s.t. s ≠ s′ and s, s′ ≠ r, r ′. By Independence,
we can fix ci(y) = r ′ for all i ∈ N1, and ci(y) = s for all i ∈ N \ N1,
while completing the profile in such away that only x and y appear
in line r ′:

N1 N \ N1
r x
r ′ y x
s y

(From now on, we skip the details of completion of our auxiliary
profiles; they are easily adapted from those of the last proof.) Since
c(x) = r by the semi-decisiveness assumption, it follows from
Lemma 1 (in the way explained above) that c(y) = r ′, and by
Independence again, we conclude that N1 is semi-decisive for r ′

against s over y. The same proof for r ′, s, s′ instead of r, r ′, s shows
that N1 is semi-decisive for s against s′ over y, as desired. Variant
arguments take care of the cases where


r, r ′


∩


s, s′


≠ ∅. �

Definition 2. Let x ∈ X , N1 ⊆ N , r ∈ P . The subset N1 is semi-
decisive for r over x if, for all (c1, . . . , cn) ∈ Cn, the two conditions
that
• for all i ∈ N1, ci(x) = r , and
• for all i ∈ N \ N1, ci(x) ≠ r ,
entail that c(x) = r .

Lemma 3. If the subset N1 is semi-decisive for r against r ′ over x,
then for all s ∈ P and all y ∈ X, it is semi-decisive for s over y.
Proof. If N1  N , take any (c1, . . . , cn) with ci(y) = s for all i ∈ N1
and ci(y) ≠ s for all i ∈ N�N1. If ci(y) is the same for all i ∈ N�N1,
Lemma 2 already delivers the result, so we assume that ci(y) takes
k ≥ 2 valueswhen i ranges overN�N1.We only dealwith k = 2, as
the general case follows from adapting the proof. Assume then that
y appears on line s and two other lines s′, s′′. If x ≠ y, we can apply
Independence and ensure that (c1, . . . , cn) satisfies the following
(with no more objects on line s′):

N1 N2 N \ N1 ∪ N2
s y x x
s′ x y
s′′ y

By Lemma 2, N1 is semi-decisive for s′ against s over x, whence
c(x) = s′, so that by Lemma 1, c(y) = s, as desired. If x = y, the
argument uses z ≠ x in the role of x. �

Definition 3. Let x ∈ X ,N1 ⊆ N . The subsetN1 is decisive for r over
x if, for all (c1, . . . , cn) ∈ Cn, the condition that
• for all i ∈ N1, ci(x) = r ,
entails that c(x) = r .
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Lemma 4. If, for all r ∈ P and all x ∈ X, the subset N1 is semi-decisive
for r over x, then for all s ∈ P and all y ∈ X, it is decisive for s over y.

Proof. Take N1  N ′

1  N , and (c1, . . . , cn) in which ci(y) = s for
all i ∈ N ′

1, and ci(y) ≠ s for all i ∈ N�N ′

1, with ci(y) taking k ≥ 1
values when i ranges over N�N ′

1. Assume that k = 2. Then, there
are three positions and four groups to consider, i.e., ci(y) = s for
all i ∈ N1, ci(y) = s′ for all i ∈ N2, ci(y) = s′′ for all i ∈ N3, and
again ci(y) = s for all i ∈ N4 = N�N1 ∪ N2 ∪ N3. If x ≠ y, we
take z ≠ x, y, and invoking Independence, ensure that (c1, . . . , cn)
satisfies the following (with no more objects on line s):

N1 N2 N3 N4
s y z x y
s′ x y z z
s′′ z x y x

By assumption,N1 is semi-decisive for s′ over x, and for s′′ over z, so
that c(x) = s′ and c(z) = s′′. Then, Lemma 1 entails that c(y) = s,
as desired. The cases k = 1 and k ≥ 3 result from adapting this
argument. �

Definition 4. Let x ∈ X , N1 ⊆ N . The subset N1 is decisive if, for all
x ∈ X and r ∈ P , N1 is decisive for r over x.

Lemma 5. The set of decisive subsets of N is an ultrafilter.

Proof. If N1 is decisive, then any superset of N1 is decisive; this
simply follows from the definition. We proceed to show that if
N1 and N2 are decisive, then so is N1 ∩ N2. Fix s, s′ ∈ P and
y ∈ X . We will show in two steps that if N1 and N2 are decisive,
then N1 ∩ N2 is semi-decisive for s against s′ over y. When this
conclusion is reached in the second step, the stronger conclusion
that N1 ∩ N2 is decisive will follow from applying the previous
lemmas in succession.

Step 1. Here we fix r, r ′, r ′′
∈ P and x ∈ X and consider a profile

(c1, . . . , cn) in which ci(x) = r for all i ∈ N1 ∩ N2, ci(x) = r ′ for
all i ∈ N1�N2, ci(x) = r ′′ for all i ∈ N2�N1, and ci(x) = r ′ for all
i ∈ N�N1 ∪N2. By Independence, wemake sure that the three lines
r, r ′, r ′′ satisfy the following (with no more objects appearing on
line r).

N1 \ N2 N1 ∩ N2 N2 \ N1 N \ N1 ∪ N2
r ′ x z z x
r z x y z
r ′′ y y x y

Since N1 is decisive for r ′′ over y, and N2 for r ′ over z, c(y) = r ′′ and
c(z) = r ′; hence c(x) = r follows from Lemma 1.

Step 2. Consider (c1, . . . , cn) inwhich ci(y) = s for all i ∈ N1∩N2,
and ci(y) = s′ for all i ∈ N�N1 ∩ N2. Taking some other line s′′, we
make sure by Independence that s, s′, s′′ satisfy the following (with
no more objects on line s):

N1 \ N2 N1 ∩ N2 N2 \ N1 N \ N1 ∪ N2
s x y z x
s′ y x y y
s′′ z z x z

Because N1 is decisive, c(z) = s′′. Now x is in the same pattern
as in Step 1, with s, s′, s′′ instead of the (arbitrarily fixed) r, r ′, r ′′,
whence c(x) = s′. It then follows from Lemma 1 that c(y) = s,
hence that N1 ∩N2 is semi-decisive for s against s′ over y, as was to
be proved.

It remains to be shown that for all N1 ∈ N , either N1 or N \ N1
is decisive. Consider (c1, . . . , cn) satisfying the following:

N1 N \ N1

r x
r ′ x
By Lemma 1, either c(x) = r or c(x) = r ′, meaning that either N1
is semi-decisive for r against r ′ over x, or N \ N1 is semi-decisive
for r ′ against r over x. The conclusion then follows from the earlier
lemmas. �

3. More comments

The formalism of this paper can be interpreted in terms of a
collective task assignment problem. Suppose that there is a set
P of p tasks and a set X of m workers, and that exactly one task
must be assigned to each worker; then an assignment of tasks to
workers is a well-defined mapping X → P . If several workers
can be occupied on the same task, the condition m ≥ p makes
sense, and if furthermore all tasksmust be attended to, surjectivity
applies. As a pictorial example of all these conditions being met,
think of a conservation camp, in which each enrollee has one
and only one activity, like planting a tree or opening a trail, such
activities typically require enrollees to work side by side, and the
campwants each of them to be carried out. Suppose now that there
are several supervisors, and each proposes an assignment X → P .
Our theorem challenges the way in which one may wish to define
a collective task assignment from these individual proposals.6

Now suppose that the problem is still to assign p tasks in
P to m workers in X , under the earlier constraint that exactly
one task is assigned to each worker, and the new constraint
that some tasks can be left unattended to, so that the reverse
inequality p ≥ m makes sense. If one adds that no two
workers can be occupied on the same task, the assignments
X → P will be injective. As an example of all conditions
being met, think of tasks as being jobs that are advertised by an
employment agency, and of workers as being applicants to this
agency, with potentially more jobs than applicants because the
jobs are somehow unattractive. As before, we may suppose that
several proposals are made for the task assignment and that these
need to be aggregated. Dokow and Holzman (2010, Example A
and Corollary 1) have analyzed a related example in their abstract
formalism of nonbinary evaluations, and remarkably, they have
come up with an impossibility theorem.7

Formally, Dokow andHolzman introduce the injectivity domain:
C inj

=

k : X → P | ∀x, x′

∈ X : k(x) = k(x′) H⇒ x = x′


and define an aggregation function to be:
F : (C inj)n → C inj, (c1, . . . , cn) → F(c1, . . . , cn).
They also introduce the following variant of the Unanimity
condition:

Condition 4. Supportiveness: For all (c1, . . . , cn) ∈ (C inj)n, all x ∈

X, all r ∈ P, if c(x) = r, then there is i ∈ N such that ci(x) = r.

Supportiveness trivially entails Unanimity, but the converse does
not hold in general. Using a general theorem of theirs (2010, Theo-
rem 1), Dokow and Holzman show that if F : (C inj)n → C inj satis-
fies Independence and Supportiveness, it satisfies Dictatorship. If we
manage to prove Dictatorship from Independence and Unanimity, a
more standard derivation, this is because our surjectivity domain
supports the problematic converse; indeed, Lemma 1 states that
Unanimity and Independence entail Supportiveness on C.

6 In an alternative, but perhaps less natural, interpretation of the formalism, X
is a set of m tasks, P is a set of p workers, and the latter are assigned to the former
rather than the converse. Now the interpretational constraints for X → P to be a
surjective mapping, with m ≥ p, are that exactly one worker is assigned to each
task, each worker can be occupied on more than one task, and no worker is left
unoccupied.
7 Dokow and Holzman literally consider the alternative interpretation in which

p candidates in P are assigned to m jobs in X . Now the interpretational constraints
for X → P to be an injective mapping, with p ≥ m, are that exactly one candidate
is assigned to each job, candidates can end up without a job, and no candidate can
end up with more than one job.
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While the present paper uses the language and ultrafilter proof
technique of social choice theory, an earlier version derived the
same result using Dokow and Holzman’s apparatus of nonbinary
judgments. This involved a significant technical detour but
permitted including our result into the large set of applications
covered by these authors. The interested reader is referred to
Maniquet and Mongin (2014). On the occasion of this proof, the
earlier version touches on the broader question of how the recent
body of work on judgment aggregation contributes to the progress
of social choice theory (see also the discussion in Dietrich and
Mongin, 2010, or Mongin, 2012).

A word may be added in connection with the motivating
examples of this paper. In our view, the conflict between
Unanimity, Independence and either the surjectivity or injectivity
domain restriction is not easy to resolve once it is recognized.
The two axioms have some normative standing, as was said, and
the domain restriction cannot be removed if it is part of the
institutional context (as we argued surjectivity was in the group
identification problem) or if it reflects a feasibility constraints
(variants of the collective assignment problem illustrated this for
either surjectivity or injectivity). Then, one is left with the thorny
choice of sacrificing one of two prima facie relevant axioms.
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