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I define multi-stage stochastic games in continuous time. As in Bergin and

MacLeod (1993), strategies have infinitesimal inertia, i.e., agents cannot change

their strategies in an infinitesimal interval immediately after each time t. I

extend the framework to allow for mixed strategies. As a novel feature in con-

tinuous time, mixing can be done both over actions, and over time (choosing

the time of the action). I also define ”layered times,” which allow for stopping

the clock and having various stages of the game be played at the same moment

in time. I apply the theory to a trading game, where patient agents can choose

whether to trade immediately or place a limit order and wait.

Keywords: Continuous time game theory, mixed strategies, stopping the
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1. Introduction

The framework I use in this paper borrows mainly from the theory of repeated games

in continuous time, as developed by Bergin and MacLeod (1993). I extend their frame-

work by allowing stochastic moves by Nature, entry of new players, and mixed strategies.

An alternative definition of continuous-time game theory can be found in Simon and

Stinchcombe (1989). They define a continuous-time game to be a limit of discrete

games, which makes their framework intuitive, but very hard to work with, especially

when it comes to mixed strategies.

Date: January 2006.
1The author thanks Drew Fudenberg, Sergei Izmalkov, Andrew Lo, Dimitri Vayanos, and Jiang Wang
for helpful comments and suggestions. He is also grateful to participants at the NBER meeting, May
2004; WFA meeting, June 2005; and to seminar audiences at MIT, Carnegie Mellon, and U Chicago.
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Continuous-time game theory is not a straightforward extension of discrete time game

theory.2 There are a few conceptual problems, as pointed out by Simon and Stinch-

combe (1989), or Bergin and MacLeod (1993). To understand why, suppose one tries

to replicate a typical punishment strategy from discrete time repeated games:

Continue to cooperate if the other player has not defected yet; if the

other player defected at any point in the past, immediately defect and

continue to defect forever.

The difficulty to make this strategy precise is two-fold. First, in continuous time there

is no first time after t, which makes it difficult to “continue” a certain course. One

way to get around this problem is to allow strategies to have inertia. But this creates

a second problem, since the other players can take advantage of inertia.3 One way

to allow players to react immediately is to enlarge the concept of strategy to include

sequences of faster and faster responses. The mathematical concept that allows to do

that is completion with respect to a metric (see below).4

Also, besides the usual problems with game theory in continuous time, there is an

extra problem when dealing with multi-stage games. To wit, suppose an agent exits the

game at time t. When is then the next stage of the game played? Since in continuous

time there is no first time after t, one is compelled to have the next stage-game played

also at t. I do this by introducing “layered times,” i.e., by allowing multiple games to

be played at at the same time.

2For the discrete-time version of this theory, see Fudenberg and Tirole (1991), ch. 4.
3One could force the players to all have the same inertia, but then this would be equivalent to forcing
the game to take place in discrete time.
4Another way to define immediacy is by using infinitesimal numbers, which is the mathematical field
of non-standard analysis.
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A third problem that arises in continuous time is that there is no first time before t.

This issue is important when one needs a description of the game right before t. The

solution of this problem is to allow only strategies that behave well immediately before

any time t. The technical concept, inspired from Simon and Stinchcombe (1989), is of

a strategy with a uniformly bounded number of jumps (to be defined below).

The last extension I consider in order to define multi-stage games in continuous time

is that of mixed strategies. Unlike discrete time, in continuous time mixing can be done

both over actions, and over time (choosing the time of an action).5

Finally, in this paper all information, together with agents’ strategies and beliefs are

common knowledge.

2. Trading Example

To better explain the intuition of this theory, I employ a trading game very similar to

that in Rosu (2006). In this example, patient sellers endowed with one unit of the asset

lose utility proportional to their expected waiting time. Sellers get a random liquidity

shock, arrive to the market, and decide whether to sell immediately at the reservation

price (and exit the market), or place a limit order and wait. Impatient buyers also

arrive randomly at the market, and always place market orders against the sellers’ limit

orders.

Since this is a model of continuous trading, it is useful to set the game in continuous

time. There are also technical reasons why that would be useful: in continuous time,

5It turns out that a strategy that mixes over time can be described as a limit of strategies that mix
over actions — in the same way that a strategy with infinitesimal inertia is a limit of strategies with
ε-inertia for ε a fixed positive number.
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with Poisson arrivals the probability that two agents arrive at the same time is zero.

This simplifies the analysis of the game.

Another important benefit of setting the game in continuous time is that agents can

respond immediately. More precisely, one can use strategies that specify: “Keep the

limit order at a1 as long as the other agent stays at a2 or below. If at some time t

the other agent places an order above a2, then immediately after t undercut at a2.”

Immediate punishment allows simple solutions, whereby existing traders do not need to

change their strategy until the arrival of the next trader.

But there are problems that need to be fixed when setting the game in continuous

time. Suppose a trader submits a market order at t and exits the game. The next

stage of the game will then be played with fewer traders. But at which time will this

next stage game be played? No t + ε > t is satisfactory, because it would imply agents

waiting for a positive time, during which they lose utility. The solution is to “stop the

clock,” so that the next game is also played at t (hence the idea of “layered times”).

The clock is restarted only when in the stage game no agent submits a market order.

Also, suppose that an impatient buyer arrives suddenly to the market and submits a

market order at time t. What is the ask price at which that order is to be executed?

Since there is no last time before t, one needs to have a well defined notion of the outcome

of the game immediately before t. This means that one should use strategies that do

not behave too wildly. The technical concept, inspired from Simon and Stinchcombe

(1989), is of a strategy with a uniformly bounded number of jumps.

The last concept that is useful in this trading example is of a mixed strategy. It turns

out that in equilibrium, in the state with the largest number of sellers, the seller with
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the lowest offer has a mixed strategy. Mixing can be done over either actions or over

time, but in this particular case mixing over time works better.6

3. Multi-Stage Games in Continuous Time with Perfect Information

In order to define a game, one must define the spaces of actions, outcomes, and

strategies. The definitions follow closely those of Bergin and MacLeod (1993). I extend

their framework in several directions: (i) there is a well-defined description of the game

right before any time t; (ii) I allow for entry decisions of new agents; and (iii) I account

for the possibility of having more than one game played at the same time. I start with

an infinitely countable set of players I, but I assume that at each stage there are only

finitely many agents in the game. (In the trading example this is true, since traders

arrive according to independent Poisson processes, so with probability one at each point

in time there are only finitely many traders.)

I want to include the case where at some times t the game is played more than once. I

do this by taking the product of the time interval [0,∞) with the set of natural numbers

N, to indicate how many time a game has been played at some time t. Define

(1) T = [0,∞)× N

the set of times at which players can move, counted with multiplicity. Notice that if ≤ is

the lexicographic order, (T ,≤) is a totally ordered space. Denote the element (0, 0) ∈ T

also by 0. Define intervals in T in the usual way: for example, if T = (t, n) ∈ T define

[0, T ) = {T ′ ∈ T | 0 ≤ T ′ < T}. When there is no danger of confusion, write t instead

6There are equilibria with mixing over time for all values of the parameters, while equilibria with
mixing over actions may not exist for some values of the parameters.
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of (t, n). Also, define a measure on [0,∞) so that bounded measurable functions are

integrable:

(2) µ( dt) = e−at dt.

In general, I want the action space for player i to be a compact complete metric space

(Xi, di). Typically, Xi is a compact subset of Rn and di is the inherited metric. In the

trading example, the action space for player i ∈ I can be defined as a subset of R2:

(3) Xi =
(
[B, A]× {0, 1}

)
∪ {out},

where out is some point in R2 which does not lie on [B, A]×{0, 1}. An action (xi, 1) ∈ Xi

is interpreted as a limit order at xi ∈ [B, A]. An action (xi, 0) ∈ Xi is interpreted as

a market sell (buy) order, in which case xi is the current bid (ask) price, respectively.

The action xi = out indicates that either (i) player i has not entered the game yet; or

(ii) player i exited the game before. One could also allow agents to exit freely at time t.

This will not happen in equilibrium if the utility from exiting is very small, so in order

to simplify the description of the game I do not allow free exit. Define also projections

on the first and second factor, π1 : Xi → [B, A] ∪ {out} and π2 : Xi → {0, 1} ∪ {out},

in the obvious way.

I now define outcomes of the game. Let BXi
and BX be the Borel sets of Xi and X =∏

i∈I Xi, respectively; and let B be the Borel sets of [0,∞). A function ν : [0,∞) → N is

said to have finite support if ν is zero everywhere except on a finite set M1 = {t1, . . . , tK}

(its support). One also associates the set M = {(t1, n1), . . . , (tK , nK)}, where all nk =
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ν(tk) > 0. Vice versa, for any such set M one can define a function νM : [0,∞) → N

with finite support by sending t ∈ [0,∞) to zero if t /∈ M1; and to nk if t = tk ∈ M1.

Definition 1. Let X be a space with measure. A function f : T → X is called layered

if there exists a function ν : [0,∞) → N with finite support such that ∀t ∈ [0,∞) and

∀n, n′ > ν(t) one has f(t, n) = f(t, n′). If f : T → X is layered, associate a function

f ν : [0,∞) → X by f ν(t) = f(t, ν(t)). I say that f is a layered measurable function

if f ν is measurable. An outcome for player i is a layered Borel measurable function

hi : T → Xi.

So an outcome is like a regular measurable function hi : [0,∞) → Xi, except that at

a finite set {t1, . . . , tK} (the support of ν) it can take several values, up to the integer

number ν(tk). This corresponds to the idea that at some times tk the game can be

played more than once (in my case, if some agent places a market order).

I call the function ν the layer of f . Sometimes I also call the layer of f the associated

set M = {(t1, n1), . . . , (tK , nK)}, with nk = ν(tk). Also, if f1 and f2 are two layered

functions with layers ν1 and ν2, one can take the combined layer of f1 and f2 to be

ν = max{ν1, ν2}. This is useful for situations where one has to compare f1 and f2.

Consider a layer ν. Then I define: T ν , the set of layered times associated with ν; Hi,

the space of outcomes for player i; and Hν
i , the space of outcomes associated with ν:

T ν = {(t, n) ∈ T | n ≤ ν(t)},(4)

Hi = {hi : T → Xi | hi layered measurable},(5)

Hν
i = {hi : T → Xi | hi layered measurable with layer ν}.(6)
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This is a metric space with the metric Di : Hν
i ×Hν

i → R+ given by

(7) Di(hi, h
′
i) =

∫
[0,∞)

di

(
hν

i (t), h
′ν
i (t)

)
µ( dt) +

K∑
k=1

ν(tk)∑
n=0

di

(
hi(tk, n), h′i(tk, n)

)
.

Rewrite this as

(8) Di(hi, h
′
i) =

∫
T ν

di

(
hi(T ), h′i(T )

)
µν( dT ).

Since the space of measurable functions fi : [0,∞) → Xi is compact and complete, so is

Hν
i . Now, if ν ≤ ν ′, there is an inclusion Hν

i → Hν′
i . Also, one knows that for every two

layers ν1 and ν2 one can take their maximum ν = max{ν1, ν2}, which satisfies ν1, ν2 ≤ ν.

This means that one can regard Hi as the limit of Hν
i when ν becomes larger and larger.

Because of this, Hi is a metric space, but it might not be either complete or compact.

I now define the space H of outcomes of the game. For this, let Hν =
∏

i∈I Hν
i the

product space with the metric D =
∏

i∈I
1
2i Di. It is a standard exercise in measure

theory to see that Hν is compact and complete. As before, if ν ≤ ν ′, there is an

inclusion Hν → Hν′ . I then define H as the union of all Hν for all layers ν. This is

still a metric space, but it might not be complete or compact. To justify this definition,

consider an outcome h ∈ H. Since h belongs to a union of Hν over all layers ν, there

must exist a particular ν so that h ∈ Hν (in which case, I say that ν is the layer of h).

This corresponds to the fact that all agents are in the same game, played at the times

described by the layer ν.
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Also, if Z ⊂ T ν is layered measurable, and hi, h
′
i ∈ Hν

i , define a metric relative to Z

by Di(hi, h
′
i, Z) =

∫
Z

di

(
hi(T ), h′i(T )

)
µν( dT ). Define also a metric D on H relative to

Z in the same way it was done for the product metric above.

Now I define strategies. In discrete time, pure strategies map histories to actions,

while mixed strategies map histories to probability densities over actions. For technical

reasons it is easier to think of a history as an outcome of the game together with a

time t at which history is taken. This way, one can define a strategy as a map from

{outcomes× times} to {actions}. Formally, a strategy for agent i is a map

(9) si : H × T → Xi

which satisfies the following axioms

A1. The function si is layered measurable on H × T .

A2. For all h, h′ ∈ H and T ∈ T such that D(h, h′, [0, T )) = 0, one has si(h, T ) =

si(h
′, T ).

The second axiom ensures that future does not affect current decisions. Rewrite

h ∼T h′ ⇐⇒ D(h, h′, [0, T )) = 0.

As it was discussed above, these two axioms alone do not ensure that strategies uniquely

determine outcomes. For that, one needs some inertia condition. If t ∈ [0,∞) and ν is

a layer, denote by tν = (t, ν(t)), and t = (t, 0).
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A3. The function si displays inertia, i.e., for any h ∈ Hν and any t ∈ [0,∞), there

exists ε > 0 and xi ∈ Xi such that

Di

(
si(h

′), xi, [t
ν , t + ε)

)
= 0

for every h′ ∈ Hν such that h ∼tν h′.

Denote by Si the set of functions si on H × T which satisfy A1, A2, A3. Denote by

S =
∏

i∈I Si. The next theorem shows that a strategy profile s = (si)i, i.e., a set of

strategies si for for each player i ∈ I, uniquely determine an outcome on every subgame.

More precisely one has the following result:

Proposition 1. Let s ∈ S. Then for every h ∈ H and T ∈ T , there exists a unique

(continuation) outcome h̃ ∈ H so that h ∼T h̃ and D(s(h̃), h̃, [T,∞)) = 0.

Proof. The proof is the same as in Bergin and MacLeod (1993), but one has to make

sure that one works in Hν for some layer ν. �

Given (h, T ) ∈ H ×T and s ∈ S, denote by σ(s, h, t) the outcome which agrees with

h on [0, T ) and is determined by the strategy s on [T,∞). Let si, s
′
i ∈ Si. I now define

a metric on Si:

(10) ρi(si, s
′
i) = sup

H×T ×S−i

D
(
σ((si, s−i), h, T ), σ((s′i, s−i), h, T )

)
.

One also has to introduce an axiom which ensures that for each t the outcome of the

game right before t is well defined. One way of doing this is to restrict to strategies si

that lead to locally constant outcomes with a uniformly bounded number of jumps.
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A4. For the strategy si there exists M (depending only on si) such that for any

strategies s−i of the other players, the outcome σi

(
(si, s−i), h, t

)
for player i is

locally constant and has at most M jumps.

Redefine Si to include on the strategies that satisfy A4. Now recall that at each t ∈

[0,∞) the strategies have inertia for some ε (depending on t). I want inertia to be

infinitesimal, because I want to allow for immediate responses. This can be done by

completing the space of strategies: Denote by S∗
i the completion of Si with respect to

the metric ρi, and by S∗ =
∏

i∈I S∗
i . Completion is done so that the upper bound for

the number of jumps is the same for all. More precisely, a point in S∗
i corresponds to a

Cauchy sequence (sn
i )n of strategies in Si, and one demands that there exists M so that

for each n, sn
i jumps at most M times, regardless of the other players’ strategies. The

following result shows that to each strategy in S∗ one can associate a unique outcome

in H.

Proposition 2. For every s ∈ S∗ and every (h, T ) ∈ H × T , there exists a unique h∗

such that σ(sn, h, T ) → h∗ for any Cauchy sequence (sn)n in S converging to s.

Proof. If (h, T ) ∈ H ×T , there exists a layer ν so that h ∈ Hν and T ∈ T ν . The result

then follows easily since Hν is compact and complete. �

I have just showed that for s ∈ S∗ one can associate a unique outcome of the (whole)

game, which I denote by σ∗(s). Because completion is done using the same upper bound

for the number of jumps, the following result is straightforward. The result allows one

to talk about the outcome of a game right before some time t.

Proposition 3. The outcome σ∗(s) associated to a strategy s ∈ S∗ is left-continuous.
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I am almost done in defining the game. The only thing that is left is to describe

the payoff for some strategy s ∈ S∗ in a subgame defined by a history (h, T ) ∈ H × T .

Since strategies uniquely define outcomes in every subgame, as long as there exists some

payoff ui(σ
∗(s, h, T )) for each agent i. Define now the equilibrium concept:

Definition 2. A strategy profile s ∈ S∗ is an ε-Nash equilibrium (ε-NE) if for any

h ∈ H

(11) ui

(
σ∗(s, h, 0)

)
≥ ui

(
σ∗((s′i, s−i), h, 0)

)
− ε, ∀i ∈ I, ∀x′i ∈ S∗

i .

A strategy profile s ∈ S∗ is an ε-subgame perfect Nash equilibrium (ε-SPE) if for any

(h, T ) ∈ H × T

(12) ui

(
σ∗(s, h, T )

)
≥ ui

(
σ∗((s′i, s−i), h, T )

)
, ∀i ∈ I, ∀x′i ∈ S∗

i .

For ε = 0 in the above inequalities one obtains the concepts of Nash equilibrium (NE)

and subgame perfect Nash equilibrium (SPE). One has the following important result.

Proposition 4. A strategy profile s ∈ S∗ is a subgame perfect equilibrium if and only

if for any Cauchy sequence (sn)n converging to s, there is a sequence εn → 0 such that

sn is an εn-subgame perfect equilibrium.

Proof. The proof is essentially the same as in Bergin and MacLeod (1993), but again

one has to make sure that one works in Hν for some layer ν. �

I now discuss mixed strategies. For simplicity of discussion I omit the presence of

layers, so one takes T = [0,∞). Consistent with this philosophy of locally constant



13

outcomes and inertia strategies, I want to have mixed strategies randomly switch over

a small interval. More formally, let Xi be the space of actions for player i, and [0,∞]

the metric space with metric d(x, y) = | e−x− e−y |. Define a mixed strategy to be a

measurable function

(13) si : H × T → Xi ×Xi × [0,∞],

where the first component of si is the initial action in Xi; the second component is the

action to which si will switch in the interval of time right after t; the third component

is the Poisson intensity of switching. I call this type of strategy “mixed over time,”

because randomness only comes from the time of switching, while the actions before or

after switching are deterministically chosen. One can also allow for mixing over actions,

in which case one has to replace Xi by Φ(Xi), the set of probability densities over Xi,

i.e., the set of non-negative integrable functions on Xi with total integral equal to one.

Since Φ(Xi) is compact if Xi is compact, the analysis is essentially the same.

I say that the strategy si has inertia in a similar way as before, but one adds the

requirement that, after switching, the action to which player i switched will be also

held constant for a small period of time. Then one has to modify the description of

outcomes, which are now stochastic processes that are built in a very similar way to

Poisson processes. The space of strategies is also constructed by taking a completion,

in the same way it was done for pure strategies.

To see how a strategy mixed over time works, consider the general case of the trading

example, where Nature moves at each time t by bringing new players to the game.

One can consider in fact two instances of Nature (two distinct players), each of whom
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brings one type of trader to the game. The space of actions for each instance of Nature,

e.g., the one that brings patient sellers, is the set 2I of all subsets of I (in principle I

allow Nature to add or remove any players from the game). Nature plays the following

strategy: if (h, t) ∈ H × T is the history at t, and J = It− is the set of players in the

game right before t, then sN(h, t) = (J, J ∪ {PS}, λPS).

I now briefly discuss the notions of equilibrium that can be defined in this framework.

The notions of subgame perfect equilibrium and Markov (perfect) equilibrium are sim-

ple extensions of the corresponding concepts in discrete time (see Fudenberg and Tirole

(1991)). One can also define the notion of competitive Markov equilibrium. This is a

Markov perfect equilibrium from which local deviations can be stopped by local pun-

ishments, assuming behavior in the rest of the game does not change. In other words, if

one truncates the equilibrium strategies by looking at some time interval (t, t+δ) (trun-

cation is possible because of the Markov condition), the restrictions of the strategies to

this time interval remain a Markov equilibrium.
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