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News Trading and Speed
THIERRY FOUCAULT, JOHAN HOMBERT, and IOANID ROŞU∗

ABSTRACT

We compare the optimal trading strategy of an informed speculator when he can
trade ahead of incoming news (is “fast”), versus when he cannot (is “slow”). We find
that speed matters: the fast speculator’s trades account for a larger fraction of trad-
ing volume, and are more correlated with short-run price changes. Nevertheless, he
realizes a large fraction of his profits from trading on long-term price changes. The
fast speculator’s behavior matches evidence about high-frequency traders. We predict
that stocks with more informative news are more liquid even though they attract
more activity from informed high-frequency traders.

High-frequency traders do not care if information is accurate or inaccurate.
They just want to know what is coming out on the market that might sway
public sentiment. So this is very different than traditional insider trading
[ . . . ]. This is all just about what might move the market, because they
are in and out in milliseconds. They don’t really care about the long-term
effects of the information.

Atty. Gen. Schneiderman’s speech, “High-Frequency Trading and Insider
Trading 2.0.”1

TODAY’S FINANCIAL MARKETS are characterized by an almost continuous flow of
“news.” Every quote update or trade in one asset (e.g., a stock index futures
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or an exchange-traded fund) is a source of information for pricing other assets.
Furthermore, traders increasingly rely on machine-readable text in tweets,
Facebook pages, blogs, newswires, economic and corporate reports, company
websites, etc., which greatly expands their information set because the arrival
rate of such news is very high.2

News thus plays an increasing role in shaping trade and price patterns in
financial markets. High-frequency trading is a case in point. High-frequency
traders’ (HFTs) strategies are diverse (see SEC (2014)): some specialize in mar-
ket making whereas others follow directional strategies, establishing positions
in anticipation of future price movements, mainly using aggressive (i.e., mar-
ketable) orders.3

Academic evidence suggests that high-frequency news plays an important
role in directional HFTs’ strategies.4 First, HFTs’ aggressive orders anticipate
short-term price movements and contribute significantly to trading volume.
For instance, Brogaard, Hendershott, and Riordan (2014) find that HFTs’ ag-
gressive orders predict price changes over very short horizons and account
for 25% to 42% of trading volume depending on market capitalization (see also
Baron, Brogaard, and Kirilenko (2014), Benos and Sagade (2013), and Kirilenko
et al. (2014) for similar evidence). Second, HFTs’ aggressive orders are corre-
lated with news such as market-wide returns, quote updates, macroeconomic
announcements, E-mini price changes, and newswires items (see Brogaard,
Hendershott, and Riordan (2014) and Zhang (2012)). These observations sug-
gest that directional HFTs trade on soon-to-be-released information. However,
directional HFTs realize a large fraction of their profits on aggressive orders
over relatively long horizons (e.g., over the day; see Carrion (2013), table 5, and
Baron, Brogaard, and Kirilenko (2014), table 6). This last finding is difficult to
reconcile with the view that directional HFTs trade only on short-term price
reactions to news. Carrion (2013, p. 710) thus concludes that “models where
HFTs solely profit from very short-term activities [ . . . ] may be incomplete.”

In this paper, we propose a model of trading on news that explains the afore-
mentioned facts and generates new predictions, especially about the effect of
news informativeness on HFTs’ trading strategy, the sources of their profitabil-
ity (speculation on short-term versus long-term price movements), and liq-
uidity. We therefore contribute to the theoretical literature on high-frequency
trading, which thus far has not considered dynamic models of trading on news.

2 See “Trading via Twitter”, Traders Magazine, June 2014. This article takes the example of
a prop trading firm that “everyday scans 400 to 500 million tweets looking for a breaking news
event.”

3 SEC (2014) provides a survey of empirical findings on HFTs. This survey notes, on page 9, that:
“Perhaps the most noteworthy finding of the HFT dataset papers is that HFT is not a monolithic
phenomenon, but rather encompasses a diverse range of trading strategies. In particular, HFT
is not solely, or even primarily, characterized by passive market making strategies [ . . . ]. For
example, Carrion (2013) and Brogaard, Hendershott, and Riordan (2014) [ . . . ] find that more than
50% of HFT activity is attributable to aggressive, liquidity taking orders.” See also Hagströmer
and Nordén (2013) and Benos and Sagade (2013) for evidence that HFTs’ strategies are diverse.

4 Numerous media articles also emphasize the importance of news in HFTs’ strategies. See,
for instance, “Computers that Trade on the News”, the New York Times, May 22, 2012 or “Speed
Traders Get an Edge”, the Wall Street Journal, February 7, 2014.
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Our model builds on Kyle (1985). One speculator and one competitive dealer
continuously trade while receiving a flow of signals about the payoff of a risky
asset (its “long-run” value).5 The dealer’s signals are public information. We
interpret these signals as high-frequency news. In contrast, the speculator’s
signals are private and informative about the long-run value of the asset. Since
news is also informative about the long-run value of the asset, the speculator’s
signals can also be used to predict short-run price reactions to (the surprise
component of) news.6

We say that there is news trading if the speculator’s signals affect his trades
above and beyond their effects on the speculator’s estimate of the long-run
change in the asset. We show that news trading arises in equilibrium only
when the speculator is fast relative to the dealer, that is, if he can trade on his
forecast of short-run price movements before the dealer reacts to (or receives)
news. In this case, the speculator’s optimal position in the risky asset follows
a stochastic process with a drift proportional to the speculator’s forecast of
the long-run change in the asset value (as in Kyle (1985) and others) and an
instantaneous volatility proportional to the speculator’s forecast of news. This
volatility component is a novel feature of our model and is key for our pre-
dictions. This component drives short-run changes in the speculator’s position
while the drift component determines the long-run change in this position.

To develop intuition, suppose that the speculator’s latest signal is positive,
and yet his forecast of the asset payoff (which depends on his history of signals,
not just the latest signal) is lower than the asset price. In this case, the specula-
tor expects the price to increase in the short-run, due to news arrival (because
the speculator’s signal is positively correlated with news), but to decrease in
the long run. This calls for two different trades: a buy in anticipation of the
short-run price increase and a sell in anticipation of the longer-run price de-
cline. The drift component of the speculator’s position is his desired trade given
his estimate of the long-run price change, while the volatility component is his
desired trade given his forecast of impending news. The speculator’s actual
trade is the sum of these two—possibly conflicting—desired trades.

The volatility component always swamps the drift component in explaining
short-term variations in the speculator’s position. Thus, short-run changes in
the speculator’s position are driven by news, that is, the speculator trades in
the direction of incoming news. However, over a longer period of time, the
speculator’s position changes in the direction of his long-run forecast of the
asset value. Hence, in the previous example, the speculator buys the asset just
ahead of news arrival, even though he estimates the asset to be overpriced
relative to its long-run value; then, in the longer run, he sells the asset to
exploit this mispricing. Hence, when he is fast, the speculator trades on what
moves prices in the short run but he also cares about the long-run implications
of his information.

5 “Long-run” in our model should be interpreted as, say, an hourly or daily horizon. Forecasts at
this horizon are long-run relative to forecasts of price changes over the next second.

6 The model nests the particular case in which the speculator can perfectly forecast news. This
corresponds to the case of advance access to news content.
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Figure 1. Fast and slow speculation. The figure plots the evolution over time of the speculator’s
position (left graph) and the change in this position—the speculator’s trade—(right graph) when
he is fast (plain line) and when he is slow (dot-dashed line) using the characterization of his
equilibrium trading strategy in each case for the following parameter values (see Section II):
σu = 1 (standard deviation of noise traders’ order flow), σv = 1 (standard deviation of innovations
in the asset value), σe = 1 (standard deviation of noise in news) and

∑
0 = 1 (variance of asset value

conditional on information available at date 0). The path for the signals received by the speculator
and the dealer is the same in each case. News and trades are assumed to take place every second.
The liquidation time t = 1 corresponds to one trading day = 23,400 seconds.

In contrast, there is no news trading when the speculator is slow relative to
the dealer, that is, when prices react to news before the speculator can trade
on his forecast of this reaction. In this case, the instantaneous volatility of
the speculator’s position is zero and his trades are unrelated to news arrival.
Hence, it is crucial that the speculator reacts to news arrival faster than the
dealer to obtain a strong correlation between his trades and news, as found
empirically for directional HFTs.

Figure 1 (left graph) shows the dynamics of the speculator’s position in the
asset when he is slow (dot-dashed line) and when he is fast (solid line), for a
given realization of information flow. The speculator’s position is much more
volatile when he is fast. In this case, the speculator optimally deviates from his
long-run desired position to exploit his anticipation of short-run price reactions
to news. As news is frequent, the speculator is “in and out in milliseconds,” that
is, carries out many round-trip trades (buys/sells) within short time intervals
(right graph), as HFTs do. Furthermore, these trades anticipate short-run price
movements, as found empirically for HFTs’ aggressive orders. The reason is
that, in the short-run, the speculator trades in the direction of incoming news
and news affects prices. None of these properties obtain if the speculator is
slow. Thus, speed and news anticipation are important to understand stylized
facts about HFTs’ aggressive orders.
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When the speculator is fast, his total expected profit can be split into two
components: (i) his expected profit from the drift component of his strategy and
(ii) his expected profit from the volatility component. The former is obtained
from speculating smoothly on the long-run value of the asset while the latter is
obtained from speculating aggressively on short-run price reactions to news. We
refer to these components as, respectively, the value-trading and news-trading
components of the speculator’s strategy. The contribution of the value-trading
component of the speculator’s strategy to his overall profit increases as news
informativeness decreases (see below), even though short-run changes in his
position remain mostly explained by news. Thus, as Carrion (2013) finds for
HFTs, a fast speculator in our model does not solely (or even mainly) profit from
very short-term trading activities, even though his trades are highly correlated
with short-term price movements.

The speculator obtains larger expected profits when he is fast than when he
is slow. However, his expected profit from value trading is smaller when he is
fast. Indeed, the fast speculator trades much more aggressively on his signals,
which are therefore incorporated into prices more quickly. To offset this effect,
the fast speculator trades less aggressively on his estimate of long-run price
changes.

The market is less liquid (i.e., trades impact prices more) when the specula-
tor is fast. Indeed, the dealer is then at risk of selling (buying) the asset just
before good (bad) news, which increases adverse selection. This increase comes
entirely from the speculator’s ability to anticipate short-term price movements
since, as we just explained, the speculator makes less profits from betting on
long-run price changes when he is fast. This fits well with the perception that
HFTs’ aggressive orders expose liquidity suppliers to losses on short-run price
moves. Moreover, when the speculator is fast, his trades are more informa-
tive about short-term price changes and less informative about long-run price
changes than when he is slow. In our model, these two effects exactly offset each
other so that the speed of price discovery (i.e., the rate at which the dealer’s
pricing error decays) is identical, regardless of whether the speculator is fast
or slow.7

The model has many testable implications. Consider an econometrician with
data on trades for prop trading firms using directional strategies before and
after these firms become fast.8 Our model predicts that the “footprints” of
these firms should change around this event. First, their trades should be

7 Interestingly, Chaboud et al. (2014) show empirically that algorithmic trading causes a reduc-
tion in the frequency of triangular arbitrage opportunities in the foreign exchange market. This
finding is consistent with the possibility that HFTs correct short-term inefficiencies (e.g., slow
reaction of prices to news) faster, as our model predicts, while leaving overall efficiency unchanged
(the absence of arbitrage does not mean that prices fully reflect all available information about
long-term payoffs). Chaboud et al. (2014) also find that algorithmic trading causes a reduction in
the autocorrelation of high-frequency returns. Our model cannot explain this finding since returns
are uncorrelated in our model, as is usual in models à la Kyle (1985).

8 For papers with account-level data for HFTs, see Hagströmer and Nordén (2013) and Benos
and Sagade (2013).
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more correlated with short-term price reactions to news after they become fast.
Furthermore, their share of total trading volume should increase because their
optimal position becomes much more volatile. Last, the autocorrelation in their
trades should decrease after they become fast. Indeed, the speculator’s trades
are positively autocorrelated (as in Kyle (1985)), regardless of whether he is
fast or slow.9 However, when the speculator is fast, short-term changes in his
position are determined mainly by his forecast of short-term price reactions to
the surprise component of news. His trades are therefore less autocorrelated
when he is fast.

The most surprising predictions are those regarding the effect of news in-
formativeness on high-frequency trading. When news is more informative, the
speculator expects prices to react more to news. Thus, he trades more aggres-
sively on short-term price reactions and, for this reason, his share of total
trading volume increases. This increases the risk to the dealer of selling (buy-
ing) the asset just before good (bad) news. Yet, because news is more informa-
tive, the dealer is less at risk of losing money on long-run price changes. The
latter effect dominates so that liquidity improves when news is more infor-
mative. Thus, when the speculator is fast, the model predicts a joint increase
in informed trading and liquidity when news informativeness increases. In
contrast, when the speculator is slow, an increase in news informativeness
improves liquidity but reduces the speculator’s share of trading volume, as is
usual in models of informed trading (e.g., Kim and Verrecchia (1994)).

Second, the fraction of directional HFTs’ profits coming from speculation on
very short-run price movements should be higher in stocks with more informa-
tive news. Indeed, the speculator’s expected profit from news trading increases
when prices are more sensitive to news, and hence with news informative-
ness. In contrast, his expected profit from value trading declines with news
informativeness because the speculator’s long-run informational advantage is
then reduced. Thus, the contribution of news trading to the speculator’s profit
increases with news informativeness.

Furthermore, the speculator’s total expected profit decreases with news in-
formativeness regardless of whether he is slow or fast, but at a lower rate
when he is fast. Thus, the net gain of being fast (i.e., the difference between
the profit of a fast and a slow speculator) increases with news informativeness.
This yields two additional predictions: (i) the profitability of directional HFTs
should be inversely related to news informativeness, but (ii) stocks with more
informative news are more likely to attract directional HFTs.

In the baseline version of our model, news arrives at each trading opportunity.
We also consider the more general case in which trading opportunities are more
frequent than news. In this case, the equilibrium of the slow model is identical
to that obtained in the baseline model. In the fast model, a new effect arises:
illiquidity and the speculator’s share of total trading volume are higher just
before news arrival than after. The reason is that the speculator aggressively

9 Benos and Sagade (2013) find that the (signed) trades of HFTs who mainly use aggressive
orders are positively autocorrelated.
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trades on his expectation of short-term price reactions to news just before news
arrival but not after. This pattern is stronger for a stock with more informative
news. However, as obtained in the baseline version of the model and for the
same reasons, the average illiquidity (i.e., average price impact of all trades,
before and after news) for such a stock should be smaller.

Our paper contributes to the growing theoretical literature on high-frequency
trading.10 Existing papers on this topic do not consider dynamic models of trad-
ing with news and private information. This feature, which is unique to our
model, helps explain stylized facts about HFTs’ aggressive orders and gen-
erates new predictions. Our model is designed to analyze HFTs’ directional
strategies and the effect of news on these strategies. It is therefore silent
on high-frequency market-making (studied, for instance, by Aı̈t-Sahalia and
Saglam (2013) and Weller (2014)). Our modeling approach is related to dynamic
extensions of Kyle (1985) (in particular, Back and Pedersen (1998), Chau and
Vayanos (2008), Li (2013), Martinez and Roşu (2013), and Cao, Ma, and Ye
(2013)). We discuss this relationship in depth in Section VI.

The paper is organized as follows. Section I describes the model. In Section II,
we derive the equilibrium when the speculator is fast and the equilibrium when
he is slow. Section III shows that the speculator’s footprints are significantly
different in each case. Section IV studies the effects of news informativeness.
In Section V, we relax the assumption that the news arrival rate is identical to
the trading rate. Section VI discusses the relationship between our model and
dynamic extensions of Kyle (1985), and Section VII concludes. Proofs of the
main results are in the Appendix. A companion Internet Appendix contains
additional results and robustness checks.11

I. Model

Trading for a risky asset takes place continuously over the time interval
[0,1]. The liquidation value of the asset is

v1 = v0 +
∫ 1

0
dvt, with dvt = σvdBvt , (1)

where Bvt is a Brownian motion, σv > 0, and v0 ∼ N(0,
∑

0), with
∑

0 > 0. We
interpret v1 as the “long-run” value of the asset, which here means the value
of the asset at, say, the end of the trading day (this is long-run relative to
short-run price movements due to news; see below). The risk-free rate is
assumed to be zero. There are three types of market participants: (i) one

10 See Cartea and Penalva (2012), Jovanovic and Menkveld (2012), Pagnotta and Philippon
(2012), Aı̈t-Sahalia and Saglam (2013), Budish, Cramton, and Shim (2013), Biais, Foucault, and
Moinas (2015), Du and Zhu (2014), Hoffmann (2014), and Weller (2014), among others.

11 The Internet Appendix is available in the online version of this article on the Journal of
Finance website.
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risk-neutral speculator (“he”), (ii) noise traders, and (iii) one competitive risk-
neutral dealer (“she”), who sets the price at which trades take place.12

News. At date 0, the speculator receives the signal v0 about the liquidation
value of the asset. The variance of this signal,�0, represents the initial informa-
tion advantage of the speculator. Then, new information arrives continuously.
Specifically, in [t, t + dt], the speculator privately observes the innovation in
the asset value, dvt, and the dealer receives the signal

dzt = dvt + det, with det = σedBe
t , (2)

where Be
t is a Brownian motion independent of all other variables. We refer to

the signal received by the dealer, dzt, as news. News informativeness decreases
with σe.13

For simplicity, we assume that the speculator’s signal about the innovation in
the asset value is perfect. This assumption, however, is not key for our findings
and can be relaxed (see Internet Appendix Section IV). The important point
is that the speculator’s signal is correlated with news. Thus, the speculator’s
signal in [t, t + dt] can be used to forecast both the long-run value of the asset
and incoming news. Specifically, the speculator expects the dealer’s news to be
equal to his signal on average since E(dzt | dvt) = dvt. However, the speculator
does not perfectly know the news received by the dealer, unless σe = 0.

As explained in the introduction, in today’s markets, traders use a wide vari-
ety of high-frequency signals to predict future returns, for example, stock index
returns, limit order books, order flows, and machine readable text (newswires,
tweets, Facebook pages, blogs, firms’ websites, etc.). Thus, information (the
speculator’s signals and news) in our model should be interpreted very broadly.
The exact source of information does not matter for our results. Rather, our
results rely only on news moving prices and the speculator’s signal being cor-
related with news.

Trades, Prices, and Speed. We denote by dxt and dut the market orders sub-
mitted by the speculator and noise traders, respectively, over [t, t + dt]. As in
Kyle (1985), dut = σudBu

t , where Bu
t is a Brownian motion independent of Bvt .

Thus, the order flow executed by the dealer is

dyt = dxt + dut. (3)

As the dealer is competitive and risk neutral, she continuously posts a
price equal to her expectation of the asset liquidation value conditional on her

12 For tractability, we only analyze the case in which there is a single speculator. Extending the
continuous-time version of the model to the case with multiple speculators is challenging—see,
for instance, Holden and Subrahmanyam (1992) or Back, Cao, and Willard (2000) for treatment
without news. The generalization to multiple speculators is therefore left for future work.

13 News is serially uncorrelated in our model. If the news were serially correlated, the dealer
would react only to the innovation in news. Thus, dzt should be interpreted as the innovation in
news.
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information. At date t, let It = {yτ }τ≤t ∪ {zτ }τ≤t be the dealer’s information set,
and let qt be the dealer’s valuation for the asset,

qt = E(v1 | It). (4)

We refer to qt as the dealer’s quote at date t.
In [t, t + dt], the dealer receives two signals about the asset value: (i) the

news, dzt, and (ii) the order flow realized in this interval, dyt, which contains
information because the speculator’s trade is informative. If the dealer is fast
relative to the speculator, she updates her quote given the news before executing
the order flow, dyt. If instead she is slow relative to the speculator, she updates
her quote only after executing the order flow dyt. This formulation captures
the notion that fast trading enables speculators to trade just ahead of news.
In either case, the dealer’s price accounts for the information contained in the
order flow, dyt. Thus, the order flow at date t, dyt, executes at

pt+dt =
{

E(v1 | It ∪ dyt) in the fast speculator model,

E(v1 | It ∪ dzt ∪ dyt) in the slow speculator model,
(5)

where the “fast speculator model” (“slow speculator model”) refers to the case
in which the speculator places his market order, dxt, before (after) the dealer
updates her quote to reflect news, dzt.

By comparing the properties of the slow and the fast speculator models
(henceforth, slow and fast models), we can analyze how the speculator’s ability
to trade slightly ahead of news affects equilibrium trades and prices, every-
thing else held equal.14 Figure 2 summarizes the information structure and
the timing of actions in the fast and slow models. In Section V, we consider a
more general version of the model that allows for (i) a news arrival rate lower
than the trading rate and (ii) longer delays in the dealer’s reaction to news.

Equilibrium Definition. We assume that the speculator perfectly observes
the news after it has been released to the dealer because news is public infor-
mation. For instance, after an economic report has been publicly released, its
content (dzt) is known to all. However, this assumption is not necessary for our
findings because, in equilibrium, the speculator can infer the dealer’s news from
the history of prices and trades.15 In electronic markets, this history is readily
available in real time for sophisticated traders. In sum, the speculator’s infor-
mation set, Jt, when he chooses his order, dxt, includes (i) his signals, prices,
and news up to date t, and (ii) his signal dvt: Jt={vτ }τ≤t ∪ {pτ }τ≤t ∪ {zτ }τ≤t ∪ dvt.

14 Existing literature focuses on the slow speculator scenario. To our knowledge, we are the first
to consider the fast speculator scenario in a dynamic trading model à la Kyle (1985). See Section VI
for a comparison of our results with the existing literature.

15 For instance, consider the equilibrium of the fast model described in Theorem 2. After ob-
serving the order flow at date t, dyt, and the transaction price, pt+dt, at this date, the speculator
can infer the dealer’s quote qt (see (16)). Now, as shown by (17), observing qt and the trade at
date t enables the speculator to learn the news released at this date, even if he does not directly
observe it. Thus, the speculator can reconstruct the history of news from the history of trades and
transaction prices.
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Slow model

Speculator’s signal:

Dealer’s signal :

Order flow :

Transaction price:

dvt

dzt

dyt = dx t+ dut

pt+dt

Dealer’s valuation: qt qt+dt

Quote Updat e Trade

Fast model

Speculator’s signal:

Dealer’s signal :

Order flow :

Transaction price:

dvt

dyt = dxt + dut

pt+dt

dzt

Dealer’s valuation: qt qt+dt

Trade Quote Update

Figure 2. Timing of events during [t, t + dt].

A trading strategy for the speculator is a process for his position in the
risky asset, xt, measurable with respect to Jt. For a given trading strategy, the
speculator’s expected profit πτ from date τ onwards is

πτ = E

(∫ 1

τ

(v1 − pt+dt)dxt | Jτ
)
. (6)

An equilibrium is such that (i) at every date τ , the speculator’s trading strategy
maximizes his expected trading profit (6) given the dealer’s pricing policy, and
(ii) the dealer’s pricing policy is given by (5) and is consistent with the equi-
librium speculator’s trading strategy. As in Kyle (1985), we focus on the linear
equilibria of the fast or the slow models. Specifically, we consider equilibria in
which the speculator’s strategy has the form

dxt = βk
t (vt − qt)dt︸ ︷︷ ︸

Value-trading
component

+ γ k
t dvt︸ ︷︷ ︸

News-trading
component

for k ∈ {S, F}, (7)

where βk
t and γ k

t are smooth (i.e., continuously differentiable) functions of t ∈
[0,1). The superscripts S and F refer to the slow model and the fast model,
respectively.

The speculator’s trade at a given point can be decomposed into two distinct
trades. The first, given by βk

t (vt − qt)dt, exploits the speculator’s forecast of the
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long-run change in the value of the asset, (vt − qt). Hence, we refer to this
trade as the value-trading component of the speculator’s trading strategy. The
second trade, given by γ k

t dvt, exploits the speculator’s ability to forecast news.
It is therefore proportional to this forecast, which as explained before is dvt. We
refer to this trade as the news-trading component of the speculator’s trading
strategy.

When γ k
t = 0, the speculator’s trading strategy has no news-trading compo-

nent, as in Kyle (1985) and extensions of this model allowing for incremental
information (e.g., Back and Pedersen (1998), Chau and Vayanos (2008), Li
(2013), and Cao, Ma, and Ye (2013)). In this case, the speculator’s signals affect
his position only because they affect his forecast of the long-run value of the
asset, vt. When γ k

t > 0, the speculator’s signals affect his trade at a given date
above and beyond their effect on his forecast of the long-run value of the asset.
As explained below, this is because the speculator uses his signal to speculate
on short-run the price reaction to news. Hence, we say that there is news trad-
ing when γ k

t > 0. In the next section, we show that speed is a prerequisite for
news trading: γ k

t > 0 only when the speculator is fast in equilibrium. In this
case, the speculator’s trading strategy features a nonzero volatility component.

The speculator’s trade at a given date could linearly depend on his past sig-
nals according to many forms other than (7). However, in the discrete-time
formulation of the model, the unique linear equilibrium of the fast or the slow
model has the form specified by (7) (see Internet Appendix Section I). It is there-
fore natural to focus on equilibria of this form in continuous time. Analytical
solutions for the equilibrium are easily obtained in continuous time (which is
the reason we focus on this case), regardless whether the speculator is fast or
slow. In contrast, in discrete time, one must solve for the equilibrium numeri-
cally (even with only two trading rounds), which obfuscates economic intuition.
All of our findings also hold in discrete time as long as there are at least two
trading rounds. With only one trading round, one must specify exogenously the
reaction of prices to news (the coefficients μk in Theorems 1 and 2; see below).
This is restrictive because the new insights provided by the model (e.g., those
regarding the effects of news informativeness) come from the endogeneity of
price reactions to news.

II. Equilibrium News Trading

In this section, we derive the equilibria of the slow model (Theorem 1) and
the fast model (Theorem 2). We then compare equilibrium trades and prices in
each case. We also analyze how speed affects the speculator’s expected profit,
price discovery, and the contribution of news to price volatility.

THEOREM 1 (Benchmark: Slow Equilibrium): In the slow model, there is a
unique linear equilibrium of the form

dxt = βS
t (vt − qt)dt + γ Sdvt, (8)
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pt+dt = qt + μSdzt + λSdyt, (9)

dqt = μSdzt + λSdyt, (10)

with

βS
t = 1

1 − t
σu∑1/2

0

(
1 + σ 2

v σ
2
e∑

0

(
σ 2
v + σ 2

e

))1/2

, (11)

γ S = 0, (12)

λS =
∑1/2

0

σu

(
1 + σ 2

v σ
2
e∑

0

(
σ 2
v + σ 2

e

))1/2

, (13)

μS = σ 2
v

σ 2
v + σ 2

e
. (14)

Hence, when the speculator is slow, there is no news trading (γ S = 0) and
the equilibrium is similar to that in Kyle (1985). The only difference is that
the dealer’s price at each date is affected by the news (dzt), in addition to the
information contained in trades (dyt). The sensitivity of the dealer’s price to
news is measured by μS and the sensitivity of her price to the order flow is
measured by λS.16

THEOREM 2 (Fast Equilibrium): In the fast model, there is a unique linear equi-
librium of the form

dxt = βF
t (vt − qt)dt + γ Fdvt, (15)

pt+dt = qt + λFdyt, (16)

dqt = λFdyt + μF(dzt − ρFdyt
)
, (17)

with

βF
t = 1

1 − t
σu(

�0 + σ 2
v

)1/2 1(
1 + σ 2

e
σ 2
v

g
)1/2

⎛⎝1 + (1 − g)σ 2
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�0
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e
σ 2
v

+ σ 2
e
σ 2
v

g

2 + σ 2
e
σ 2
v

+ σ 2
e
σ 2
v

g

⎞⎠ , (18)

16 When σv goes to zero, the equilibrium of the slow model converges to the unique linear
equilibrium in the continuous-time version of Kyle (1985). Indeed, in this case, there is no news
and therefore the model is identical to Kyle (1985). For the same reason, this is also the case for
the equilibrium of the fast model.
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γ F = σu

σv
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e
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2 + σ 2
e
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e
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g
, (19)

λF =
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�0 + σ 2

v

)1/2
σu

1(
1 + σ 2

e
σ 2
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g
)1/2

(1 + g)
, (20)

μF = 1 + g

2 + σ 2
e
σ 2
v

+ σ 2
e
σ 2
v

g
, (21)

ρF = σv

σu

g1/2

1 + g
= σ 2

v

σu
(
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)1/2 (1 + σ 2
e
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e
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+ σ 2
e
σ 2
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g
, (22)

where g is the unique root in (0,1) of the cubic equation

g =
(
1 + σ 2

e
σ 2
v

g
)

(1 + g)2(
2 + σ 2

e
σ 2
v

+ σ 2
e
σ 2
v

g
)2

σ 2
v

σ 2
v +�0

. (23)

Theorem 2 characterizes the equilibrium of the fast model for any level of
news informativeness, σe. The equilibrium is almost in closed form because all
coefficients are a function of exogenous parameters and g, which solves the
cubic polynomial (23). When σe = 0, one can easily solve for g analytically and
obtain a closed form solution for the expressions of equilibrium coefficients βt,
γt, etc. (see Internet Appendix Section V). However, all of our findings hold for
any values of σe and do not specifically require a closed form solution for g.

Comparison of the speculator’s trading strategy when he is slow and fast
directly yields the following result, which is central for the novel implications
of our paper.

PROPOSITION 1: There is news trading only when the speculator is fast, that is,
γ F > 0 while γ S = 0, for all parameter values.

The economic intuition is as follows. As explained previously, the speculator’s
signal can be used to forecast news. As news affects prices (μk > 0), the spec-
ulator’s signal can be used to forecast price reactions to news. For instance,
suppose that the speculator receives signal dvt and does not trade (dxt = 0).
Then he expects the dealer’s quote to change by μkE(dzt | dvt) = μkdvt (see (10)
and (17)): when the speculator receives a positive (negative) signal, he expects
the dealer to mark her quote up (down) upon receiving the news. The specu-
lator can exploit this short-run predictability in price changes only if he acts
before the dealer’s quote reflects the news, that is, only if he is fast. For this
reason, there is news trading only in the fast model.
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Thus, when he is fast, the speculator’s trades are driven by two different bets:
one on the long-run change in the value of the asset (the value-trading bet)
and one on the short-run price reaction to news (the news-trading bet). As he
trades on news, the speculator dissipates his long-run information advantage
(his knowledge of vt) more quickly because he trades more aggressively on
each new incoming signal. To offset this effect, the speculator optimally scales
down the value-trading component of his strategy, that is, βF

t < βS
t , as the next

corollary shows.

PROPOSITION 2: For all parameter values and at each date, βF
t < βS

t .

We now study the contribution of each speculator’s bet to his expected profit.
To this end, we separately compute the ex ante expected profits on trades due to
each component of the speculator’s trading strategy. For k ∈ {S, F}, we denote
by πk

β the ex ante expected profit on value trading and by πk
γ the expected profit

on news trading.17 The speculator’s ex ante expected profit is πk
0 = πk

β + πk
γ .

PROPOSITION 3: The speculator earns a strictly positive expected profit from
value trading, equal to πk

β = βk
0
∑

0, regardless of whether he is fast or slow.
However, his profit from value trading is smaller when he is fast (πS

β > π F
β > 0).

The speculator earns profit from news trading if and only if he is fast (π F
γ >

πS
γ = 0). In net, the speculator’s total expected profit is larger when he is fast,

that is, π F
0 > πS

0 .

A fast speculator optimally trades less aggressively on his long-run estimate
of the fundamental value than a slow speculator (Proposition 2). For this rea-
son, the speculator’s expected profit from value trading is smaller when he is
fast. However, he still earns profits from value trading, that is, from relatively
long-run market timing. Consistent with this implication, Carrion (2013) finds
that high-frequency traders in his sample realize most of their profits on ag-
gressive orders at relatively long (i.e., daily) horizons (see table 5 in Carrion
(2013)). Similarly, Baron, Brogaard, and Kirilenko (2014, p. 5) find that “Ag-
gressive HFTs [ . . . ] gain money by predicting price movements on longer (but
still intraday) time scales.” The relative contribution of each type of trade to
total profit depends on the parameters. In particular, it should vary according
to news informativeness (see Section IV).

As in Kyle (1985), the speculator’s expected profit is equal to liquidity traders’
expected trading costs (or equivalently, the dealer’s expected loss on trades with
the speculator), that is, λkσ 2

u . Hence, the sensitivity of prices to trades, λk, is a
measure of market illiquidity. As the speculator earns larger profit when he is
fast (Proposition 3), we obtain the following result.

PROPOSITION 4: Illiquidity is higher when the speculator reacts to news faster
than the dealer, that is, λF > λS.

17 In [t, t + dt], the trade due to the value-trading component is dxval,t ≡ βk
t (vt − qt)dt. Hence,

πk
β = E(

∫ 1
0 (v1 − pt)dxval,t | J0) and πk

γ = πk
0 − πk

β for k ∈ {S, F}.
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The negative effect of speed on liquidity comes entirely from the fact that
speed allows the speculator to make profits on short-run price reactions to
news at the expense of other market participants. Indeed, as explained pre-
viously, the speculator earns a smaller expected profit from the value-trading
component of his strategy when he is fast. This effect partially mitigates the
deleterious effect of speed on trading costs.

PROPOSITION 5: The dealer’s valuation of the asset, qt, is less sensitive to the
surprise component of news when the speculator is fast, that is, μF < μS.

When the speculator is fast, his trades, and therefore the order flow dyt,
contain information on incoming news. Accordingly, the surprise component of
news (i.e., dzt − E(dzt|dyt)) is less informative when the speculator is fast, and
for this reason the dealer’s valuation is less sensitive to the surprise component
of news in the fast model.

Thus, prices are more sensitive to trades (Proposition 4) and less sensitive
to news when the speculator is fast. One testable implication of these results
is that speed should affect the relative contribution of trades and news to
volatility. To see this, observe that the instantaneous volatility of the dealer’s
quote for the asset (Var(dqt)) comes from news and trades since these are the
two sources of information for the dealer. Using Theorems 1 and 2, we have

Var(dqt) = Var(dqtrades, t)︸ ︷︷ ︸
Trade component

+ Var(dqnews, t)︸ ︷︷ ︸
News component

, (24)

where Var(dqtrades, t) = Var(λkdyt) for k ∈ {S, F}, Var(dqS
news, t) = Var(μSdzt), and

Var(dqF
quotes, t) = Var(μF(dzt − ρFdyt)).

COROLLARY 1: Regardless of whether the speculator has a speed advantage,
the instantaneous volatility of prices is constant and equal to 1

dt Var(dqt) = σ 2
v +∑

0. However, trades contribute to a greater fraction of this volatility when the
speculator reacts faster to news.

Hasbrouck (1991) shows how to estimate the relative contributions of trades
and public information to price volatility. Using this methodology, one could
test whether an increase in speculators’ speed of reaction to news (e.g., the
introduction of colocation as in Boehmer, Fong, and Wu (2014) or Brogaard
et al. (2014)) lowers the contribution of news to volatility, as predicted by
Corollary 1.

When the speculator is fast, trades are more informative about innovations
in the asset value (dvt). However, they are less informative about the long-run
value of the asset (vt) because the speculator optimally trades less aggressively
on his forecast of the long-run price change (Proposition 2). The next corollary
shows that these two effects offset each other exactly so that speed has no effect
on pricing efficiency (as measured by the average squared pricing error).
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COROLLARY 2: Let
∑

t be the average squared pricing error at date t (
∑

t =
E((vt − qt)2)). In equilibrium,

d�t =
[
−2Cov(dqut, vt − qt) − 2Cov(dqut,dvt) +

(
2σ 2

v +�0

)]
dt. (25)

When the speculator reacts faster to news, short-run price changes are more
correlated with innovations in the asset value (i.e., Cov(dqut,dvt) is higher in
the fast model), but less correlated with the dealer’s pricing error (i.e., Cov(dqut,

vt − qt) is smaller in the fast model). The first effect strengthens price discovery
while the second weakens it. In equilibrium, they just offset each other and the
question of who is faster is irrelevant for price discovery, that is, �t = (1 − t)�0
in both the fast and the slow models.

At any date, the average pricing error, �t, depends only on the speculator’s
initial information advantage, �0, since �t = (1 − t)�0. As �0 goes to zero, �t
goes to zero as well, no matter how large the subsequent innovations in the
asset value (σv) or how imprecise the news received by the dealer (σe). However,
the speculator’s expected profits remain strictly positive, even when �0 goes to
zero, as the next corollary shows.

COROLLARY 3: When �0 goes to zero, the speculator earns strictly posi-
tive expected profit on the value-trading component of his trades iff σe > 0:
lim∑

0→0 π
k
β > 0 for σe > 0, for k ∈ {S, F}. Moreover, when he is fast, he earns

strictly positive expected profit on news-trading for all values of σe: lim∑
0→0 π

F
γ >

0 for k ∈ {S, F}.
First consider the case in which the speculator is slow. The speculator’s

expected profit on his trade at date t is then βS
t �t = λSσ 2

u . When�0 goes to zero,
βS

t goes to infinity (see (11)). Hence, in equilibrium, the speculator trades very
fast on each new bit of information, dvt (his trading rate becomes infinite), which
dissipates his information advantage very quickly (�t goes to zero). In other
words, the speculator’s profit per trade becomes very small but the speculator’s
number of trades per unit of time becomes very large. These two opposite forces
net out so that the speculator’s expected profit (βS

t �t) converges to a finite
limit (λSσ 2

u ), which is strictly positive when σe > 0, that is, the speculator’s
signals are more informative than news. This result is identical to that in
Chau and Vayanos (2008). The same mechanism holds when the speculator is
fast. However, in this case and in contrast to Chau and Vayanos (2008), the
speculator can sustain strictly positive expected profits even when σe = 0 (in
this case, lim∑

0→0 π
F
γ = σvσu

2 ; see the proof of the corollary). The reason is that,
by moving slightly ahead of the dealer, the speculator is able to earn a profit
on the price reaction to news, even though his information advantage is very
short lived.18

18 When�0 → 0 and σe = 0, the speculator has only short-lived information, that is, information
that will soon be observed perfectly by the dealers, as in Admati and Pfleiderer (1988). This case
is rather special, however, because, no matter how small σe is, the speculator will derive trading
profits from the β and γ components of his trading strategy when σe > 0.
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III. News Trading’s Footprints

In this section, we derive predictions about the effect of speed on a specula-
tor’s “footprints” (e.g., the autocorrelation of his trades or the correlation be-
tween his trades and returns). To test these predictions, one could collect data
on proprietary trading firms’ trades around the date these firms become fast
and test whether their footprints change as predicted in this section. Several
empirical studies make inferences about HFTs’ strategies from both patterns in
their trades and the association between these trades and returns. Our results
in this section also provide guidance for such “reverse engineering” exercises.

A. Fast Speculator Has a Higher Participation Rate

The speculator slowly exploits his long-run information advantage. In con-
trast, the speculator trades aggressively on news when he is fast. Thus, over
short time intervals, the news-trading component of the speculator’s strategy
explains most of the variation in his position when he is fast. As a result, over
short-term intervals, changes in the speculator’s position are more correlated
with news (Cov(dxt,dzt) = γ Fσ 2

v in the fast model, while this covariance is zero
in the slow model) and the speculator’s position is much more volatile when he
is fast (see Figure 1 in the introduction). Consequently, the speculator accounts
for a much larger fraction of total trading volume when he is fast. To see this
formally, let the speculator’s participation rate (SPRt) be the instantaneous
contribution of the speculator’s trade to total trading volume:

SPRt = Var(dxt)
Var(dyt)

= Var(dxt)
Var(dut) + Var(dxt)

. (26)

COROLLARY 4: The speculator’s participation rate is higher when the speculator
is fast. Specifically,

SPRS = 0, SPRF = g
1 + g

> 0, (27)

where g ∈ (0,1) is defined in Theorem 2.

Corollary 4 is derived for trades measured over an infinitesimal time in-
terval. Over a longer time interval, the contribution of a slow speculator to
total trading volume is not negligible because he slowly builds up a position
in the direction of his estimate of the asset mispricing. However, the specula-
tor’s participation rate remains higher when he is fast, even when trades are
aggregated over longer time intervals (see Internet Appendix Section II). This
difference becomes smaller as these intervals become longer (see Table I) be-
cause trades due to news trading are uncorrelated over time (see Section III.B)
and therefore cancel out when they are aggregated over long intervals.

Brogaard et al. (2014) define fast traders as those using colocation services.
Using data from NASDAQ OMX Stockholm, they find that colocated traders
account for about 41% of the trading volume for the stocks in their sample,
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Table I
Speculator’s Participation Rate at Various Sampling Frequencies

The table compares the speculator participation rate (SPR) in the slow (SPR slow) and fast (SPR slow)
models when data are sampled at various frequencies, as explained in Internet Appendix II. The
order flow is thus aggregated—for the speculator and the noise traders—over time intervals of
various lengths: one millisecond (10−3 seconds), 10−1 seconds, one second, and one minute. The
parameter values are σu = 1 (standard deviation of noise traders’ order flow), σv = 1 (standard
deviation of innovations in the asset value), σe = 0.5 (standard deviation of noise in news), and∑

0 = 0.25 (variance of asset value conditional on information available at date 0). The liquidation
time t = 1 corresponds to one trading day = 23,400 seconds.

Sampling Interval 10−3 second 10−1 second One second One minute

SPR slow 0.000008% 0.0008% 0.0077% 0.4615%
SPR fast 19.8238% 19.8242% 19.8280% 20.0776%
SPR fast/SPR slow 2,577,096 25,771.51 2,577.65 43.50

despite the fact that they represent only a third of all trading accounts in
their sample. They also find that those buying colocation upgrades (faster con-
nections to NASDAQ OMX servers) experience a significant increase in their
share of trading volume (see their table 4). If news trading plays a role in
this increase, then, according to our model, the correlation between the trad-
ing volume of traders buying colocation upgrades and news should increase
after these traders become fast. In line with this prediction, Brogaard et al.
(2014) find that the trades of the fastest traders on NASDAQ OMX Stockholm
are positively related to lagged index futures returns and that this correlation
increases after colocation upgrades (see their table 8).

B. Fast Speculator’s Trades Are Less Autocorrelated

The value-trading component of the speculator’s trading strategy (βt(vt −
qt)dt) calls for repeated trades in the same direction because the speculator’s
forecast of the long-run change in the asset value, vt − qt, changes slowly.
This feature generates a positive autocorrelation in the speculator’s trades
regardless of whether he is fast or slow. However, when the speculator is
fast, his trades are less autocorrelated because, over short time intervals, they
are mainly driven by the news-trading component of his strategy (γdvt).19

When changes in the fast speculator’s position are observed over shorter
and shorter time intervals, the autocorrelation of these changes goes to zero
while it remains strictly positive for a slow speculator, as the next corollary
shows.

19 Trades due to this component are uncorrelated because the speculator’s signals are
uncorrelated.
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COROLLARY 5: The autocorrelation of the speculator’s trades over short time
intervals is lower when he is fast. More specifically, for τ ∈ (0,1 − t),

Corr(dxS
t ,dxS

t+τ ) =
(

1 − t − τ

1 − t

)λSβS
0 − 1

2

> 0,

Corr(dxF
t ,dxF

t+τ ) = 0. (28)

The autocorrelation of changes in a fast speculator’s position remains smaller
than that for a slow speculator, even when these changes are measured
over noninfinitesimal time intervals (see Internet Appendix Section II). How-
ever, this autocorrelation increases with the length of these intervals because
changes in the speculator’s position become increasingly driven by the value
component of his trading strategy as these changes are measured over longer
and longer time periods.

Some papers (e.g., Benos and Sagade (2013) and Hirschey (2013)) find that
aggressive orders placed by HFTs are positively autocorrelated. This finding
is consistent with both the slow and the fast models. Our new prediction is
that the autocorrelation in a speculator’s aggressive orders should fall after he
becomes fast.20

C. Fast Speculator’s Trades Anticipate Short-Term Price Movements

As explained previously, a fast speculator trades on short-run price reactions
to news while a slow speculator does not. Hence, the information content of
the speculator’s trades about subsequent price changes at very short horizons
should be much stronger when he is fast. To formalize this conjecture, let
CPIk

t be the covariance between the speculator’s trade per unit of time and the
subsequent cumulative price change over [t, t + τ ] for τ > 0:

CPIk
t (τ ) = Cov (dxt,qt+τ − qt) /dt for k ∈ {S, F}. (29)

This covariance can be seen as a measure of the cumulative price impact (CPI)
over time interval τ of the speculator’s trade at a given point in time. It is a
measure of the information content of the speculator’s trade at a given point in
time.

We show in the proof of Corollary 6 that in the slow model

CPIS
t (τ ) = CS

1

[
1 −

(
1 − τ

1 − t

)λBβS
0
]
, (30)

20 Some papers (for example, Menkveld (2013) or Kirilenko et al. (2014)) find evidence of mean-
reverting inventories for HFTs. Mean reversion in inventories might be a characteristic of high-
frequency market making, a strategy that our model does not intend to describe. For instance,
Menkveld (2013) shows that the HFT in his data set behaves more like a market maker than an
informed investor.



354 The Journal of Finance R©

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Horizon (

 C
u

m
u

la
ti

ve
 P

ri
ce

 Im
ap

ct

τ)

Figure 3. Cumulative price impact at different horizons. The figure plots the cumulative
price impact, CPI0(τ ) over an interval of length τ ∈ (0, 1] that starts at time t = 0 in the slow model
(dotted line) and the fast model (solid line). The parameter values are σu = 1 (standard deviation
of noise traders’ order flow), σv = 1 (standard deviation of innovations in the asset value), σe = 1
(standard deviation of noise in news), and�0 = 1 (variance of asset value conditional on information
available at date 0).

while in the fast model

CPIF
t (τ ) = CF

0 + CF
1

[
1 −

(
1 − τ

1 − t

)(λF−μFρF )βF
0
]
, (31)

where CF
0 , CS

1 , and CF
1 are positive coefficients. We deduce the following result.

COROLLARY 6: As τ approaches zero, the CPI of the speculator’s trade goes to
zero when he is slow but remains strictly positive (and equal to CF

0 ) when he is
fast.

Figure 3 illustrates Corollary 6 for specific values of the parameters. The
covariance between the speculator’s trade and the subsequent cumulative price
change is positive and, at short horizons (small τ ), is much larger when the
speculator reacts faster to news. As Figure 3 shows, empiricists could assess
the existence of news trading by estimating CPI for various values of τ . Indeed,
a large value of CPI over short horizons is indicative of news trading, since
CPIF

t (τ ) ≈ CF
0 > 0, while CPIS

t (τ ) ≈ 0 for τ small.
Brogaard, Hendershott, and Riordan (2014) and Kirilenko et al. (2014) find

that HFTs’ aggressive orders have a positive correlation with subsequent re-
turns over a very short horizon. They interpret this finding as reflecting HFTs’
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ability to anticipate short-term price movements. In our model, this is indeed
the reason why CPI(τ ) is much higher at short horizons when the speculator
is fast. This pattern is obtained even though the speculator also trades on his
long-run forecast of the asset value. For instance, for the parameter values
used to produce Figure 3, the speculator earns most (86.75%) of his profit from
the value-trading component of his trading strategy. Hence, a strong short-
run correlation between HFTs’ aggressive orders and returns is insufficient to
conclude that HFTs only gain from trading on short-run information.

IV. News Informativeness and Fast Trading

In this section, we derive predictions about the effects of news informative-
ness on patterns in liquidity and trading volume (Section IV.A). We also study
how news informativeness affects the speculator’s expected profit and his in-
centive to be fast (Section IV.B). We measure news informativeness by the
square root of the precision of the signal received by the dealer, that is, ν = 1

σe

(news is more informative when σe is smaller). Our predictions in this section
relate to the effects of cross-sectional variation in ν. Recent advances in tex-
tual analysis offer ways to build firm-level proxies for ν. For instance, news
vendors (Reuters, Bloomberg, and Dow Jones) now report firm-specific news
in real time, assigning a direction and a relevance score to each news item
(see, for instance, Gross-Klussmann and Hautsch (2011)). Firms with more
relevant news should be firms for which dealers receive more informative news
(higher ν).21

A. News Informativeness, Volume, and Liquidity

We first study how news informativeness affects the speculator’s trading
strategy.22

PROPOSITION 6: When the speculator is fast, he trades more aggressively on
news when news is more informative, that is, ∂γ

F

∂ν
>0. In contrast, regardless of

whether he is fast or slow, the speculator trades less aggressively on his forecast
of the long-run price change when news is more informative, that is, ∂β

k
t

∂ν
< 0 for

k ∈ {S, F}. If the dealer receives uninformative news (ν = 0), then there is no
news trading (γ F = 0), and βF

t = βS
t .

21 HFT firms are less likely to rely on relevance scores provided by data vendors, as these are
provided with a delay relative to source news. In line with this conjecture, Gross-Klussmann and
Hautsch (2011) find that a large fraction of the cumulative abnormal price change around news
arrivals in their sample takes place before news arrival.

22 All the formulas of the model are homogeneous in the following ratios: (i) a = σ2
u
σ2
v

, (ii) b = σ2
e
σ2
v

,

and (iii) c =
∑

0
σ2
v

. This means that, if we hold ratios a and c constant, then an increase in σe

(a decrease in news informativeness) has the same effect as a decrease in σv . Both increase the
noise-to-signal ratio, b, in the signal received by the dealer. Thus, comparative statics results for

ν = 1
σe

are identical to comparative statics results for the signal-to-noise ratio, 1/b = σ2
v

σ2
e

.
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When news informativeness increases, price reacts more to news (μk in-
creases with ν). Thus, trading on short-term price reactions to news becomes
more profitable, and therefore a fast speculator trades on his expectation of
short-term price movements more aggressively (γ F increases with ν). Doing
so, however, dissipates the speculator’s long-run information advantage more
quickly. This effect is reinforced by the fact that the dealer obtains more precise
information when news informativeness increases. To mitigate these effects,
the speculator optimally trades less aggressively on his forecast of the long-run
price change in the asset when ν increases, regardless of whether he is slow or
fast (βk

t declines with ν).23

When ν = 0, news is uninformative. Hence, in this polar case prices do not
react to news and therefore there is no news trading even when the speculator
is fast (γ F = 0 if ν = 0). This observation highlights that both speed and pre-
dictability of short-run price reactions to news are required for news trading.

The positive effect of news informativeness on the intensity of news trading
when the speculator is fast has several testable implications, summarized in
the next corollary.

COROLLARY 7: When the speculator is fast, an increase in the dealer’s
news informativeness triggers an increase in (i) the speculator’s participa-
tion rate (SPRF), (ii) trading volume per unit of time (i.e., T V F = Var(dy)

dt ), and
(iii) liquidity (1/λF).

When news informativeness increases, the speculator trades more aggres-
sively on news. Accordingly, trading volume increases and the speculator ac-
counts for a larger share of trading volume. However, liquidity increases be-
cause the dealer can better forecast the long-run value of the asset, in which
case she loses less on the speculator’s long-run bets. Hence, in equilibrium,
trading volume, informed trading, and liquidity jointly increase with news
informativeness.

This prediction differs sharply from that of other models analyzing the effects
of public information. In these models, an increase in the precision of public
signals induces informed investors to trade less, not more. Accordingly, these
models predict that an increase in news informativeness should result in higher
liquidity but less volume and informed trading (see, for instance, Propositions 1
and 2 in Kim and Verrecchia (1994)). The reason is that these models do not
consider the possibility of informed investors trading ahead of news, that is, of
being fast in our terminology. In this case, more informative news induces the
speculator to trade more because he expects news to move prices more, which
generates larger profits from speculating on short-term price movements.

23 Furthermore, βk
t increases in σv and σu for k ∈ {S, F}. When σv increases, uncertainty on the

final value of the asset is higher for the dealer, other things equal. This is also the case when σu
increases, because the order flow becomes noisier. In either case, the speculator optimally reacts by
trading more aggressively on his forecast of the long-run price change. These effects are standard.
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B. News Informativeness, Trading Profits, and the Decision to Be Fast

When news informativeness increases, the speculator trades less aggres-
sively on his forecast of the long-run price change for the asset and more on his
forecasts of short-term price reactions to news (Proposition 6). This result has
the following implication.

COROLLARY 8: Suppose that the speculator is fast. The news-trading component

of his expected profit increases with news informativeness (
∂π F

γ

∂ν
> 0) while the

value trading component of his expected profit decreases with news informative-

ness (
∂π F

β

∂ν
< 0). In net, the speculator’s total expected profit decreases with news

informativeness ( ∂π
F
0

∂ν
< 0).

Thus, profits from trades on short-term price reactions to news should con-
tribute relatively more to fast traders’ profits in stocks with more informative
news. Corollary 8 suggests that variations in directional HFTs’ profits across
stocks can be explained by variations in news informativeness. According to
this corollary, directional HFTs should (i) earn smaller total profits and (ii) re-
alize a larger fraction of their total profits over short time intervals in stocks
with more informative news. To our knowledge, these predictions have not been
tested so far.

The model also has implications for the effect of news informativeness on the
decision to trade fast. To analyze these, suppose that a speculator must pay a
cost C f to be fast, otherwise he remains slow.24 Cost C f represents the marginal
cost of setting up a fast connection with an exchange for one particular stock
(e.g., a colocation fee or the opportunity cost of using computing capacity to
react fast to news in this stock). If the speculator becomes fast, his expected
trading profit increases by π F

0 (ν) − πS
0 (ν) (Proposition 3). Thus, the speculator

chooses to be fast if and only if

π F
0 (ν) − πS

0 (ν) ≥ C f . (32)

The speculator’s expected profit declines with news informativeness regard-
less of whether he is fast or slow because he earns a smaller expected profit
from value trading. However, when the speculator is fast, this effect is par-
tially offset by a larger profit from news trading when news informativeness is
higher (Corollary 8). Thus, π F

0 (ν) declines with ν at a smaller rate than πS
0 (ν).

Accordingly, the net gain of becoming fast, π F
0 (ν) − πS

0 (ν), increases with news
informativeness, as the next corollary shows.

COROLLARY 9: The net gain of becoming fast, π F
0 (ν) − πS

0 (ν), increases with news
informativeness, ν.

24 This cost is in addition to the cost paid by the speculator to obtain information. To focus the
analysis on the decision to be fast or slow, we assume that the information acquisition cost is
always low enough that buying information is always optimal, even if the speculator is slow. As
πS

0 (ν) decreases with ν, this is the case if the cost of information is less than πS
0 (∞) = σu(�0)1/2.
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News trading has no value if news is not informative, since in this case
γ F = 0. Thus, π F

0 (0) − πS
0 (0) = 0. Hence, Corollary 9 implies that, if 0 < C f <

π F
0 (∞) − πS

0 (∞), there is a cutoff value ν̂(C f ) > 0 such that the speculator be-
comes fast if ν > ν̂(C f ) and remains slow if ν ≤ ν̂(C f ). This means that the
speculator is more likely to be fast in stocks with high news informativeness
than in stocks with low news informativeness.25

Hence, directional HFTs should be more active stocks with more informa-
tive news (there is cross-sectional variation in HFTs’ activity; see Brogaard,
Hendershott, and Riordan (2014), table I) because being fast has more value
in these stocks. To our knowledge, this prediction is new. In existing theories
(e.g., Biais, Foucault, and Moinas (2015)), news informativeness plays no role
in traders’ decision to be fast.

V. Infrequent News and Latency

In this section, we extend the model in two directions. First, we relax the
assumption that trades and news occur at the same rate. Second, we allow the
delay with which the dealer reacts to news to be longer than one trading round.
Our goal is to show the robustness of the results obtained in the baseline case.
For brevity, here we simply outline the modeling approach for this extension
and its main properties. We formally derive the equilibrium obtained in this
case in Internet Appendix Section III.

To preserve the continuous-time formulation, we proceed as follows. As in
the baseline model, during the interval [t, t + dt] the speculator receives the
signal, dvt, and the dealer observes the news, dzt. However, each interval
[t, t + dt] is partitioned into m equal intervals and there is one trading round
in each interval. Hence, the ratio of the trading rate to the news rate is m, and
as m increases news becomes less frequent relative to trading opportunities.
Moreover, the dealer receives news dzt after � ≤ m trading rounds.26 Therefore,
the speculator has � opportunities to trade on the price reaction to news in
[t, t + dt]. We refer to � as the dealer’s latency. The higher is this latency, the
greater is the speculator’s speed advantage. For any m, if � ≥ 1, the specula-
tor is fast, while, if � = 0, the speculator is slow. The fast model considered in
the previous sections is the particular case in which m = � = 1, while the slow
model is the particular case in which m = 1 and � = 0.

Figure 4 describes the timing of the model for arbitrary values of mand �. Let
(t, j) denote the trading round at the end of the jth interval in [t, t + dt], where
j = 1, . . . ,m. Just before (t,1), the speculator privately observes dvt. Then, at
(t, j) the speculator submits a market order dxt, j , and the noise traders submit
an aggregate market order dut, j . We set Var(dut, j) = 1

mσ
2
u dt so that the variance

25 If C f > π F
0 (∞) − πS

0 (∞), the speculator chooses to be slow for all levels of news informative-
ness.

26 Thus, the time at which news arrives is known with certainty. This is required for tractability.
An extension of our model with stochastic news arrival dates is challenging and left for future
research.
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Figure 4. Timing of events during [t, t + dt] for arbitrary news frequency, m, and dealer’s
latency, �.

of noise trading per unit of time remains σ 2
u as in the baseline model. The total

order flow at (t, j) is dyt, j = dxt, j + dut, j . It is executed by the dealer at price
pt+dt, j , which is equal to her expectation of the asset payoff conditional on her
information in trading round (t, j):

pt+dt, j =
{

E(v1 | It ∪ dyt,1 ∪ . . . ∪ dyt, j) for 1 ≤ j ≤ �,

E(v1 | It ∪ dyt,1 ∪ . . . ∪ dyt, j ∪ dzt) for �+ 1 ≤ j ≤ m,
(33)

where It = {yτ,1}τ≤t ∪ . . . ∪ {yτ,m}τ≤t ∪ {zτ }τ≤t is the dealer’s information set at
date t. As in the baseline model, qt = E(v1 | It) is the valuation of the asset for
the dealer at date t.

An equilibrium is a trading strategy of the speculator, and a pricing policy
of the dealer, such that (i) the speculator’s trading strategy maximizes his
expected trading profit, given the dealer’s pricing policy, and (ii) the dealer’s
pricing policy satisfies (33) given the equilibrium speculator’s trading strategy.
A linear equilibrium is such that the speculator’s trading strategy is of the form

dxt, j = βt, j(vt − qt)dt + γt, j(dvt − dwt, j), j = 1, . . . ,m, (34)

where dwt, j is the dealer’s expectation of the incoming news, dzt, given her
information until trading round (t, j).27 From (t,2) onwards, this expectation
is not zero because the dealer can infer information about incoming news from
the speculator’s trades in past trading rounds. This is not the case at (t,1) since
this is the first time at which the speculator observes dvt and starts trading on
it. Thus, dwt,1 = 0 and, when m = 1, the speculator’s strategy in (34) is identical
to that in the baseline case.28

In Internet Appendix Section III, we show that, when the speculator is slow,
the equilibrium is similar to that provided in Theorem 1. In particular, the
speculator’s strategy has no news-trading component (γ S

t, j = 0 for all j ∈ [1,m]).
The only difference with the baseline case is that the sensitivity, βS

t, j , of the
speculator’s trade in each trading round to his forecast of the long-run change
in price is ( 1

m)th of its value in the baseline slow model (i.e., βS
t in Theorem 1).

27 That is, at (t, j), the news trading component is proportional to the component of the specu-
lator’s forecast of the news that is orthogonal to the dealer’s forecast of this news. This is intuitive
since the dealer’s forecast of the news is already incorporated into the price at (t, j).

28 As for the baseline case, it is possible to show that, in any discrete-time linear equilibrium,
the speculator’s optimal trading strategy must be the discrete-time analog of (34).
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Intuitively, in each interval [t, t + dt], the speculator divides his trade over the
m trading rounds so that his aggregate trade is identical to that obtained when
there is only one trading round.

When the speculator is fast (� ≥ 1 ), the optimal linear trading strategy for
the speculator features a news trading component until the dealer observes
the news dzt, that is, γt, j > 0 for 1 ≤ j ≤ � and γt, j = 0 for �+ 1 ≤ j ≤ m. This is
intuitive. In a given interval, [t, t + dt], the speculator’s signal dvt is informa-
tive about the price reaction to news in this interval. Exactly as in the baseline
model, the speculator exploits this short-run price predictability by condition-
ing his trades on his forecast (dvt) of the news until it arrives.29 After news
arrival, the speculator cannot forecast short-run price movements until he re-
ceives a new signal and therefore his optimal trading strategy features just a
value-trading component.

Thus, with infrequent news, the news-trading component (given by the γ
coefficients) varies around news arrival. In turn, this generates variation in the
value-trading component (the β coefficients) and illiquidity (the λ coefficients)
around news. In particular, illiquidity is higher before news arrival than after
because the speculator trades in the direction of the news before news arrival.
Hence, the dealer is more likely to sell (buy) just ahead of good (bad) news.
Consequently, the market maker is more exposed to adverse selection before
news arrival than after.

As in the baseline case, we cannot characterize the equilibrium in closed form
when the speculator is fast. However, as shown in Internet Appendix Section III
the coefficients that characterize the equilibrium (including the constant γ , β,
and λ coefficients) are solutions to a system of (4�+ 2) nonlinear equations.
This system can be solved numerically for given parameter values (m, �, σv,
etc.). One can then check numerically that the implications obtained in the
baseline model are still valid in the extended version of this model.

For instance, Figure 5 compares equilibrium values of various variables of
interest (namely, λ, γ , β, and SPR) for two different stocks, labeled H and L.
The news frequency is identical for each stock: news arrives every four trading
rounds (m = 4). However, for stock H, news informativeness is high (ν = 1

σe
= 2),

while for stock L, news informativeness is low (ν = 1
σe

= 0.5). Furthermore, for
each stock, we consider the effect of varying latency from � = 0 (the slow model)
to � = 2 (the fast model). Thus, when the speculator is fast, he observes a signal
correlated with incoming news two periods before the dealer receives the news.
For a given stock, equilibrium values when the speculator is fast (slow) are
displayed using dark (light) bars when different from zero.

When the speculator is fast, λ, γ , β, and SPR vary across trading rounds.
Hence, we also show their average values (dashed line) over the four trad-
ing rounds. The predictions of the baseline model do indeed correspond to

29 In the Internet Appendix, we also show numerically that the sensitivity of the specula-
tor’s aggregate trades before news arrival to the news increases with the dealer’s latency, � (see
Figure IA.5 in the Internet Appendix). In this sense, higher dealer latency induces the speculator
to trade more aggressively on news.
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Figure 5. News informativeness and speed. We plot equilibrium values of various variables of
interest in a given interval [t, t + dt] in each trading round j for two different stocks, H (plots on the
left) and L (plots on the right). The news frequency is m = 4 for each stock. News informativeness
is higher for stock H than for stock L (ν = 1

σe
= 2 versus ν = 1

σe
= 0.5). For each stock, we show

equilibrium values of λt, j (illiquidity), βt, j (value trading intensity), γt, j (news trading intensity),

and SPRt, j = Var(dxt, j )
Var(dxt, j )+Var(dut, j )

in each trading round j ∈ {1,2, 3, 4} when the dealer’s latency is

� = 2 (left dark bars) or � = 0 (right light bars). The horizontal dotted lines correspond to the
average value of the relevant variable over the four trading rounds when the speculator is fast (e.g.,
λ̄ = (

∑ j=4
j=1 λt, j )/4) in the fast model. The other parameter values are σu = 1 (standard deviation of

noise traders’ order flow), σv = 1 (standard deviation of innovations in the asset value), and �0 = 1
(variance of asset value conditional on information available at date 0).
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cross-sectional effects of latency or news informativeness on the average val-
ues of these variables rather than their time-series variation around news.

Consider illiquidity (Panel A) first. When the speculator is slow, illiquidity (λ)
is constant over time. It is lower for stock H than for stock L (1.10 versus 1.34)
because the dealer receives more informative news in the former stock. When
the speculator is fast, illiquidity is higher before news arrival ( j = 1,2) than
after news arrival ( j = 3,4) because, as previously explained, the dealer is more
exposed to adverse selection before news. Furthermore, illiquidity declines over
time as the news release approaches (λt,1 > λt,2 for stocks H and L) because the
dealer accumulates information about the speculator’s signal, dvt, from order
flows as the news release gets closer. This alleviates his exposure to adverse
selection due to advance trading on news.

However, the cross-sectional implications of the baseline model for illiquidity
(measured by the average value of λ over the four trading rounds) remain valid.
Specifically, in line with Proposition 4, average illiquidity is higher in the fast
model than in the slow model for both stocks and, regardless of whether the
speculator is slow or fast, average illiquidity is higher for the stock with low
news informativeness (as implied by Corollary 7). Interestingly, this is not
necessarily the case if one measures illiquidity only before the news arrival.
Indeed, when the speculator is fast, illiquidity before news arrival is higher in
stock H than in stock L. The reason is that the speculator’s advance information
on incoming news exposes the dealer to greater adverse selection when the news
is more informative.30 Thus, in testing our predictions, one should measure
illiquidity on average for a stock, not just before news or after news.

Now consider the value- and news-trading components (respectively,
Panels B and C) of the speculator’s strategy. For a given stock, the news-
trading component is strictly positive only when the speculator is fast and
before news arrival. Moreover, in line with Proposition 2, the average value of
β is smaller when the speculator is fast than when he is slow, and, in line with
Proposition 6, the average value of γ increases with news informativeness (γ
is higher on average for stock H).

The economic intuition for these observations is exactly as in the baseline
model. In particular, the speculator trades more aggressively on short-term
price reactions when prices react more to news, that is, when the news is more
informative. This explains why the average value of γ is higher for stock H.
Consequently, to avoid dissipating his information advantage too quickly, the
speculator trades less aggressively (on average) on his forecast of the long-
run price change in stock H, which explains why the average β is lower for this
stock. One implication is that trading on short-term price reactions contributes
to a larger fraction of the speculator’s trading profit in stock H than in stock L
(33.38% versus 19.64% for the parameter values in Figure 5).

30 In line with this implication, Gross-Klussmann and Hautsch (2011) find that bid-ask spreads
are larger before news arrival than after and that this effect is stronger for more relevant news
(see Figure 5 in their paper).
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Finally, as shown in the last panel of Figure 5, the average speculator’s
participation rate is higher when he is fast. As in the baseline model, the
reason is that the speculator’s position is much more volatile when he is fast
because his trades are much more sensitive to incoming news. Furthermore,
the speculator’s participation rate (SPRt, j) is higher on average in stock H than
in stock L when he is fast because he trades even more aggressively on short-
term price reactions to news when news is more informative. Hence, when the
speculator is fast, stock H attracts more informed trading and is less liquid just
before news. However, it is more liquid on average than stock L, exactly as in
the baseline model.

VI. Related Models

Our modeling approach is related to dynamic extensions of Kyle (1985)
with gradual release of information over time. These include Foster and
Viswanathan (1990), Back and Pedersen (1998), Chau and Vayanos (2008),
Li (2013), and Martinez and Roşu (2013). In Back and Pedersen (1998), the
informed investor receives a continuous stream of signals but dealers receive
no news. Thus, there is no news trading (the instantaneous volatility of the
speculator’s position is zero) in Back and Pedersen (1998) because the spec-
ulator’s signals contain no information on short-term price movements. This
situation arises as a special case of our model when dealers’ news is completely
uninformative (ν = 0; see Section IV.A).

Chau and Vayanos (2008) consider a situation in which dealers receive news,
and Li (2013) extends their framework to allow for multiple informed investors.
In these models, dealers always reflect news in their quotes before the informed
investors can trade on their signals. That is, in our terminology, speculators
are always slow in Chau and Vayanos (2008) and Li (2013). Thus, as in Back
and Pedersen (1998) (but for a different reason), there is no news trading in
these models as well.

In Foster and Viswanathan (1990), dealers receive news about the final payoff
of an asset. However, between news arrivals, the informed investor can trade
continuously, so the news arrival rate relative to the trading rate is zero. Hence,
from the speculator’s viewpoint, the time at which news affects prices is always
infinitely far away and thus the speculator does not trade on news in Foster and
Viswanathan (1990). In contrast, in our model, the news arrival rate relative to
the trading rate is strictly positive (and equal to 1/m). As explained in Section V,
this is sufficient for news trading to arise.

Martinez and Roşu’s (2013) model is similar to that of Back and Pedersen
(1998) (dealers do not receive any news) but informed investors are ambiguity
averse. Ambiguity aversion induces informed investors to trade aggressively on
their signals, so that their optimal trading strategy features a volatility com-
ponent but for a reason different from that in our model, where the volatility
component reflects the speculator’s ability to anticipate short price reactions
to incoming news. Accordingly, the two models are not observationally
equivalent. For instance, our model predicts a positive correlation between
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a speculator’s trade and price reactions to the news (when the speculator is
fast; see Section III.C). This correlation is zero in Martinez and Roşu (2013)
because dealers never receive news in their model. For the same reason, our
predictions about news informativeness (see Section IV) cannot be obtained in
Martinez and Roşu (2013).

Huddart, Hughes, and Levine (2001) and Cao, Ma, and Ye (2013) consider
extensions of Kyle (1985) in which insiders must disclose their trade after each
trading round. Interestingly, in these models, insiders optimally play a mixed
strategy (to avoid full revelation of their information after disclosure) by adding
white noise to their trade. In continuous time, the instantaneous volatility of
their position is therefore not zero. Thus, insiders’ participation rate can be high
in these models (e.g., it is equal to 50% in Cao, Ma, and Ye (2013)), as in our
model (see Section III.A). However, other testable implications of our model are
different because the volatility of the informed investor’s position does not come
from the same economic mechanism. For instance, in models with disclosure,
the stochastic component of informed trades contains no information about
the asset value (it is a white noise). In contrast, in our model it is driven by
innovations in the asset value (the speculator’s signals). Accordingly, our model
implies that the speculator’s trades are correlated with news and subsequent
short-run returns (see Section III.C), while in Huddart, Hughes, and Levine
(2001) and Cao, Ma, and Ye (2013) these correlations are zero.

VII. Conclusion

We consider a model in which a speculator’s private signals can be used
to forecast both short-run price reactions to news arrival and long-term price
changes. When the speculator is fast (i.e., can trade on his signals ahead of news
arrival), the speculator’s behavior in equilibrium matches well several stylized
facts about directional HFTs. In particular, his trades forecast news, are highly
correlated with short-run price changes, and significantly contribute to trading
volume. However, the bulk of the speculator’s profit does not necessarily derive
from gains on short-term price movements because the speculator also exploits
his superior information about long-run changes in prices.

Empirical studies show that HFTs’ aggressive orders anticipate short-run
price changes and news. One might therefore conclude that directional HFTs
do not really contribute to price discovery since they seem to trade on soon-to-
be-released information. Our results suggest that this conclusion is premature.
Indeed, in our model the speculator’s trades are strongly correlated with pend-
ing news and short-run price reactions to news. But the speculator also trades
on his estimate of the long-run value of the asset and thereby contributes
to price discovery. To make progress on this issue, future empirical research
should study in more detail the nature of signals used by directional HFTs and
the horizons over which they realize their profits.

Our model also suggests intriguing interactions between news informative-
ness and HFTs’ strategies. In particular, it implies that directional HFTs
should be more active in stocks with more informative news, and that gains on
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short-term price movements should contribute more to HFTs’ profits in these
stocks. However, their overall profit should decline with news informativeness.
These predictions are novel and offer one way to test whether the mechanisms
described in our model help explain data on HFTs.

In our model, the speculator can forecast short-term price reactions due to
news arrival but has no information on liquidity traders’ future demands. This
is consistent with Brogaard, Hendershott, and Riordan (2014), who find that
HFTs’ trades contain information above and beyond the information contained
in other traders’ liquidity demands. Future research could consider a case in
which a speculator has signals on the asset payoff (as in our model) and future
demands from liquidity traders (as suggested by Hirschey (2013) and Clark-
Joseph (2013)). Predictions from such a model would enable empiricists to
better assess the respective roles of each type of information in HFTs’ strategies.
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AppendixProofs

PROOF OF THEOREM 1: First, we compute the optimal trading strategy of the
speculator from the set of strategies of the form dxτ = βS

τ (vτ − qτ )dτ + γ S
τ dvτ ,

τ ∈ [0,1), while taking as given the dealer’s pricing rule, pτ+dτ = qτ + μS
τ dzτ +

λS
τ dyτ , where the state variable qτ (the dealer’s quote) evolves according to

dquτ = μS
τ dzτ + λS

τ dyτ . For convenience, in the rest of this proof we omit the
superscript S on the coefficients β, γ , μ, and λ.

For t ∈ [0,1), the speculator’s expected profit is

πt = Et

(∫ 1

t
(v1 − pτ+dτ )dxτ

)
, (A1)

where the expectation is conditional on the speculator’s information set Jt,
defined in Section I. Recall that the dealer’s quote satisfies qτ = E(v1|Iτ ) =
Eτ (v1). For any τ ≥ t, let:

Vt,τ = Et
(
(vτ − qτ )2) . (A2)

We compute

πτ = Et

(∫ 1

t
(vτ+dτ − pτ+dτ )dxτ

)

= Et

(∫ 1

t
((vτ + dvτ ) − (qτ + μτdzτ + λτdyτ ))dxτ

)
(A3)

= Et

(∫ 1

t
(vτ − qτ + (1 − μτ )dvτ − λτdxτ )dxτ

)
,
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where the first equality follows from the law of iterated expectations, and
the second equality follows from dxτ being orthogonal to duτ and deτ . Since
dxτ = βτ (vτ − qτ )dτ + γτdvτ , we compute

πt =
∫ 1

t

(
βτVt,τ + (1 − μτ − λτγτ )γτσ 2

v

)
dτ. (A4)

We now omit the subscript t in Vt,τ . Then Vτ evolves according to

Vτ+dτ = Et
(
(vτ+dτ − qτ+dτ )2)

= Et
(
(vτ + dvτ − qτ − μτdvτ − μτdeτ − λτdxτ − λτduτ )2) (A5)

= Vτ + (1 − μτ − λτγτ )2σ 2
v dτ + μ2

τ σ
2
e dτ + λ2

τ σ
2
u dτ − 2λτβτVτdτ,

which implies that Vτ satisfies the first-order linear ordinary differential equa-
tion (ODE) in τ ∈ [t,1),

V ′
τ = −2λτβτVτ + (1 − μτ − λτγτ )2σ 2

v + μ2
τ σ

2
e + λ2

τ σ
2
u , (A6)

or equivalently, βτVτ = −V ′
τ+(1−μτ−λτ γτ )2σ 2

v +μ2
τ σ

2
e +λ2

τ σ
2
u

2λτ
. We substitute this into (A4)

and integrate by parts to obtain31

πt = − V1

2λ1
+ Vt

2λt
+
∫ 1

t
Vτ

(
1

2λτ

)′
dτ

+
∫ 1

t

(
(1 − μτ − λτγτ )2σ 2

v + μ2
τ σ

2
e + λ2

τ σ
2
u

2λτ
+ (1 − μτ − λτγτ )γτσ 2

v

)
dτ. (A7)

Thus, we have eliminated the choice variable βτ and replaced it by Vτ ≥ 0,
τ > t.32

We now prove the existence of an equilibrium by assuming that λτ is con-
stant and showing that the speculator’s optimal strategy must be of the type
described in Theorem 1. At the end of this proof, we show that for a linear
equilibrium to exist, λτ must indeed be constant.

Consider the case in which λτ = λ is constant. First, observe that, in
equilibrium,

λ > 0. (A8)

Indeed, equation (A6) implies that, if the speculator chooses a very large βτ ,
the variable Vτ > 0 (i) does not depend on βτ if λ = 0, or (ii) becomes very large

31 For this argument we need the function λτ to be smooth (i.e., continuously differentiable)
on [t, 1). By (A12) below, it is enough to show that βτ and �τ are smooth. First, βτ is smooth by
assumption: see the discussion after equation (7). Second, �τ is smooth because it is the solution
of the ODE (A13).

32 By convention, we allow the choice Vτ = 0, with the understanding that corresponds to the
limit case when βτ = +∞. Note that Vt = (vt − qt)2 is not a choice variable, but Vτ for τ > t is.
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if λ < 0. Thus, the speculator would be able to make arbitrarily large expected
profits when λ ≤ 0.

The assumption that λτ = λ is constant on [0,1) implies that ( 1
2λτ

)′ = 0.
Equation (A7) then implies that the speculator must choose V1

λ1
= 0. Since

λ1 = λ > 0, this translates into the following transversality condition:

V1 = 0. (A9)

We next turn to the choice of γτ . The first-order condition with respect to γτ
in (A7) is

− (1 − μτ − λτγτ ) + (1 − μτ − λτγτ ) − λτγτ = 0 ⇒ γτ = 0. (A10)

Thus, there is no news trading in the slow model, which proves (12). Note
also that the second-order condition is λτ > 0 (regardless of whether λτ > 0 is
constant or not).

Next, we derive the pricing rules from the dealer’s zero-profit conditions.
Let t ∈ [0,1). In Section I we see that the dealer’s quote is initially set to
qt = E(v1|It), where It is the dealer’s information set at the beginning of the
interval [t, t + dt]. (See also Figure 2.) In the slow model, the first event is
the arrival of the dealer’s signal dzt, which is orthogonal to It. Denote by It+
the information set generated by It and dzt. Then, qt+ = E(v1|It+) = qt + μtdzt,
where

μt = Cov(v1,dzt | It)
Var(dzt | It)

= Cov(v0 + ∫ 1
0 dvτ ,dvt + det | It)

Var(dvt + det | It)
= σ 2

v

σ 2
v + σ 2

e
= μ. (A11)

The dealer assumes that the speculator’s trading strategy is dxt = βt(vt − qt)dt,
where βt = βS

t has the equilibrium value from Theorem 1, and γt = γ S
t = 0.

Since dztdt = 0, we can write dxt = βt(vt − qt+ )dt. But vt − qt+ is orthogonal to
It+ , hence so is dyt = dxt + dut. Therefore, the trading price is of the form pt+dt =
qt+ + λtdyt, with

λt = Cov(v1,dyt | It+ )
Var(dyt | It+)

= Cov(v1, βt(vt − qt+ )dt + dut | It+)
Var(βt(vt − qt+ )dt + dut | It+)

= βt�t

σ 2
u
, (A12)

where we use the equality �t = E((vt − qt)2) = E((vt − qt+ )2). Note that we have
also proved that the trading price is of the form pt+dt = qt+ + λtdyt = qt + μtdzt +
λtdyt, as specified in (9). Since the quote qt+dt at the end of the interval [t, t + dt]
is the same as the trading price, it follows that the quote evolves according to
dqut = μtdzt + λtdyt, as specified in (10).

Now, using the same derivation as for (A6), it is straightforward to check
that

∑
t = E((vt − qt)2) satisfies the first-order linear ODE:

�′
t = −2λtβt

∑
t

+(1 − μt)2σ 2
v + μ2

t σ
2
e + λ2

t σ
2
u . (A13)

This is the same ODE as (A6), except that it has a different initial condition.
When λt is constant, by explicitly solving (A6) and (A13), one sees that the
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transversality condition V1 = 0 (from equation (A9)) is equivalent to
∫ 1

t βτdτ =
+∞, which in turn is equivalent to

�1 = 0. (A14)

Next, from (A12) we get βt�t = λtσ
2
u ; therefore equation (A13) becomes

�′
t = −λ2

t σ
2
u + (1 − μt)2σ 2

v + μ2
t σ

2
e . (A15)

Thus, as λt andμt are constant,�′
t is constant as well. The condition�1 = 0 then

implies �t = (1 − t)�0. Equation (A15) becomes −�0 = −λ2σ 2
u + (1 − μ)2σ 2

v +
μ2σ 2

e . From (A11), μ = σ 2
v

σ 2
v +σ 2

e
, hence λ2σ 2

u = �0 + σ 2
v σ

2
e

σ 2
v +σ 2

e
. Hence, we have proved

both (13) and (14). Equation (A12) implies that βt�t is constant, and thus
βt�t = β0�0 = λσ 2

u . But �t = �0(1 − t), so βt = β0
1−t . Substituting the formula

for λ into β0 = λσ 2
u

�0
, we obtain (11).

Finally, we prove that in equilibrium λτ is indeed constant for τ ∈ [0,1).
Given that the second-order condition λτ > 0 must hold, it is enough to show
that ( 1

2λτ
)′ = 0. If this is not true, one possibility is that ( 1

2λτ
)′ > 0 for τ in a

small interval I. Then, using equation (A7), one sees that the speculator can
achieve an arbitrarily high expected profit by choosing Vτ to be very large over
the interval I, and zero elsewhere. This is inconsistent with equilibrium.

The other possibility is that ( 1
2λτ

)′ < 0 for τ in a small interval I. In this case,
for a maximum expected profit, the speculator would choose Vτ = 0 for τ ∈ I,
which, by the law of iterated expectations, means that

∑
τ = 0 for τ ∈ I. Hence,

equation (A15) implies that 0 = ∑′
τ = −λ2

τ σ
2
u + (1 − μτ )2σ 2

v + μ2
τ σ

2
e , which im-

plies that λτ = ( (1−μτ )2σ 2
v +μ2

τ σ
2
e

σ 2
u

)1/2 if τ ∈ I. But since μτ = σ 2
v

σ 2
v +σ 2

e
is constant, λτ is

also constant on I, which contradicts ( 1
2λτ

)′ < 0. �

PROOF OF THEOREM 2: As in the proof of Theorem 1, we first compute the
optimal trading strategy of the speculator from the set of strategies of the
form dxτ = βF

τ (vτ − qτ )dτ + γ F
τ dvτ , τ ∈ [0,1), while taking as given the dealer’s

pricing rule, pτ+dτ = qτ + λF
τ dyτ , where the state variable qτ (the dealer’s quote)

evolves according to dquτ = λF
τ dyτ + μF

τ (dzτ − ρF
τ dyτ ). For convenience, in the

rest of this proof we omit the superscript F on the coefficients β, γ , λ, μ, and ρ.
For t ∈ [0,1), the speculator’s expected profit is πt = Et(

∫ 1
t (v1 − pτ+dτ )dxτ ),

where the expectation is conditional on the speculator’s information set Jt
defined in Section I. We compute

πτ = Et

(∫ 1

t
(vτ+dτ − pτ+dτ )dxτ

)

= Et

(∫ 1

t
((vτ + dvτ ) − (qτ + λτdyτ ))dxτ

)
(A16)

= Et

(∫ 1

t
(vτ − qτ + dvτ − λτdxτ )dxτ

)
,
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where the first equality follows from the law of iterated expectations, and
the second equality follows from dxτ being orthogonal to duτ . Let Vt,τ = Et
((vτ − qτ )2). Since dxτ = βτ (vτ − qτ )dτ + γτdvτ , we compute

πt =
∫ 1

t
(βτVt,τ + (1 − λτγτ )γτσ 2

v )dτ. (A17)

By comparing equations (A17) and (A4), we observe a key difference between
the fast and slow models: in the slow model, an additional term, Et((μτdzτ )dxτ ),
is subtracted from the speculator’s objective function. This term comes from
the dealer’s quote adjustment of μτdzτ , which in the slow model is included in
the price paid by the speculator. This lowers the benefit of news trading in the
slow model compared to the fast model. Since, as we have already proved, the
optimal news trading is zero in the slow model, it is reasonable to expect that
there is positive news trading in the fast model. Indeed, we will prove that, in
the fast model, γτ > 0.

Let

τ = λτ − μτρτ , τ ∈ [0,1). (A18)

With this notation, dqτ = λτdyτ + μτ (dzτ − ρτdyτ ) = μτdzτ +τdyτ . Then, with
a similar derivation as in the proof of Theorem 1 (where λτ is replaced by τ ),
one can show that Vτ = Vt,τ satisfies the first-order linear ODE in τ ∈ [t,1),

V ′
τ = −2τβτVτ + (1 − μτ −τγτ )2σ 2

v + μ2
τ σ

2
e +2

τ σ
2
u , (A19)

or equivalently, βτVτ = −V ′
τ+(1−μτ−τγτ )2σ 2

v +μ2
τ σ

2
e +2

τ σ
2
u

2τ
. Substituting this into (A17)

and integrating by parts, we obtain

πt = − V1

21
+ Vt

2t
+
∫ 1

t
Vτ

(
1

2τ

)′
dτ

+
∫ 1

t

(
(1 − μτ −τγτ )2σ 2

v + μ2
τ σ

2
e +2

τ σ
2
u

2τ

+ (1 − λτγτ )γτσ 2
v

)
dτ. (A20)

We now prove the existence of an equilibrium by first assuming that τ is
constant and showing that the speculator’s optimal strategy must be of the
type described in Theorem 2. Then, at the end of this proof, we show that, for
a linear equilibrium to exist, τ must indeed be constant.

Consider the case when τ =  is constant. By the same argument that
proves (A8) in Theorem 1, we have

 > 0. (A21)

Also, the transversality condition V1 = 0 must hold.
The novel part is the choice of γτ . The first-order condition with respect to γτ

in (A20) is

− (1 − μτ −τγτ ) + (1 − λτγτ ) − λτγτ = 0 ⇒ γτ = μτ

2λτ −τ

= μτ

λτ + μτρτ
. (A22)
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Thus, the news-trading component is in general different from zero when the
speculator is fast. The second-order condition is λτ + μτρτ > 0.

Next, we derive the pricing rules from the dealer’s zero-profit conditions. Let
t ∈ [0,1), and let �t = Et((vt − qt)2), where the expectation is conditional on the
dealer’s information set It. In the fast model (see Figure 2), the first event in
[t, t + dt] is the arrival of a market order dyt = dxt + dut. Since dut and the two
components of dxt = βt(vt − qt)dt + γtdvt are orthogonal to It, the trading price
must be of the form pt+dt = qt + λtdyt, as specified in (16), where

λt = Covt(v1,dyt)
Vart(dyt)

= Covt(v1, βt(vt − qt)dt + γtdvt + dut)
Var(βt(vt − qt)dt + γtdvt + dut)

= βt�t + γtσ
2
v

γ 2
t σ

2
v + σ 2

u
. (A23)

Clearly, after trading the dealer sets the quote equal to the trading price pt+dt.
Then, after observing the signal dzt, the dealer updates the quote by adding a
multiple of the unexpected part of the signal,

qt+dt = pt+dt + μt(dzt − E(dzt|It,dyt)),with

E(dzt|It,dyt) = E(dzt|dyt) = ρtdyt,

where we use the fact that both dzt and dyt are orthogonal to It. We compute

ρt = Cov(dzt,dyt)
Var(dyt)

= γtσ
2
v

γ 2
t σ

2
v + σ 2

u
, (A24)

μt = Covt(v1,dzt − ρtdyt)
Var(dzt − ρtdyt)

= −ρtβt�t + (1 − ρtγt)σ 2
v

(1 − ρtγt)2σ 2
v + ρ2

t σ
2
u + σ 2

e
. (A25)

We also obtain qt+dt = pt+dt + μt(dzt − ρtdyt) = qt + λtdyt + μt(dzt − ρtdyt). This
shows that dqut is of the form specified in (17).

Next, the same argument as in the proof of Theorem 1 implies that�t satisfies
the same ODE as (A19):

�′
t = −2tβt�t + (1 − μt −tγt)2σ 2

v + μ2
t σ

2
e +2

t σ
2
u . (A26)

Since t =  is assumed constant, the same argument as in the proof of Theo-
rem 1 shows that the transversality condition implies �1 = 0.

We now define the following variables:

a = σ 2
u

σ 2
v

> 0, b = σ 2
e

σ 2
v

≥ 0, c = �0

σ 2
v

> 0,

gt = γ 2
t

a
, λ̃t = λtγt, ρ̃t = ρtγt, ̃t = tγt, ψt = βt�t

σ 2
u
γt. (A27)

Note that we cannot have gt = 0 in equilibrium. Indeed, in that case equa-
tion (A24) implies ρt = 0, and equation (A25) implies μt = σ 2

v

σ 2
v +σ 2

e
= 1

1+b . Also,
equation (A18) implies λt = t, which is a positive constant by assumption.
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But then equation (A22) becomes 0 = γt = μt
λt

, which implies μt = 0, which con-

tradicts μt = 1
1+b > 0. Therefore, gt �= 0, and since gt = γ 2

t
a , it must be the case

that gt > 0.
For notational simplicity, we omit the t subscript. With the notation in (A27),

equations (A23) to (A25) become

λ̃ = ψ + g
1 + g

, ρ̃ = g
1 + g

, μ = 1 − ψ

1 + b(1 + g)
, (A28)

and equation (A22) becomes λγ = μ(1 − ργ ), or λ̃ = μ(1 − ρ̃). Substituting λ̃, ρ̃,
and μ from (A28) into λ̃ = μ(1 − ρ̃) and solving for ψ , we obtain

ψ = 1 − (1 + b)g − bg2

2 + b + bg
= 1 + g

2 + b + bg
− g. (A29)

Equation (A28) then becomes

λ̃ = 1
2 + b + bg

, ρ̃ = g
1 + g

, μ = 1 + g
2 + b + bg

, (A30)

and since equation (A18) implies ̃ = λ̃− μρ̃, we get

̃ = 1 − g
2 + b + bg

. (A31)

The condition > 0 (from (A21)), together with g > 0 (proved above), implies
that ̃ > 0, which implies in turn that g < 1. Hence,

g ∈ (0,1). (A32)

We compute ∂̃
∂g = −2−b(1+2g−g2)

g2(2+b+bg)2 < 0 for g ∈ (0,1), and thus ̃ is strictly de-
creasing in g. From (A27),  = (ag)−1/2̃, and thus  is also strictly decreas-
ing in g. Therefore, given , there is a unique g that satisfies the equi-
librium conditions. But  is constant, and thus g and γ = (ag)1/2 are also
constant. By (A30), λ, ρ, and μ are also constant. Equation (A23) then im-
plies that βt�t is also constant, and equation (A26) implies that �′

t is con-
stant. By the usual argument from the proof of Theorem 1, we thus ob-
tain

∑
t = ∑

0(1 − t), �′
t = −�0, and βt = β0

1−t . Equation (A26) then becomes

−c = − 2ψ̃
g + (1 − μ− ̃)2 + μ2b + ̃2

g . Using equations (A29) to (A31), we
compute

1 + c = (1 + bg)(1 + g)2

g(2 + b + bg)2 . (A33)

We show that this equation has a unique solution g ∈ (0,1). Define the function
Fb(x) = (1+bx)(1+x)2

x(2+b+bx)2 , and observe that with this notation equation (A33) becomes
Fb(g) = 1 + c. One can verify that F ′

b(x) = (x+1)(x−1)(2+b+3bx)
x2(2+b+bx)3 , and thus Fb(x) is
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strictly decreasing on [0,1]. Since Fb(0) = +∞ and Fb(1) = 1
1+b ≤ 1, there is a

unique g ∈ (0,1) that solves Fb(g) = 1 + c.
Now, use equations (A27), (A30), and (A31) to write

γ = a1/2g1/2, λ = 1
γ

1
2 + b + bg

, ρ = 1
γ

g
1 + g

, μ = 1 + g
2 + b + bg

,

 = 1
γ

1 − g
2 + b + bg

, 1 − μ−γ = b + bg
2 + b + bg

, ψ = 1 + g
2 + b + bg

− g. (A34)

After some algebraic manipulations, one can show that equations (18) to (23)
follow from equations (A33) and (A34). To illustrate how this works, we prove
the formulas for βF

t and γ F , and leave the rest to the reader. To compute βF
0 ,

note that the definition of ψ from (A27) implies βF
0 = σ 2

u
�0γ

ψ = a
cγ ψ = a1/2

cg1/2ψ .

We compute ψ = 1+g
2+b+bg − g = g(2+b+bg)

(1+g)(1+bg) (
(1+g)2(1+bg)
g(2+b+bg)2 − (1+g)(1+bg)

2+b+bg ) = g(2+b+bg)
(1+g)(1+bg) (c +

1 − (1+g)(1+bg)
2+b+bg ) = g(2+b+bg)

(1+g)(1+bg) (c + (1 − g) (1+b+bg)
2+b+bg ). Hence, βF

0 = a1/2g1/2(2+b+bg)
(1+g)(1+bg) (1 +

1−g
c

1+b+bg
2+b+bg ). Using (A33) again, we get βF

0 = a1/2

(1+c)1/2(1+bg)1/2 (1 + 1−g
c

1+b+bg
2+b+bg ), which,

together with the formula βF
t = βF

0
1−t , proves (18). To compute λF , note that (A33)

implies g1/2(2 + b + bg) = (1+bg)1/2(1+g)
(1+c)1/2 . Hence, from (A34), λF = 1

a1/2g1/2(2+b+bg) =
(1+c)1/2

a1/2
1

(1+bg)1/2(1+g) , which proves (20).
Finally, we prove that in equilibrium τ is indeed constant for τ ∈ [0,1).

The argument is the same as in the proof of Theorem 1, except for the case in
which ( 1

2τ
)′ < 0 for τ in a small interval I. Then, as in the proof of Theorem 1,

the market is strong-form efficient for τ ∈ I, and thus �τ = 0 on that interval.
Using the same argument that follows equation (A26), we arrive at the same
conclusion, namely, that gτ satisfies equation (A33), except that now cτ is re-
placed by −�′

τ = 0 for all τ ∈ I. But we have seen that the solution to (A33) is
unique for g ∈ (0,1). Therefore, gτ is constant on I, and thusτ is also constant
on I (as a function of gτ ). This contradicts ( 1

2τ
)′ < 0. �

PROOF OF PROPOSITION 2: We use the notation from the proof of Theorems 1
and 2, in particular, a, b, and c defined in (A27). We have βk

t = βk
0

1−t for all t ∈ [0,1)
and for k ∈ {F, S}. Thus, we need to prove that βF

0 < βS
0 . The formula (18) for

βF
0 is more difficult to work with, and thus we provide an alternate formula.

By the definition of ψ from (A27), βF
0 = σ 2

u
�0γ

ψ = a
cγ ψ = a1/2

cg1/2ψ . The formula for

ψ in equation (A34) then implies βF
0 = a1/2

cg1/2 ( 1+g
2+b+bg − g). We now show that

βF
0 = a1/2

cg1/2

(
1 + g

2 + b + bg
− g

)
< βS

0 = a1/2

c

(
c + b

1 + b

)1/2

. (A35)

If we square both sides and multiply by c2

a , the desired inequality is equivalent

to 1
g

(1−g−bg−bg2)2

(2+b+bg)2 < c + 1 − 1
1+b . If we replace c + 1 by the formula in (A33), (A35)

is equivalent to 1
1+b <

(1+bg)(1+g)2

g(2+b+bg)2 − 1
g

(1−g−bg−bg2)2

(2+b+bg)2 = 4+3b+bg(2−b)−bg2(1+2b)−b2g3

(2+b+bg)2 .
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After some algebra, this is equivalent to b(1 + b)g(1 + g)2 + (1 + b)g2 + bg2 +
2g < 3 + 2b. Sufficient conditions for this inequality are (i) b(1 + b)g(1 + g)2 +
(1 + b)g2 < 1 + b, and (ii) bg2 + 2g < 2 + b. Inequality (ii) follows directly from
g ∈ (0,1). Thus, we just need to prove (i). After dividing by 1 + b, (i) becomes
bg(1 + g)2 + g2 < 1, which is equivalent to bg < 1−g

1+g . To prove this inequal-
ity, note that equation (18) implies βF

0 > 0. The expression for βF
0 in (A35)

thus shows that 1+g
2+b+bg − g > 0. Some algebra then shows that the inequality

1+g
2+b+bg > g implies bg < 1−g

1+g , which finishes the proof. �

PROOF OF PROPOSITION 3: In both models, k ∈ {S, F}, βk
t �t, γ k

t , λk
t , and μk

t are
constant with respect to time. Equations (A4) and (A17) then imply

πS
0 =

[
βS

0 �0

]
+
[
(1 − μS − λSγ S)γ Sσ 2

v

]
= πS

β + πS
γ ,

π F
0 =

[
βF

0 �0

]
+
[
(1 − λFγ F)γ Fσ 2

v

]
= π F

β + π F
γ , (A36)

where in each case the first expression in brackets is πk
β and the second is

πk
γ . In the slow model, γ S = 0, and hence πS

γ = 0. Moreover, equation (A12)

implies that λS = βS
0
∑

0
σ 2

u
, and thus πS

0 = λSσ 2
u . In the fast model, λF = βF

0
∑

0 +γ Fσ 2
v

(γ F )2σ 2
v +σ 2

u

(equation (A23)), and thus λFσ 2
u = βF

0 �0 + γ F(1 − λFγ F)σ 2
v . But the right-hand

side of this equation is exactly the formula for π F
0 in (A36). Thus, we have π F

0 =
λFσ 2

u . In conclusion, we have proved the following formulas for the speculator’s
expected profit in the slow and the fast models:33

πS
0 = λSσ 2

u , π F
0 = λFσ 2

u . (A37)

Proposition 4 implies that λF > λS, and therefore the total expected profit in
the fast model is higher than that in the slow model: π F

0 > πS
0 . At the same

time, Proposition 2 implies that βF
0 < βS

0 , and hence π F
β < πS

β .
For future reference, we also express the various components of the spec-

ulator’s expected profit when he is fast or slow as a function of exogenous
parameters and g in (A38) below. We again use the notational shortcuts (a, b,
and c) defined in (A27).

In the slow model, equation (13) implies that πS
0 = λSσ 2

u = σuσv(c + b
1+b)1/2.

In the fast model, equation (20) implies that λF = (c+1)1/2

a1/2
1

(1+bg)1/2(1+g) = 1
a1/2

1
g1/2(2+b+bg) , where the second equality follows from (23). From (19), γ F =
a1/2g1/2, and thus 1 − λFγ F = 1+b+bg

2+b+bg . We compute π F
0 = λFσ 2

u = σuσv
1

g1/2(2+b+bg) ,

33 These formulas are intuitive. Indeed, since the dealer sets prices at the expected value, she
must break even on average. Hence, the expected profit of the speculator must be equal to the
expected loss incurred by the noise traders, which over [0, 1] adds up to λkσ 2

u , k ∈ {S, F}.
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and π F
γ = (1 − λFγ F)γ Fσ 2

v = σuσv
g1/2(1+b+bg)

2+b+bg . Their difference is π F
β =

σuσv
(1+g)

(
1−g
1+g −bg

)
g1/2(2+b+bg) .34 We now collect all the formulas:

πS
0 = σuσv

(
c + b

1 + b

)1/2

, πS
β = πS

0 , πS
γ = 0,

π F
0 = σuσv

1
g1/2(2 + b + bg)

= π F
β + π F

γ , (A38)

π F
β = σuσv

(1 + g)
(

1−g
1+g − bg

)
g1/2(2 + b + bg)

, π F
γ = σuσv

g1/2(1 + b + bg)
2 + b + bg

. �

PROOF OF PROPOSITION 4: We use the notation from the proof of Theorems 1
and 2, in particular, the notational shortcuts (a, b, and c) defined in (A27).
Using this notation, we need to show that

λF = (1 + c)1/2

a1/2

1
(1 + bg)1/2(1 + g)

> λS = c1/2

a1/2

(
1 + b

c(b + 1)

)1/2

. (A39)

After squaring the two sides and using 1 + c = (1+bg)(1+g)2

g(2+b+bg)2 (equation (A33)), we

need to prove that 1
g(2+b+bg)2 > c + 1 − 1

1+b , or equivalently, 1
1+b >

(1+bg)(1+g)2

g(2+b+bg)2 −
1

g(2+b+bg)2 = 2+b+g+2bg+bg2

(2+b+bg)2 . Algebraic manipulation shows that this is equivalent
to 1 + b + (1 − g)(1 + bg) > 0, which is true, since b > 0 and g ∈ (0,1). �
PROOF OF PROPOSITION 5: With the notation from the proof of Theorems 1 and 2,
we need to show that

μF = 1 + g
2 + b + bg

< μS = 1
1 + b

. (A40)

Algebraic manipulation shows that this is equivalent to g < 1, which is true
since g ∈ (0,1).

PROOF OF COROLLARY 1: In both the slow model and the fast model (k ∈ {S, F}),
the quote change is of the form dqt = λkdyt + μk(dzt − ρkdyt), with the first
component, λkdyt = dqtrades, t, caused by trading, and the second component,
dqnews, t = μk(dzt − ρkdyt), caused by news. Thus, we decompose the instanta-
neous quote variance into trading and news components:

σ 2
q = σ 2

q,trades + σ 2
q,news ⇐⇒ Var(dqt)

dt
= Var(dqtrades, t)

dt
+ Var(dqnews, t)

dt
.

(A41)

34 In the proof of Proposition 2 we have shown that bg < 1−g
1+g , and hence π F

β > 0.
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In the slow model, σ 2
q,trades = (λS)2σ 2

u = �0 + σ 2
v σ

2
e

σ 2
v +σ 2

e
. Also, σ 2

q,news = (μS)2(
σ 2
v + σ 2

e

) = σ 4
v

σ 2
v +σ 2

e
. Thus, in the slow model we have the following volatility

decomposition:

σ 2
q = Var(dqut)

dt
=
(
�0 + σ 2

v σ
2
e

σ 2
v + σ 2

e

)
+ σ 4

v

σ 2
v + σ 2

e
= �0 + σ 2

v . (A42)

In the fast model, σ 2
q,trades = (λF)2((γ F)2σ 2

v + σ 2
u ), and using equation (A34)

we compute σ 2
q,trades = 1+g

g(2+b+bg)2 σ
2
v . Also, σ 2

q,news = (μF)2((1 − ρFγ F)2σ 2
v + σ 2

e +
(ρF)2σ 2

u ) = (1+g)(1+b+bg)
(2+b+bg)2 σ 2

v . From (A33),
∑

0 +σ 2
v = (c + 1)σ 2

v = (1+g)2(1+bg)
g(2+b+bg)2 σ

2
v , and

thus

σ 2
q = Var(dqt)

dt
= 1 + g

g(2 + b + bg)2 σ
2
v + (1 + g)(1 + b + bg)

(2 + b + bg)2 σ 2
v = �0 + σ 2

v . (A43)

We now prove that the volatility component coming from quote updates is
larger in the slow model: σ 2

v

σ 2
v +σ 2

e
= 1

1+b >
(1+g)(1+b+bg)

(2+b+bg)2 . Indeed, some algebraic
manipulation shows that the difference is proportional to 3 − g + 2b + bg −
bg2 = 2(1 + b) + (1 − g)(1 + bg) > 0. Since the total volatility is the same, it
also implies that the volatility component coming from the trades is larger in
the fast model.

PROOF OF COROLLARY 2: In Theorems 1 and 2, we have proved that �t =
�0(1 − t), regardless of whether the speculator is fast or slow. This proves
the last part of the corollary. Furthermore, in both the slow model and
the fast model, d�t = dE((vt − qt)2) = 2Cov(dvt − dqt, vt − qt) + Var(dvt − dqt).
Since the news dvt is orthogonal to vt − qt in both models, d�t = −2Cov(dqt, vt −
qt) − 2Cov(dqt,dvt) + Var(dvt) + Var(dqt). But 1

dt Var(dvt) = σ 2
v , and, from

Corollary 1, σ 2
q = 1

dt Var(dqt) = σ 2
v +�0. We have just proved (25).

Equation (10) implies that in the slow model dqt = μSdzt + λSdyt. Since dyt =
dxt + dut, and dxt has no volatility component (γ S = 0), we get Cov(dqt,dvt) =
μSσ 2

v dt.
Equation (17) implies that in the fast model dqt = λFdyt + μF(dzt − ρFdyt).

Since the volatility component of dxt is equal to γ Fdvt, we get Cov(dqt,dvt) =
(γ F(λF − μFρF) + μF)σ 2

v dt.
Next, we prove that γ F(λF − μFρF ) + μF > μS. Using (A34) and (A40), we

need to show that 2
2+b+bg >

1
1+b , which is equivalent to 1 > g. But this is true

since g ∈ (0,1). Thus, Cov(dqt,dvt) is higher in the fast model. As d�t = −�0 in
both the fast model and the slow model, it follows from (25) that Cov(dqut, vt −
qt) is smaller when the speculator is fast.

PROOF OF COROLLARY 3: Expressions for the speculator’s expected profit and
its two components are given in (A38). Remember that a = σ 2

u
σ 2
v

> 0, b = σ 2
e
σ 2
v

≥ 0,

and c =
∑

0
σ 2
v

> 0. When the speculator is slow, we deduce from (A38) that

lim∑
0→0

πS = lim∑
0→0

πS
β = σuσv

(
b

1 + b

)1/2

≥ 0, (A44)
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where the last inequality is strict if b > 0, that is, if σe > 0. This proves the first
part of Corollary 3.

Now consider the case in which the speculator is fast. In this case, re-
member from Theorem 2 that g solves Fb(g) = 1 + c, where Fb(x) = (1+bx)(1+x)2

x(2+b+bx)2 .
Hence, when �0 goes to zero, g solves Fb(g) = 1. Let g0 be this solution. It is
unique and belongs to g0 ∈ (0,1] since (i) Fb(x) decreases with x, for x ∈ [0,1],
(ii) Fb(0) = +∞, and (iii) Fb(1) = 1

1+b . Furthermore, g0 = 1 only when b = 0,
that is, when σe = 0. Using these observations, we deduce from (A38) that

lim∑
0→0

π F = σuσv
1

g1/2
0 (2 + b + bg0)

, (A45)

lim∑
0→0

π F
γ = σuσv

g1/2
0 (1 + b + bg0)

2 + b + bg0
> 0, (A46)

and therefore

lim∑
0→0

π F
β = σuσv

(1 + g0)
(

1−g0
1+g0

− bg0

)
g1/2

0 (2 + b + bg0)
≥ 0, (A47)

where the last inequality is strict unless b = 0, that is, if σe = 0. Thus, we have
shown that (i) lim∑

0→0 π
k
β > 0 iff σe > 0 and (ii) lim∑

0→0 π
F
γ > 0. �

PROOF OF COROLLARY 4: In the slow model, equation (8) and γ S
t = 0 imply

that Var(dxt) = (βS
t )2�t(dt)2 = 0, since (dt)2 = 0. Also, Var(dut) = σ 2

u dt. Thus,
SPRS

t = Var(dxt)
Var(dxt)+Var(dut)

= 0.
In the fast model, equation (15) implies Var(dxt) = (γ F)2σ 2

v dt, and
equation (19) implies (γ F)2σ 2

v = σ 2
u g. Thus, SPRF = σ 2

u gdt
σ 2

u gdt+σ 2
u dt = g

g+1 . From

Theorem 2, g ∈ (0,1), and hence SPRF
> 0.

Before we proceed with the proof of Corollary 5, we derive some useful
formulas.

LEMMA A1: Let k = λk − μkρk for k ∈ {S, F}. Then, for all s < t ∈ (0,1),

Cov(vs − qs, vt − qt) = �s

(
1 − t
1 − s

)kβk
0

,

1
ds

Cov(dvs, vt − qt) = (1 −kγ k − μk)σ 2
v

(
1 − t
1 − s

)kβk
0

. (A48)

PROOF: Fix s ∈ (0,1). Let Xt = Cov(vs − qs, vt − qt). For t ≥ s, dXt = Cov(vs −
qs,dvt − dqt) = −Cov(vs − qs,dqt) = −kβk

t Xtdt = −k βk
0

1−t Xtdt. Then, d ln(Xt) =
kβk

0d ln(1 − t). Also, at t = s, we have Xs = ∑
s. Thus, we have a first-order

differential equation, with the solution given by the first equation in (A48).
Let Yt = 1

ds Cov(dvs, vt − qt). For t > s, dYt = 1
ds Cov(dvs,dvt − dqt) = − 1

ds Cov

(dvs,dqt) = −kβk
t Ytdt = −k βk

0
1−t Ytdt. Then, d ln(Yt) = kβk

0d ln(1 − t). At t =
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s + ds, we have Ys+ds = 1
ds Cov(dvs, vs − qs + dvs − dqs) = 1

ds Cov(dvs,dvs) −
1
d sCov(dvs,

kdyt + μkdzt) = (1 −kγ k − μk)σ 2
v . Thus, we have a first-order dif-

ferential equation, with the solution given by the second equation in (A48).

PROOF OF COROLLARY 5: In both the slow model and the fast model (k ∈ {S, F}),
the speculator’s trading strategy is of the form dxt = βk

t (vt − qt)dt + γ kdvt, and
the dealer’s quote evolves according to dqut = μk(dzt − ρkdyt) + λkdyt = μkdzt +
kdyt, where k = λk − μkρk.

For the slow model, ρS = 0, and hence S = λS. Using Lemma A1, we get

Corr(dxS
t ,dxS

t+τ ) = Cov(vt − qt, vt+τ − qt+τ )
Var(vt − qt)1/2Var(vt+τ − qt+τ )1/2 = �t

( 1−t−τ
1−t

)λSβS
0

�
1/2
t �

1/2
t+τ

. (A49)

Since �s = �0(1 − s), we obtain Corr(dxS
t ,dxS

t+τ ) = ( 1−t−τ
1−t )λ

SβS
0 − 1

2 .35

In the fast model, equation (A48) implies that the autocovariance of the
speculator’s order flow, Cov(dxF

t ,dxF
t+τ ), is of order (dt)2. But the variance of

the speculator’s order flow is of order dt, and therefore the autocorrelation is of
order dt, which as a number equals zero in continuous time.

PROOF OF COROLLARY 6: As in the proof of Corollary 5 and Lemma A1, for k ∈
{S, F}, we consider the following notation: Xt,t+τ = Cov(vt − qt, vt+τ − qt+τ ) and
Yt,t+τ = 1

dt Cov(dvt, vt+τ − qt+τ ). Let k = λk − μkρk, and αk = ( 1−(t+τ )
1−t )

kβk
0 . We

first show that, as claimed in (30) and (31), CPIk
t (τ ) = Ck

0 + Ck
1(1 − αk), where

CS
0 = 0, CS

1 = βS
0 �0,

CF
0 = (μF +Fγ F)γ Fσ 2

v , CF
1 = βF

0 �0 + (1 − μF −Fγ F)γ Fσ 2
v . (A50)

Let nk = 1 − μk −kγ k. We write CPIt(τ ) = Cov( dxt
dt ,qt+τ − qt). Since

dxt = βk
t (vt − qt)dt + γ kdvt, we obtain

CPIk
t (τ ) = βk

t Cov(vt − qt,qt+τ − qt) + γ k

dt
Cov(dvt,qt+τ − qt)

= βk
t Cov(vt − qt, vt+τ − qt) + γ k

dt
Cov(dvt, vt+τ − qt) − βk

t Xt,t+τ − γ k

dt
Yt,t+τ .

(A51)

But Cov(vt − qt, vt+τ − qt) = �t, Cov(dvt, vt+τ − qt) = σ 2
v dt, and Lemma A1

in the proof of Corollary 5 implies Xt,t+τ = �tα
k and Yt,t+τ = nkσ 2

v α
k. Thus,

CPIt(τ ) = βk
0�0(1 − αk) + γ kσ 2

v (1 − nkαk) (we know that βk
t �t = βk

0�0 is
constant). We get CPIk

t (τ ) = Ck
0 + Ck

1(1 − α), where Ck
0 = (1 − nk)γ kσ 2

v and
Ck

1 = βk
0�0 + nkγ kσ 2

v . It is straightforward to check, for both k ∈ {S, F}, that Ck
0

and Ck
1 are indeed as in equation (A50). Moreover, nF > 0 as equation (A34)

implies that nF = 1 − μF −Fγ F = b+bg
2+b+bg > 0.

35 Note that λSβS
0 = 1 + σ2

v σ
2
e∑

0(σ2
v +σ2

e )
> 1.
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PROOF OF PROPOSITION 6: We use the notation from the proof of Theorems 1
and 2, in particular the notational shortcut (a, b, and c) defined in (A27). In the
slow model, we have

βS
0 = σu

�
1/2
0

(
1 + σ 2

v σ
2
e

�0
(
σ 2
v + σ 2

e

))1/2

= a1/2

c

(
c + b

1 + b

)1/2

. (A52)

Thus, βS
0 is increasing in b = σ 2

e
σ 2
v

, and decreasing in ν = 1
σe

. Since βS
t is propor-

tional to βS
0 , it follows that βS

t is decreasing in ν.
In the fast model, let F(b, x) = Fb(x) = (1+bx)(1+x)2

x(2+b+bx)2 . We compute its partial

derivatives, ∂F
∂b = − (1+x)2(2+bx+bx2)

x(2+b+bx)3 and ∂F
∂x = − (1−x)(1+x)(2+b+3bx)

x2(2+b+bx)3 . Remember that
g is the solution of F(b, g) = 1 + c and this solution is in (0,1]. Denote this
solution by g(b, c). We have ∂F

∂b + ∂F
∂x

∂g
∂b = 0 and ∂F

∂x
∂g
∂c = 1. We deduce that

∂g(b, c)
∂b

= −g(1 + g)(2 + bg + bg2)
(1 − g)(2 + b + 3bg)

,

∂g(b, c)
∂c

= − g2(2 + b + bg)3

(1 − g)(1 + g)(2 + b + 3bg)
. (A53)

Thus, g(b, c) is decreasing in b, and hence is increasing in ν. As γ F = a1/2g1/2,
it follows that γ F is increasing in ν as well.

In the proof of Theorem 2, we have also proved that

βF
0 = a1/2

cg1/2

(
1 + g

2 + b + bg
− g

)
. (A54)

Using (A53), we compute ∂βF
0

∂b = a1/2g1/2(1+g)2(2+3b+3bg+b2g+b2g2)
2c(1−g)(2+b+bg)(2+b+3bg) . Thus, βF

0 is increas-
ing in b, and hence is decreasing in ν.

Finally, when v → 0, we have σe → +∞ and therefore b → +∞. Consider
equation (23): g = (1+bg)(1+g)2

(2+b+bg)2
1

1+c . Since g ∈ (0,1), the right-hand side of the
equation is of the order 1

b , and thus it converges to zero when b → +∞.
This implies that limν→0 g = 0, which implies that limν→0 γ

F = 0. Moreover,
we show that limν→0 β

S
0 = limν→0 β

F
0 . In the slow model, equation (A52) im-

plies that limν→0 β
S
0 = a1/2

c (c + 1)1/2. In the fast model, equation (A54) im-
plies that limν→0 β

F
0 = limν→0

a1/2

c
1+g

g1/2b(1+ 2
b +g)

= limν→0
a1/2

c
1

g1/2b . Thus, the proof

of limν→0 β
S
0 = limν→0 β

F
0 is finished if we can show that limν→0 g1/2b = 1

(1+c)1/2 .

To do so, note that equation (A33), (1 + c)1/2 = (1+bg)1/2(1+g)
g1/2(2+b+bg) , implies g1/2b =

(1+bg)1/2(1+g)
(1+c)1/2(1+ 2

b +g)
. Hence, limν→0 g1/2b = 1

(1+c)1/2 , which finishes the proof. �

PROOF OF COROLLARY 7: Equation (A53) shows that g is decreasing in b = σ 2
e
σ 2
v

.
Hence, if a variable X is an increasing function of g, then X is also increas-
ing in ν = 1

σe
. In the fast model, let T V F = Var(dyt)

dt be the trading volume, and
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SPRF = Var(dxt)
Var(dyt)

be the speculator’s participation rate. Then T V F = σ 2
u (1 + g),

and SPRF = g
1+g (see the proof of Corollary 4). Since both variables are increas-

ing in g, they are also increasing in ν.
Now, equation (A39) implies (λF)2 = 1+c

a
1

(1+bg)(1+g)2 , where c =
∑

0
σ 2
v

> 0. Using

the formula for ∂g
∂b in (A53), we compute ∂((1+bg)(1+g)2)

∂b = − g(1+g)3(1+bg)
1−g < 0, and

thus ∂λF

∂b > 0. Since ν = 1
σe

= 1
σv

1
b1/2 , this implies ∂λF

∂ν
< 0, and ∂(1/λF )

∂ν
> 0. �

PROOF OF COROLLARY 8: We need to show how the speculator’s expected profit
(π F

0 ) and its various components (π F
β and π F

γ ) depend on ν = 1
σe

. In general,

if a variable X is increasing in b = σ 2
e
σ 2
v

, then it is decreasing in ν, and vice
versa. We now use the results from the proof of Proposition 3, collected in
equation (A38). We normalize the expected profit, π̃ F

0 = π F
0

σuσv
, and similarly all

the other profits. For a variable X = f (b, g), we study its dependence on b by
computing dX

db = ∂ f
∂b + ∂ f

∂g
∂g
∂b , where equation (A53) gives ∂g

∂b = − g(1+g)(2+bg+bg2)
(1−g)(2+b+3bg) .

If X = (π̃ F
γ )2 = g(1+b+bg)2

(2+b+bg)2 , then dX
db = − g(1+g)(1+b+bg)(2b+(2+3b+b2)g+b(3+2b)g2+b2g3)

(1−g)(2+b+bg)2(2+b+3bg) <

0. Hence, π F
γ is increasing in ν.

In the proof of Proposition 3, we have seen that π F
β = βF

0 �0. Hence, π F
β de-

pends on ν in the same way as βF
0 . But in Proposition 6, we have already shown

that βF
0 is decreasing in ν.

If X = 1
(π̃ F

0 )2 = g(2 + b + bg)2, then dX
db = − g2(1+g)(2+b+bg)2

1−g < 0. Thus, X is in-

creasing in ν, and π F
0 is decreasing in ν.

If X = π F
γ

π F
0

= g(1 + b + bg), then dX
db = − g(1+g)(2+b+bg)(1+(1+b)g+2bg2)

(1−g)(2+b+3bg) < 0. Thus,
π F
γ

π F
0is increasing in ν.

Finally, limν→0
π F
γ

π F
0

= limν→0 g(1 + b + bg) = limν→0 g1/2 · limν→0 g1/2b · limν→0

(1 + 1
b + g) = 0 · 1

(1+c)1/2 · 1 = 0, where the last equality follows from the proof of
Proposition 6.

PROOF OF COROLLARY 9: We need to show that π F
0 − πS

0 is increasing in ν = 1
σe

, or

equivalently, that it is decreasing in b = σ 2
e
σ 2
v

. Let X1 = ( π
F
0

σuσv
)2 and X2 = ( πS

0
σuσv

)2. We

now prove that (X1)1/2 − X1/2
2 is decreasing in b. This is equivalent to dX1

db
1

X1/2
1
<

dX2
db

1
X1/2

2
. Since we prove below that dX1

db > 0 and dX2
db > 0, it is enough to prove

that ( dX1
db )2 1

X1
< ( dX2

db )2 1
X2

. �
Using (A38), we get X1 = 1

g(2+b+bg)2 and X2 = c + b
1+b , where c =

∑
0

σ 2
v

. Using

the same method as in the proof of Corollary 8, we compute dX1
db = 1+g

(1−g)(2+b+bg)2 .

Since c does not depend on b, dX2
db = 1

(1+b)2 . Now we eliminate c from the for-

mula for X2: from equation (A33), c + 1 = (1+bg)(1+g)2

g(2+b+bg)2 . Then, X2 = c + 1 − 1
1+b =

(1−g)2(1+b+bg)
g(2+b+bg)2(1+b) . After some algebra, ( dX2

db )2 1
X2

− ( dX1
db )2 1

X1
is proportional to (2 + b +
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bg)4 − (1 + g)2(1 + b + bg)(1 + b)3. (The constant is g(1−g2)
(1+b+bg)(2+b+bg)2(1+b)3 .) Hence,

the proof is finished if we show that (2 + b + bg)4 > (1 + g)2(1 + b + bg)(1 + b)3.
This follows by multiplying the inequalities (i) 2 + b + bg > 1 + b + bg and
(ii) (2 + b + bg)3 > (1 + g)3(1 + b)3 > (1 + g)2(1 + b)3, and hence it is enough to
prove that 2 + b + bg > (1 + g)(1 + b). But this inequality is equivalent to 1 > g,
which finishes the proof. �
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Martinez, Victor, and Ioanid Roşu, 2013, High frequency traders, news and volatility, Working

paper, HEC Paris.
Menkveld, Albert, 2013, High frequency trading and the new-market makers, Working paper, Vrije

University.
Pagnotta, Emiliano, and Thomas Philippon, 2012, Competing on speed, Working paper, New York

University.
Securities and Exchange Commission (SEC), 2014, Equity market structure literature review, Part

II: High Frequency Trading, Staff of the Division of Trading and Markets, 1–37. Available at
https://www.sec.gov/marketstructure/research/hft_lit_review_march_2014.pdf.

Weller, Brian, 2014, Intermediation chains, Working paper, Northwestern University.
Zhang, Sarah, 2012, Need for speed: An empirical analysis of hard and soft information in a high

frequency world, Working paper, University of Manchester.

Supporting Information

Additional Supporting Information may be found in the online version of this
article at the publisher’s website:

Appendix S1: Internet Appendix.

https://www.sec.gov/marketstructure/research/hft_lit_review_march_2014.pdf


382 The Journal of Finance R©




