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1 I n t r o d u c t i o n  

The present paper offers a novel axiomatizat ion of the probabili ty concept in 
terms of modal  logic. The  structures we axiomatize consist of a measurable 
space of possible worlds, and for each possible world, a probability measure 
on the space and a valuation function. Roughly speaking, these s tructures 
can be seen as probabilistic refinements of the familiar Kripke structures of. 
modal  logic. Leaving aside measurabil i ty restrictions, the difference between 
the two kinds of s t ructures is simply tha t  in a probability structure each world 
is mapped  to a probabili ty measure instead of a set. Conversely, a Kripke 
s t ructure  can be seen as an impoverishment of a probabili ty s tructure,  in 
which only supports  (i.e., minimal closed sets of probability one) are consid- 
ered. Similarly to Kripke structures,  probability s tructures admit  of various 
conceptual  interpretations,  but  this paper was motivated by earlier work in 
epistemic logic and the foundations of decision theory and game theory, so 
we will be exclusively concerned here with the interpretat ion of probability 
as a measure of subjective belief. 

For simplicity, our formalism and main results are s tated for a single in- 
dividual, but  they can be trivially extended to the  multi-agent case. When  
each agent has a mapping from possible worlds to probabilities, the  struc- 
tures become what  game theorists call a type space. The lat ter  concept  was 
introduced by Haxsanyi (1967-68) in his pioneering a t t empt  to build a gen- 
eral set-up for games with incomplete information. Type spaces have the 
property of summarizing at once the players' uncertainties about  the game 
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and the other players' uncertainties. Formally, a type space involves a mea- 
surable state space, and for each state and each agent, a probability measure 
on the space. It also includes a specification of the objective parameters of 
the game in each state, which is the analogue of a valuation function. 

The generality and wide applicability of probability structures make them 
a natural candidate for logical investigations. Fagin and Halpern (1994) and 
Fagin, Halpern and Megiddo (1990) have axiomatized probability structures 
with a very rich syntax, which can express not only probabilities of formulas, 

but also probabilities of linear combinations of formulas. 
Here we follow a completely different route. Our more restricted language 

does not make it possible to express directly addition or scalar multiplication 
of formulas. Rather, it is a restricted extension of the propositional modal 
syntax. All epistemic features are captured by belief operators L~ for ratio- 
nal a E [0, 1], to be interpreted as "the probability is at least a".  Had we 
restricted a to be only 0 or 1, the system presented here would collapse into 
the familiar modal system KD (see, e.g., Chellas 1980). 

This syntax with indexed operators was suggested by Aumann (1995, 
section 11). The set of axioms he states there is sound with respect to prob- 
ability structures. We show, however, that it is not complete. The way we 
propose to complete Aumann's system might seem roundabout at first sight, 
and indeed it remains an open problem whether there is a simpler complete 
system. Nevertheless, the "complicated" extra axiom that we need is closely 
related to a technical condition introduced to resolve two fundamental issues 
in probability theory. 

The first is the existence of a probability compatible with a qualitative 
ordering of events.  De Finetti stated a set of simple necessary conditions on 
the ordering to be compatible with a probability, and asked whether they are 
sufficient. Kraft, Prat t  and Seidenberg (1959) constructed a counterexample, 
and introduced the missing condition for sufficiency - a condition to which 
our extra axiom is very close in spirit. 

The second issue is how to characterize the pairs of a super-additive lower 
probability and a sub-additive upper probability which can be separated by 
an (additive) prob£bility. (For instance, Walley (1981) and Papamarcou and 
Fine (1986) showed this cannot always be done.) Suppes and Zanotti (1989, 
theorem 1) introduced a necessary and sufficient condition, which is again 
similar to the one we employ. In all of these cases, the condition is needed to 
use some version of the separation theorem or the theorem of the alternative 
in convex analysis. 
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Like in ordinary modal logic, our language allows only for finite conjunc- 
tions and disjunctions. This approach leads to a well-recognized difficulty 
in investigating the probability calculus (on the  connection with infinitary 
first-order logic see Gaifmann (1964) and Scott and Krauss (1966)). This is 
the problem of "non-Archimedianity".  For example, the set of formulas 

1 which says that  the probability of ~ is at least ~ - r for every raiional r, is 
consistent with the formula ¢ which says that  the probability of ~ is strictly 
smaller than ½, because every finite subset of ~ U {~} is consistent. However, 
there is no real number for the probability of ~ which would be compatible 
with the whole set ~ U {¢}. When  infinite conjunctions and disjunctions are 
permitted,  ~ could be made to imply the negation of ¢ ,  and thus avoid the 
problem. But in a finitary logic this cannot be done, so there is no hope to 
have strong completeness of the system 1 . Put  differently, the canonical space 
of maximally consistent sets of formulas cannot be endowed with a proba- 
bility structure compatible with the formulas that  build the states, because 
in those states that  contain the formulas of ~ U {¢}, there is no suitable 
probability for the set of states containing ~. We can still strive, however, 
to find a complete system, in which every tautology - i.e., semantic t ru th  in 
the family of probability structures, spelled out in the finitary language - is 
a theorem of the system, i.e. is provable from its axioms. 

We circumvent the difficulty of non-Archimedianity by employing a device 
which has led to successful completeness proofs of finitary axiomatizations of 
common belief. The idea is to choose suitable filtrations of the full language 
to sub-languages with finitely many formulas. 

2 The formal system and the determination theorem 

The formal language/~ in this paper is built in the familiar way from the 
following components: A set 7 ~ of propositional variables, the connectives -7 
and A, from which the other connectives V, ~ and ~-~ are defined as usual, 
and the modal operators L~ for any rational c~ in [0, 1], with the intended 
meaning "the probability is at least c~". The operator Ms - "the probability 

1That is, we cannot hope to have a finitary system for probability in which if ~ holds 
whenever a (possibly infinite) set of formulas ~ holds in a probability structure, then 
proves ¢. 
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is at most a" - is an abbreviation defined by 

and the operator E~ - "the probability is equal to a" is defined by 

E~qa ~ M ~  A L~qa. 

The operator S~ - "the probability is strictly smaller than a" is defined by 
Sag ~ -~L~,  and similarly the operator G~ - "the probability is strictly 
greater than c~" is defined by Gaq0 ~-+ ~Maq0. 

The space .M of probability structures that we aim to axiomatize has a 
typical element 

m = (n ,A,  p, v) 

where ~ is a non-empty set; .,4 is a a-field of events - subsets of f~; P is a 
measurable mapping from f~ to the space A(f~, .,4) of probability measures, 
which is endowed with the a-field generated by the sets 

{# E A(f~,A) : #(E) _> a} for all E E A and rational a C [0, 1] 

and v is a mapping from ~ x "P to {0, 1}, such that  v(.,p) is measurable for 
every p C P.  

The validation clauses of our logic are stated inductively in the usual way 
for the propositional connectives, and as follows for the modal operators L~ 
(resp. M~, E~, S~, G~): 

m,w ~L~qo iff P(w)([~o]) > a  (resp. < a ,  = a ,  < a ,  > a )  

where 

[~] = {~ e ~ :  ~ , ~  ~ ~}. 

We use the familiar abbreviations, ra ~ g~ for [Vc0 E f~, m, w ~ q4, and 
M ~ ~ for [ w  e M,  ~ ~ ~1. 

A starting point for axiomatization is the following system .4, which we 
have adapted from Aumann (1995, section 11). (The symbol ~- denotes the 
inference relation of the system, and T and _L abbreviate ~ V ~p, ~ A ~ ,  
respectively.) 

Any axiomatization of the propositional calculus (ao) 
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Lop 

LaT 

&(p A ¢) A &(p A- f) + &+ep, 

Lap --~ Sz-~p a + 8 > 1 

If f - p ~ ¢  then F - L a p ~ L a ¢  

a + 8 < 1  

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

Proposition 1: From ..,4 the following axiom and inference rule schemata 
can be derived: 

If ~ - ~ ¢  then ~ L a p ~ L a f ,  (A6+) 

Lap -+ L~p t3 < a (A7) 

Lap --+ G~p /3 < a (A7+) 

Sap----~ Map (A8) 

na(p A ~b) A Gz(p A -~¢) --+ Ga+zp, a + p < 1 (A9) 

Aumann's (1995) axiom system actually consists of (A0)-(A5), ( A6 +) and 
(A7). The schemata (A3), (A4) and (A9) translate into the formal language 
inequalities of the probability calculus for disjoint events. For disjoint A and 
B these are: 

(i) #(A) _> a, #(B) >_ fl 

(ii) #(A) k a, #(B) > fl 

(iii) >(A) _< a, #(B) _< 8 

(iv) ip(A) _< a, Ip(B) < t3 

#(A U B)_> a + / 3  

#(A U B) > a + / 3  

#(A U B) < oe + /3 

#(A U B) < a + 1 3  

In the system .,4, the schemata (A3) and (Ag) express (i) and (ii). The 
schema (A4) expresses only the following form, which is weaker than (iv): 
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(v) #(A) < a, #(B) < /3 ~ p ( A U B ) < c e + / 3  

P r o p o s i t i o n  2: The system .,4. does not imply the following schemata, 
(which express (iii) and (iv)): 

M~(¢p A ¢) A M#(~ A ~#,) ---+ Ma+~(p, ol + # _< 1 (AiO) 

Mc~(~ A ~) A S/~(~ A ~d#) --~ Sa+/3q#, ct + /2  _< 1 (All) 

Since .h4 ~ (A10), (All) ,  the system .,4 is not complete with respect to .h4. 

It is not hard to show that A+(A10) implies (All) .  Therefore, it would 
be enlightening to know whether the system A+(A10) is complete with re- 
spect to the family of probability structures. This question remains an open 
problem for the time being. We do suggest, however, to substitute (A3) with 
a unique, more elaborate schema, which will imply at once (Aa), ( t9) , (110)  
and (All ) ,  and which will complete the system. Before we introduce the,. 
axiom formally, we explain its intuitive meaning. 

Recall that a probability measure # on a space f~ defines the integral 
functional on the collection of characteristic Nnctions (of measurable sets), 
and hence also on the semi-group of finite sums of such characteristic func- 
tions. In particular, if a function f in this semi-group can be written as a 
sum of characteristic functions in two different ways, then the two ways of 
calculating the integral give the same result. Explicitly, f is the sum of the 
characteristic functions of E l , . . . ,  Era, and also of F1 , . . . ,  Fn, if and only if 
the points that belong to at least one of E l , . . . ,  E~ belong to at least one 
F1 , . . . ,  Fn and vice versa, and similarly for the points that belong to at least 
two sets, three sets, etc. Let us denote by E (k) the points that appear in at 
least k of the sets E l , . . . ,  Era, and by F (k) the points that appear in at least 
k of the sets F1 , . . . ,  Fn, i.e. 

E(k) = U (E h N. . .  N Elk ) 
I_<,Q <...<~k<m 

F(k} = U (£~1 n . . .  n F~,) 
1_<£1 <...<£k_<n 
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We clearly have the following property, that  we denote by (C1) " If 2 

E (k) = F (k) for 1 _< k < max(re, n) 

then 

and 

#(Ei)  _> ai for i = 1 , . . . m  

#(Fj)  _</~j for j = 1 , . . . n -  1, 

entail that  

~(f~) > ( ~  + . . .  + am)-  (A + . . .  9,-1), 

- otherwise the integral of f would not be well defined. 
The axiom that  we propose is a syntactical rendering of property (C1). 

If (qal,... , qam) is a collection of formulas, we abbreviate by qa (k) the formula 

V ((fie , A... A ~ek)" 
1<_£1 <...<gk_<m 

If (~Pl, • . . ,  ¢ , )  is another collection of formulas, we abbreviate by 

( ~ , . . . , ~ )  ~ ( ¢ ~ , . . . , ¢ , )  

the formula 

max(re,n) 

A qp(k) ~ ¢(k). 
k = l  

The property (C1) is therefore expressed by 

((~l ,- . . ,~m) ~ (¢1,...,¢,))-~ 
m n - 1  

((A Lo, ,)A(A 
~=1 f=l 

(B) 

We denote by ,,4 + the system consisting of (A0), (A1), (A2), (AS), (A6) and 
(B). Our main result can now be stated: 

2Here we adopt the convention that E (}) = O if k > m, and similarly F (k) = 0 for 
k > n .  
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T h e o r e m :  .,4 + is  a sound and complete axiomatization of .A4, i . e .  

Before we elaborate on the theorem, we check tha t  the schema (B) implies 
the schemata (A3), (A9), (A10) and (Al l ) ,  or equivalently, tha t  the property 
(C1) implies the properties (i)-(iv), and in fact more general versions of them. 

It  is clear tha t  property (i) is a special case of (C1), by taking m = 2, 
n = 1, E1 = A, E2 = B and F1 = A U B. It is also not hard to show that  (i) 
and (ii) are equivalent, and tha t  (iii) and (iv) are equivalent. The  remaining 
link is therefore: 

P r o p o s i t i o n  3: Property (ii 0 follows from property (C1). 

The following proposition expresses some properties of the E~ operators. 

P r o p o s i t i o n  4: From .,4 + the following axiom schemata can be derived: 

Ea~ ~-~ El_a~o (A12) 

E~cp ~ -~Ez~ j3 ¢ a (A13) 

Schema (A12) is an exact rendering of the complementat ion axiom, and 
(A13) says in effect tha t  probabil i ty values are unique. Important ly,  the 
existence of a probabil i ty value for each formula, as opposed to its uniqueness, 
cannot be expressed directly in our finitary language. 

The property (C1), or its syntact ical  formulation (B), is very close in 
spirit to the sufficient condition of Kraft,  P ra t t  and Seidenberg (1959) and 
Scott (1964) for a "more or equally probable than"  relation on events h to 
be represented by a probabil i ty measure s. The  condition says tha t  if the  surn 
of the  characteristic functions of E l , . . . ,  Em equals tha t  of F 1 , . . . ,  Fm and 

E{hF{ i =  1 , . . . m - 1  

then Fm h Era. De Finet t i  had previously assumed tha t  the  simpler condition 

Eh F ¢~ EcJGh FtJG 

3The relation h satisfies 0 ~ l~ and E h 0 for every event E C f~, and every two events 
E and F are comparable - either E h F or F ~ E. 
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for events G disjoint from both E and F, would suffice. However, a coun- 
terexample of Kraft, Prat t  and Seidenberg (1959) showed that de Finetti 's 
condition is not sufficient for the existence of a probability representation. 

Qualitative probability relations have been investigated in some logic pa- 
pers. Following Segerberg (1971), Gfirdenfors (1975) introduced the binary 
relation ~ into a propositional language, and was thus able to translate the 
theory of qualitative probability relations, including Scott's condition, into 
syntactical terms. He states and proves completeness and decidability theo- 
rems for his system. 

The property (C1) is also close in spirit to the necessary and sufficient 
condition found by Suppes and Zanotti (1989) for the existence of a proba- 
bility # between a pair (#., #*) of lower and upper set functions #, _< #*, of 
which the lower is super-additive and the upper sub-additive: For disjoint A 
and B, 

#,(A) + >,(B) _< #,(A to B) _< #*(A U B) _< >*(A) + #*(B). 

The necessary and sufficient condition for the existence of a probability # 
satisfying/~. _< # <_ #* is that if the sum of the characteristic functions of 
E1, . . . ,Em equals that of F1 , . . . ,Fn ,  then 

m n 

i=1 j=l 

Without this condition, counterexamples by Walley (1981) and Papamarcou 
and Fine (1986) show that a separating # need not exist. 

All these technical conditions share a common feature, i.e. they make 
it possible to employ some version of the separation theorem (or the Hahn- 
Banach theorem). In our case as well, the proof of the theorem will use a 
general version of the theorem of the alternative in convex analysis. This 
approach is coupled with the method of filtration, which has been used else- 
where in modal epistemic logic to prove the completeness of systems that 
are not necessarily strongly complete (e.g. Halpern and Moses' (1992) or 
Lismont and Mongin's (1994) common belief logics). With this technique, 
completeness is proved "formula by formula: one fixes the formula cp for 
which the implication 
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should hold, and proceeds to construct the finite space of maximally consis- 
tent sets of formulas in the sub-language/2[~] generated by ~, up to some 
finite depth. As it turns out, there is an algorithm to construct this space, 
which as a corollary delivers the decidability of the system. 

The proof will be detailed in the full paper. There, we will also introduce 
the multi-agent extension of the system, as well as possible postulates for 
introspection in the probabilistic context. 
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