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a b s t r a c t

I develop a model in which traders receive a stream of private signals, and differ in their infor-

mation processing speed. In equilibrium, the fast traders (FTs) quickly reveal a large fraction

of their information. If a FT is averse to holding inventory, his optimal strategy changes con-

siderably as his aversion crosses a threshold. He no longer takes long-term bets on the asset

value, gets most of his profits in cash, and generates a “hot potato” effect: after trading on

information, the FT quickly unloads part of his inventory to slower traders. The results match

evidence about high-frequency traders.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Today’s markets are increasingly characterized by the continuous arrival of vast amounts of information. A media article

about high-frequency trading reports on the hedge fund firm Citadel: “Its market data system, for example, contains roughly

100 times the amount of information in the Library of Congress. […] The signals, or alphas, that prove to have predictive power

are then translated into computer algorithms, which are integrated into Citadel’s master source code and electronic trading

program.” (“Man vs. Machine,” CNBC.com, Sept. 13, 2010). The sources of information from which traders obtain these signals

usually include company-specific news and reports, economic indicators, stock indexes, prices of other securities, prices on

various other trading platforms, limit order book changes, as well as various “machine readable news” and even “sentiment”
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indicators.1

At the same time, financial markets have seen in recent years the spectacular rise of algorithmic trading, and in particular of

high-frequency trading. Hendershott et al. (2011) report that from a starting point near zero in the mid-1990s, high-frequency

trading rose to as much as 73% of trading volume in the United States in 2009. Chaboud et al. (2014) consider various foreign

exchange markets and find that starting from essentially zero in 2003, algorithmic trading rose by the end of 2007 to approxi-

mately 60% of the trading volume for the euro-dollar and dollar-yen markets, and 80% for the euro-yen market. This coincidental

arrival raises the question whether or not at least some of the high-frequency traders (HFTs) process information and trade very

quickly in order to take advantage of their speed and superior computing power. Recent empirical evidence suggests that this is

indeed the case (e.g., Brogaard et al., 2014; Brogaard et al., 2015; Benos and Sagade, 2016; Kirilenko et al., 2017; Boehmer et al.,

2018b; Hirschey, 2018; Baron et al., 2019). Nevertheless, despite the large role played by HFTs in the current financial landscape,

there has been relatively little progress in explaining their strategies in connection with information processing.

I consider the following questions regarding HFTs: What are the optimal trading strategies of HFTs who process information?

Why do HFTs account for such a large share of the trading volume? What explains the race for speed among HFTs? What are

the effects of HFTs on measures of market quality, such as liquidity and price volatility? How can HFTs’ order flow anticipate

future order flow and returns? What explains the “intermediation chains” or “hot potato” effects found among HFTs? (e.g.,

Weller, 2012; Kirilenko et al., 2017.) Why do some HFTs have low inventories? Regarding the last question, some identify HFTs

as traders with both high trading volume and low inventories (e.g., SEC, 2010; Kirilenko et al., 2017). Then, a natural question

arises: Why would having low inventories be part of the definition of HFTs?

In this paper, I provide a theoretical model of informed trading with speed differences that parsimoniously addresses these

questions. The word “speed” in my context refers not to the speed of trading, which is arguably less important in modern trading

platforms, but rather to the speed of receiving and processing information. To analyze informed trading at different speeds, I

start with Kyle’s (1985) model and modify it along several dimensions.2 First, the asset’s fundamental value is not constant but

follows a random walk process, and each risk-neutral informed trader, or speculator, gradually receives signals about the asset

value increments. Second, there are multiple speculators who differ in their speed, by receiving their signal with a lag. Third,

each speculator can trade only on lagged signals with a lag of at most m, where m is an exogenously given number.

It is the last assumption that sets my model apart from previous models of informed trading. A key effect of this assumption

is to prevent the “rat race” phenomenon identified by Holden and Subrahmanyam (1992), by which traders with identical infor-

mation reveal their information so quickly that the equilibrium breaks down at the “high frequency” limit, when the number

of trading rounds approaches infinity. In my model, the speculators reveal only a fraction of their total private information, and

this has a stabilizing effect on the equilibrium. Economically, one can think of this assumption as equivalent to having a positive

information processing cost per signal (and per trading round).3 Indeed, since one of my results is that the value of information

decays fast, even a tiny information processing cost would make speculators optimally ignore their signals after a sufficiently

large number of lags m.

To simplify the analysis, I focus on the particular case when m = 1 when speculators can trade using only their current

signal and its lagged value. Thus, there are two types of speculators: “fast traders” (FTs), who observe the signal instantly; and

“slow traders” (STs), who observe the signal after one lag. In this case, the equilibrium can be described in closed form.4

I find that the fast traders generate most of the trading volume, volatility, and profits. To understand why, suppose that

nine FTs decide what weight to use on the last signal they receive. Because the dealer sets a price function that is linear in the

aggregate order size, each FT faces a Cournot-type problem and trades such that his price impact is on average 10% of his signal.

That brings the expected aggregate price impact to 90% of the signal, and leaves on average only 10% of the signal unknown to

the dealer. Thus, once the STs observe the lagged signal, they now have much less private information to exploit. Moreover, the

ST profits are further diminished by competition with FTs, who also trade on the lagged signal. Empirically, Baron et al. (2019)

find that the profits of HFTs are concentrated among a small number of incumbents, and their profits are correlated with speed.

An additional consequence of this result is anticipatory trading: the order flow of fast traders predicts the order flow of slow

traders in the next period. Thus, the speculator order flow autocorrelation is positive, although it is small if the number of fast

traders is large. Empirically, Brogaard (2011) finds that the autocorrelation of aggregate HFT order flow is indeed small and

positive. Also, using NASDAQ data on HFTs, Hirschey (2018) finds that HFT order flow anticipates future order flow.

A related result is that volume, volatility, and liquidity increase with the number of FTs. First, more competition from FTs

makes the prices more informative overall, and thus increases liquidity (measured by the inverse price impact coefficient, as in

Kyle, 1985). As the market is more liquid, FTs face a lower price impact, and therefore trade even more aggressively. This creates

an amplification mechanism that allows the aggregate FT trading volume to be increasing roughly linearly with the number

1 “Math-loving traders are using powerful computers to speed-read news reports, editorials, company Web sites, blog posts and even Twitter messages—and

then letting the machines decide what it all means for the markets.” (“Computers That Trade on the News,” The New York Times, Dec. 22, 2010).
2 As Kyle (1985), I assume that informed traders are market takers and thus submit only market orders; this is a plausible assumption for informed HFTs (e.g.,

Brogaard et al., 2014). In addition, I argue that the model is also able to describe HFTs who behave like market makers, as I later show that fast traders (with

sufficiently large inventory costs) partially trade in the opposite direction to the slower traders, and thus in effect provide liquidity to them.
3 Intuitively, information processing is costly because speculators need to avoid trading on stale information, and this involves (i) constantly monitoring

public information to verify that their signal has not been incorporated into the price, and (ii) extracting the predictable part of their signal from past order flow,

so that speculators trade only on the unpredictable (non-stale) part.
4 In the Internet Appendix, I verify numerically that the main results of the particular case, m = 1, carry through to the general case (m ≥ 1).
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of FTs. The effect of FTs on volatility is more muted but still positive; this is because in my model price volatility is bounded

above by the fundamental volatility of the asset. Empirically, in line with my theoretical results, Zhang (2010), Hendershott et

al. (2011), and Boehmer et al. (2018a) document that HFTs exert a positive effect on liquidity. Moreover, Zhang (2010), and

Boehmer et al. (2018a) find a positive effect of HFTs on volatility. Note, however, that my model is more likely to apply only to

the subcategory of informed, market taking HFTs, and not to all HFTs. The results should therefore be interpreted with caution.

Despite being able to match several stylized facts about HFTs in the model, a few questions remain. Why do many HFTs have

low inventories, both intraday and at the day close?5 Why do HFTs engage in “hot potato” trading (or “intermediation chains”),

in which HFTs pass their inventories to other traders?6 What is the role of speed in explaining these phenomena?

To provide some theoretical guidance on these issues, I extend the benchmark model described above to include one trader

with inventory costs. These costs can arise from risk aversion or from capital constraints, but I take a reduced form approach and

assume the costs are quadratic in inventory, with a coefficient called “inventory aversion” (see Madhavan and Smidt, 1993). I call

this additional trader the Inventory-averse Fast Trader, or IFT.7 I call this extension the “model with inventory management.”

In addition to choosing the weight on his current signal, the IFT also chooses the rate at which he mean reverts his inventory

to zero each period. Suppose the IFT does inventory management (i.e., chooses a positive rate of inventory mean reversion), but

not necessarily optimally.

The first effect of inventory management is that the IFT keeps all his profits in cash. To see this, suppose the IFT chooses a

coefficient of mean reversion of 1%. This translates into the inventory being reduced by a fraction of 1% in each trading round.

Therefore, the IFT’s inventory tends to become small over many rounds, and because the model is set in the high-frequency limit

(in continuous time), the inventory becomes in fact negligible.8 I call this result the “low inventory effect.”

The second effect is that the IFT no longer makes profits by betting on the fundamental value of the asset. This stands in sharp

contrast to the behavior of a risk-neutral speculator, such as the fast trader in the benchmark model (with no IFT). Indeed, the FT

accumulates inventory in the direction of his information, since he knows his signals are correlated with the asset’s liquidation

value. By contrast, although the IFT initially trades on his current signal, he subsequently fully reverses the bet on that signal

by removing a fraction of his inventory in each trading round. Thus, the IFT’s direct profit from each signal eventually decays to

zero. I call this result the “information decay effect.”

The third effect of inventory management is that, in order to make a profit, the IFT must (i) anticipate the slow trading, and

(ii) trade in the opposite direction to slow trading. By “slow trading” here I simply mean the part of order flow that involves the

speculators’ lagged signals.9 To understand this effect, consider how the IFT uses a given signal. The information decay effect

means that the IFT’s eventual profit from betting on his signal are zero. Therefore, the IFT must benefit from inventory reversal.

Since any trade has a price impact, inventory reversal generates a profit only if it gets pooled with order flow in the opposite

direction, so that the IFT’s price impact is negative. But in order for this profit to exist on average, the opposite order flow

must come from speculators who use lagged signals, that is, from slow trading. I call this result the “hot potato effect,” or the

“intermediation chain effect.”10

The reason behind this terminology is that the IFT’s current signal (the “potato”) produces undesirable inventory (is “hot”)

and must be passed on to slower traders in order to produce a profit. Thus, speed is important to the IFT. Without slower

trading, there is no hot potato effect, and the IFT makes a negative expected profit from any trading strategy that mean reverts

his inventory to zero. Note also that the hot potato generates a complementarity between the IFT and slow traders: stronger

inventory mean reversion by the IFT reduces the price impact of the STs, who can trade more aggressively. However, more

aggressive trading by the STs allows stronger mean reversion from the IFT.

Fig. 1 illustrates the optimal behavior of the IFT as a function of his inventory aversion coefficient.11 There are two contrasting

types of behavior, depending on how his inventory aversion compares to a threshold. Below the threshold, the IFT behaves

like a risk-neutral speculator, and makes money from taking fundamental bets on his signals. The only difference is that with

increasing inventory aversion, he optimally reduces the weight on his signal, to reduce his inventory costs. He does not mean

revert his inventory at all, because of the information decay effect: indeed, even a very small inventory mean reversion would

eventually destroy all profits from the fundamental bets. Above the threshold, the IFT’s optimal behavior changes dramatically:

5 SEC (2010) characterizes HFTs by their “very short time-frames for establishing and liquidating positions” and argues that HFTs end “the trading day in

as close to a flat position as possible (that is, not carrying significant, unhedged positions over-night).” See also Menkveld (2013), Brogaard et al. (2015), and

Kirilenko et al. (2017).
6 Lyons (1997) studies a model of “hot potato” trading among dealers in FX markets. Weller (2012) analyzes both theoretically and empirically “intermediation

chains” in which uninformed HFTs unwind inventories to slower, fundamental traders. Glode and Opp (2016) study intermediation chains theoretically in OTC

markets with asymmetric information. Kirilenko et al. (2017) mention a hot potato effect during the Flash Crash episode of May 6, 2010, when some HFTs

churned out their inventories very quickly to trade with other HFTs.
7 The IFT is assumed fast because without slower traders managing inventory is not profitable. The case of several IFTs is discussed in the Subsection 5.5 in

the Internet Appendix, but the results are qualitatively similar.
8 Formally, the inventory follows an autoregressive process, hence its variance has the same order as the variance of the signal, which at high frequencies is

negligible.
9 A subtle point is that slow trading does not need to come from actual slow traders. Slow trading can also arise from fast traders who use their lagged signals

as part of their optimal trading strategy.
10 In my simplified framework, the intermediation chain only has one link, between the IFT and the slow traders. In Subsection 5.6 in the Internet Appendix, I

provide an extension in which speculators use more than one lag for their signals, and I obtain an intermediation chain with two links.
11 Inventory aversion is similar to risk aversion, but solving the model with a risk-averse fast trader would be considerably more difficult.
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Fig. 1. Optimal inventory mean reversion. This figure shows the inventory and trading volume of an inventory-averse fast trader (IFT) for different values of his inventory

aversion coefficient CI , when the IFT competes with NF fast traders (FTs) and NS slow traders (STs). On the horizontal axis is the IFT’s inventory, measured by the square root

of his average expected squared position in the stock, relative to a FT’s inventory. On the vertical axis is the IFT’s trading volume, measured by the instantaneous variance of

his trading strategy, relative to a FT’s trading volume. The IFT’s trading strategy is his best response, taking as fixed the equilibrium behavior of the FTs and STs as described

in Theorem 3 below, with parameters 𝜎w = 1, 𝜎u = 1, and with NF = NS equal to either 2 or 20.

he trades more aggressively on his signal, and at the same time engages in quick inventory mean reversion. As a result, compared

to below the threshold, his trading volume spikes up yet his inventory remains essentially zero at all times. Note that the

threshold at which the behavior discontinuity occurs is decreasing in the number of fast traders or slow traders, as both provide

more of the slow trading necessary for the IFT to manage his inventory. Thus, even with small values of the inventory aversion

coefficient, the IFT can find it optimal to engage in inventory management and keep all his profits in cash.

My results speak to the literature on high-frequency trading. One may think that in practice HFTs have very low inventories

because either (i) HFTs have very high risk aversion, or (ii) HFTs do not have superior information and wish to maintain zero

inventory to avoid averse selection on their positions in the risky asset. My results suggest that this is not necessarily the case.

Indeed, Fig. 1 suggests (and I rigorously prove in Proposition 7) that in the limit when the number of speculators is large, the

threshold inventory aversion converges to zero, and the optimal mean reversion rate is close to one. In other words, even with

low inventory aversion, the IFT chooses very large mean reversion. Yet, even at these high rates of mean reversion, the IFT does

not lose more than about 50% of his average profits from inventory management (the advantage being that he has all his profits

in cash).

I predict that in practice the fast speculators are sharply divided into two categories. In both categories, speculators trade with

a large volume. However, in one category speculators accumulate inventory by taking fundamental bets. In the other category,

speculators have very low inventories; they initially trade on their signals but then quickly pass on part of their inventory to

slower traders. These covariance patterns produce testable implications of the model.

The division of fast speculators into two categories appears consistent with the empirical findings of Kirilenko et al.

(2017), who study trading activity in E-mini S&P 500 futures during several days around the Flash Crash of May 6, 2010. The

“opportunistic traders” described in their paper resembles the risk-neutral fast traders in my model: opportunistic traders have

large volume, appear to be fast, and accumulate relatively large inventories. By contrast, the HFTs in their paper, while they are

also fast and trade in large volume, keep very low inventories. Indeed, the HFTs in their sample liquidate 0.5% of their aggregate

inventories on average each second.

1.1. Related literature

This paper contributes to the literature on trading with asymmetric information. I show that competition among informed

traders, combined with noisy trading strategies, produces a large informed trading volume and a quick information decay.12

The market is very efficient because competition among informed traders makes them trade aggressively on their common

information. This intuition is present in Holden and Subrahmanyam (1992), and Foster and Viswanathan (1996). The former

finds that the competition among informed traders is so strong, that in the continuous-time limit there is no equilibrium in

smooth strategies. My contribution to this literature is to show that there exists an equilibrium in noisy strategies. This rests on

two key assumptions: (i) noisy information, i.e., speculators learn over time by observing a stream of signals, and (ii) finite lags,

i.e., speculators only use a signal for a fixed number of lags, which is plausible if there is a positive information processing cost

per signal.

12 A speculator’s strategy is “smooth” if the volatility generated by that speculator’s trades is of a lower magnitude compared to the volatility from noise

trading; and “noisy” if the magnitudes are the same.
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Without the finite lags assumption, noisy information by itself does not generate noisy strategies, as Back and Pedersen

(1998) show. Chau and Vayanos (2008) and Caldentey and Stacchetti (2010) find that noisy information coupled with either

model stationarity or a random liquidation deadline produces strategies that are still smooth as in Kyle (1985), but towards the

high-frequency limit they have almost infinite weight. Thus, the market in these papers is nearly strong-form efficient, which

makes speculators’ strategies appear noisy (there is no actual equilibrium in the limit). By contrast, in my model, the market

is not strong-form efficient even in the limit, yet strategies are noisy. Foucault et al. (2016) propose a model in which a single

speculator receives a signal one instant before public news. The speculator’s strategy is noisy, but for a different reason than in

my model: the speculator optimally trades with a large weight on his forecast of the news.13

My paper also contributes to the rapidly growing literature on high-frequency trading, e.g., Cartea and Penalva (2012), Weller

(2012), Hoffmann (2014), Biais et al. (2015), Budish et al. (2015), Foucault et al. (2016), Aït-Sahalia and Sağlam (2017), Du and

Zhu (2017), Li (2017), Pagnotta and Philippon (2018); see also the survey by Menkveld (2016). In much of this literature, it is

the speed difference that has a large effect in equilibrium. The usual model setup has certain traders who are faster in taking

advantage of an opportunity that disappears quickly. As a result, traders enter into a winner-takes-all contest, in which even

the smallest difference in speed has a large effect on profits.14 By contrast, my results regarding volume and volatility remain

true even if all informed traders have the same speed. This is because in my model the need for speed arises endogenously, from

competition among informed traders. In my model, being “slow” simply means trading on lagged signals. Since in equilibrium

speculators also use lagged signals (the unanticipated part, to be precise), in some sense all traders are slow as well. Yet, it is true

in my model that a genuinely slower trader makes less money, since he can only trade on older information that has already

lost much of its value.

The results in this paper regarding the optimal inventory of informed traders are, to my knowledge, new. Theoretical models

of inventory usually attribute inventory mean reversion to passive market makers, who do not possess superior information, but

are concerned with absorbing order flow (e.g., Ho and Stoll, 1981; Madhavan and Smidt, 1993; and Hendershott and Menkveld,

2014). This paper shows that an informed investor with inventory costs (the “IFT”) can display behavior that makes him appear

like a market maker, even though he only submits market orders, as in Kyle (1985). Indeed, in my model the IFT does not take

fundamental bets, passes his risky inventory to slower traders (the hot potato effect), and keeps all his money in cash. To obtain

these results, even a small inventory aversion of the IFT suffices, but only if enough slow trading exists.

A related paper is Hirshleifer et al. (1994). In their 2-period model, risk-averse speculators with a speed advantage first trade

to exploit their information, after which they revert their position because of risk aversion, while the slower speculators trade

in the same direction as the initial trade of the faster speculators. The focus of Hirshleifer et al. (1994) is different, as they are

interested in information acquisition and explaining behavior such as “herding” and “profit taking.” My goal is to analyze the

inventory problem of fast informed traders in a fully dynamic context, and to study the properties of the resulting optimal

strategies.

The paper is organized as follows. In Section 2, I describe the model setup. In Section 3, I solve for the equilibrium in the

particular case with two categories of traders: fast and slow, and discuss the effect of fast and slow traders on various measures of

market quality. In Section 4, I introduce an extension of the benchmark model in which a new trader (the IFT) has inventory costs.

Then, I analyze the IFT’s optimal strategy and its effect on equilibrium. In Section 5, I discuss the robustness of the main results

to various extensions. Section 6 concludes. All proofs are in the Appendix or the Internet Appendix. In the Internet Appendix,

I provide solutions for the equilibrium in the general case, and analyze several modifications and extensions of the benchmark

model.

2. Benchmark model

I set the trading model in discrete time in order to describe the equilibrium as the number of trading periods approaches

infinity, and the setup approaches a continuous-time model on [0, 1].15 I thus consider a discrete model with T periods, where

the time interval Δt = 1

T
is the discrete analog of the infinitesimal interval dt of continuous time. Trading takes place at times

th, where t = 1, 2,… , T and h = Δt > 0 (e.g, Chau and Vayanos, 2008). The level of a variable v at the time th is denoted by

vt , and its change is denoted by Δvt = vt − vt−1.

The liquidation value of the asset is vT , where:

vT = 𝜎vBv
T
=

T∑
t=1

𝜎v ΔBv
t , (1)

13 In Cao et al. (2015) traders’ strategies are also noisy: informed traders must disclose their orders immediately after trading, and therefore optimally obfuscate

their signal by adding a large noise component to their trades.
14 See, e.g., the model with speed differences of Biais et al. (2015), or the model of news anticipation of Foucault et al. (2016). Other models feature differential

access to fundamental information, e.g., Bernhardt and Miao (2004) and Albuquerque and Miao (2014), or differential access to price information, e.g., Cespa

and Foucault (2014) and Easley et al. (2016). These other papers, however, do not address directly the effect of speed on traders’ strategies and their profits.
15 Alternatively, one can consider a continuous-time model over [0, 1] where the trading intervals are of infinitesimal length dt (e.g., Foucault et al., 2016). In

that case, however, the trading strategies are not usual Itô processes (since some traders use lagged signals), and thus traders’ profits cannot be computed with

the Itô integral. My solution is to consider the discretized model, and define traders’ profits as the limit when the number of periods approaches infinity.
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where Bv is a (continuous) Brownian motion over [0, 1], and 𝜎v > 0 is a constant called the “fundamental volatility.” I interpret

vT as the “long-run” value of the asset; in the high-frequency world, this can be taken to be the asset value at the end of the

trading day. The increments Δvt are then the short-term changes in value due to the arrival of new information. The risk-free

rate is assumed zero.

There are three types of market participants: (a) N ≥ 1 risk-neutral speculators, who observe the flow of information at

different speeds, as described below; (b) noise traders; and (c) one competitive risk-neutral dealer, who sets the price at which

trading takes place.

2.1. Information and speed

Speculators have the same trading speed, but differ in the speed of processing information. To abstract away from the issue

of forecasting the forecasts of others, as described by Foster and Viswanathan (1996), I assume that speculators receive the same

signal each period, but differ in the number of lags at which they receive the signal. At t = 0, there is no information asymmetry

between the speculators and the dealer, as v0 = 0. Subsequently, each speculator receives the following flow of signals:

Δst = Δvt + Δ𝜂t, with Δ𝜂t = 𝜎𝜂 ΔB
𝜂
t
, (2)

where t = 1, 2,… , T and B𝜂 is a Brownian motion over [0, 1] independent from all other variables. Denote:

wt = E(vT ∣ {s𝜏}𝜏≤t) (3)

the expected value conditional on the information flow until t. I call wt the “value forecast,” or simply “forecast.” Because there

is no initial information asymmetry, w0 = 0. Denote by 𝜎w the instantaneous volatility of wt , or the “forecast volatility.” The

increment of the forecast wt , and the forecast variance are, respectively,

Δwt =
𝜎2

v

𝜎2
v + 𝜎2

𝜂
Δst , 𝜎2

w
= Var(Δwt)

Δt
=

𝜎4
v

𝜎2
v + 𝜎2

𝜂
. (4)

When deriving empirical implications, I call 𝜎w the “signal precision,” as a precise signal (small 𝜎𝜂) corresponds to a large 𝜎w.

Speculators obtain their signal with a lag 𝓁 ∈ {0, 1, 2,… , T − 1}. A “𝓁-speculator” is a trader who at t = 1, 2,… , T observes

the signal from 𝓁 periods before, Δst−𝓁 .

2.2. Trading and prices

At each t = 1, 2,… , T, denote by Δxi
t

the market order submitted by speculator i = 1,… ,N at t, and by Δut the market

order submitted by the noise traders, which is of the form Δut = 𝜎uΔBu
t

, where Bu is a Brownian motion independent from all

other variables. Then, the aggregate order flow executed by the dealer at t is:

Δyt =
N∑

i=1

Δxi
t +Δut. (5)

The dealer is risk-neutral and competitive, hence she executes the order flow at a price equal to her expectation of the liquidation

value conditional on her information. Let t = {y𝜏}𝜏<t be the dealer’s information set just before trading at t. The order flow at

date t, Δyt , executes at:

pt = E
(

vT ∣ t ∪ Δyt

)
. (6)

Together with the price, another important quantity is the dealer’s expectation at t of the k-lagged signal Δwt−k:

zt−k,t = E
(
Δwt−k | t

)
. (7)

2.3. Equilibrium definition

In general, a trading strategy for an 𝓁-speculator is a process followed by his risky asset position, xt , which is measurable

with respect to his information set 
(𝓁)
t

= {y𝜏}𝜏<t ∪ {s𝜏}𝜏≤t−𝓁 . For a given trading strategy, the speculator’s expected profit 𝜋𝜏 ,

from date 𝜏 onwards, is:

𝜋𝜏 = E

(
T∑

t=𝜏
(vT − pt)Δxt ∣ 

(𝓁)
𝜏

)
. (8)
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As in Back et al. (2000), I focus on linear equilibria in which the trading strategy has a particular dependence on the traders’

forecasts. Specifically, I consider strategies that are linear in the unpredictable part of their signals16:

Δ̃wt−k,t = Δwt−k − zt−k,t, k = 𝓁, 𝓁 + 1, … (9)

I restrict strategies to exclude signals older than a fixed number of lags m (which is allowed to depend on the speculator’s speed

parameter𝓁). This assumption can be justified by costly information processing, as explained at the end of this section. Formally,

the 𝓁-speculator’s strategy is of the form:

Δxt = 𝛾𝓁,tΔ̃wt−𝓁,t + 𝛾𝓁+1,tΔ̃wt−𝓁−1,t + · · · + 𝛾m,tΔ̃wt−m,t. (10)

To focus on the equilibrium behavior when Δt = 1

T
is small, I require that the 𝓁-speculator’s strategy is the discretization of a

continuous-time strategy on [0, 1]. Recall that the subscript t refers to the actual time
t

T
∈ [0, 1]. I thus require that the coef-

ficients 𝛾k,t of the strategy in (10) are continuous functions of time.17 To indicate that this is a continuous-time strategy, I use

differential notation:

dxt = 𝛾𝓁,td̃wt−𝓁,t + 𝛾𝓁+1,td̃wt−𝓁−1,t + · · · + 𝛾m,td̃wt−m,t, (11)

where t is still regarded as an element of {1, 2,… , T}. If instead one regards t ∈ (0, 1], then the subscript t − k should be

replaced by t − kdt.18 In the rest of the paper, I preserve the ambiguity of the notation in (11), but to avoid confusion I often

write integrals over t ∈ (0, T], and set T = 1.

For the strategies in (11), I define the expected profit as the (possibly infinite) limit of the discrete sums in (8) when T

approaches infinity. With a slight abuse of notation, I use the integral sign to denote this limit19:

𝜋𝜏 = E𝜏

(
∫

1

𝜏
(vT − pt)dxt

)
= lim

T→∞
E

(
T∑

t≥𝜏T

(vT − pt)Δxt ∣ 
(𝓁)
𝜏

)
. (12)

A linear equilibrium is such that: (i) each speculator chooses the coefficients 𝛾k,t in the trading strategy (11) to maximize his

expected trading profit (12) given the dealer’s pricing policy, and (ii) the dealer’s pricing policy given by (6) and (7) is consistent

with the equilibrium speculator trading strategies.

Finally, the speculators take the covariance structure of zt−k,t to be independent of their strategy. More precisely, for all

j, k ≥ 0, the speculators consider the number:

Zj,k,t = Cov
(
Δwt−j, zt−k,t

)
(13)

to depend only on j, k, and t. Thus, the covariance terms Zj,k,t are computed by the dealer, as part of her (publicly known) pricing

rules.20

2.4. Model notation

If all speculators in the model have a strategy of the form (11) with the same m ≥ 0, I call it the “benchmark model” with m

lags, and write m. I focus on the particular case with m = 1 lags. In this setup, the 0-speculators are called the “fast traders,”

and the 1-speculators are called the “slow traders.” Thus, I also call 1 the “model with fast and slow traders.”

If some 𝓁-speculators have strategies of the form (11) with different m𝓁 , I call this the general model with m lags, where m

is the maximum of all m𝓁 . An important case is the general model with m = 1 lags in which 0-speculators (fast traders) only

trade on their current signal (m0 = 0) and the 1-speculators (slow traders) only use their lagged signal (m1 = 1). I call this the

“general benchmark model,” and denote it by 0,1. In Section 3, I solve for the equilibrium in both 1 and 0,1, and show

that 1 can be regarded as a particular case of 0,1.

16 Intuitively, if the strategy had a predictable component, the dealer’s price would adjust and reduce the speculators’ profit. The unpredictability of the

speculators’ strategies can be proved quite generally, following Kyle (1985), as long as the speculators and the dealer are risk-neutral.
17 This requirement implies that the coefficients 𝛾k,t are deterministic, and hence known at t = 0. Similar assumptions are made in other continuous-time

models, e.g., Back et al. (2000). More generally, one can choose 𝛾k,t to be integrable (but deterministic) functions of t.
18 Indeed, as t corresponds to the actual time t′ = t

T
∈ (0, 1], and 1 corresponds to

1

T
= Δt with its infinitesimal version dt, if follows that t − k corresponds

to the actual time t′ − kdt.
19 One may be tempted to define the integral inside the expectation as an Itô integral, but this does not work, as xt and pt are not Itô processes. I thank the

referees for pointing this out.
20 For instance, the price impact coefficient 𝜆t in the dealer’s pricing rule Δpt = 𝜆tΔyt is computed using the covariance term Cov(wt,Δyt) (see equation (54)).

Hence, even though a speculator affects𝛥yt by his strategy, he can consider the covariance term Cov(wt,Δyt) to be independent of his strategy. I further discuss

this assumption in Section 5.
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2.5. Information processing

The assumption that speculators cannot use lagged signals beyond a given bound can be justified by introducing an informa-

tion processing cost Δ > 0 per individual signal and per unit of time. More precisely, I consider an alternative model in which

an 𝓁-speculator can use all past signals, but must pay a fixed cost Δ𝓁dt each time he trades with a nonzero weight (𝛾k,t) on his

k-lagged signal (see equation (11)). Then, intuitively, because the value of information decays with the lag, and the speculator

does not want to accumulate too large a cost, he must stop using lagged signals beyond an upper bound. In Result 1, I show that

for a particular value of Δ, the alternative model is equivalent to 1.

In choosing speculator strategies as in (11), I make two implicit assumptions: that speculators (i) must process each signals

individually, and (ii) cannot use their signals to learn about other speculators’ forecasts. These assumptions can be justified by

introducing specific information processing costs, but it is important for the intuition of the model to provide separate justifi-

cation. Assumption (i) essentially prevents speculators from simply relying on free public aggregate signals, such as the price,

to shortcut the learning process. This is because in reality prices may contain other relevant information about the fundamental

value, along which the speculators are adversely selected.21 Assumption (ii) is made for convenience, to avoid the problem of

forecasting the forecasts of others described by Foster and Viswanathan (1996). This is not an issue in the benchmark model

1, but does become a problem when speculators use signals of lag at least two. Even then, I show in an extension of the model

(Subsection 2.2 in the Internet Appendix) that the main predictions of the benchmark model remain qualitatively the same. In

Section 5, I discuss assumptions (i) and (ii) in more detail.

3. Fast and slow traders

In this section, I analyze the important case in which speculators use signals with a maximum lag of one. There are two types

of speculators: (i) the Fast Traders (FTs), who observe the signal with no delay (called 0-speculators in Section 2); and (ii) the

Slow Traders (STs), who observe the signal with a delay of one lag (called 1-speculators). As in (11), the trading strategy of FTs

and STs is of the form:

dxt = 𝛾t(dwt − zt,t) + 𝜇t(dwt−1 − zt−1,t), t ∈ (0, T], (14)

where T = 1. Note that the weight 𝛾 t must be zero for a ST. There are two possibilities: either the FT can trade on both the

current and the lagged signals, or the FT can trade only on the current signal (i.e., the FT’s weight 𝛾 t must be zero).22 The former

case is the benchmark model 1. The latter case is the general benchmark model 0,1.

Note that the FT’s current signal (dwt) is orthogonal on the past order flow, hence the dealer sets zt,t = 0. To simplify

notation, let d̃wt−1 = d̃wt−1,t be the unanticipated part at t of the lagged signal. Then, the trading strategy in (14) can be written

as:

dxt = 𝛾tdwt + 𝜇td̃wt−1, with d̃wt−1 = dwt−1 − zt−1,t. (15)

3.1. Equilibrium

I solve for the equilibrium of the model 1 in closed form. One important implication is that the FTs and STs trade identically

on their lagged signal (𝜇t is the same for all). Therefore, if one requires the FTs to use only their current signal (as in 0,1) and

introduce an equal number of additional STs, then the aggregate behavior remains essentially the same. Hence, the model 1

can be regarded as a particular case of 0,1, which justifies calling 0,1 the “general benchmark model.” In fact, the latter

model can also be solved in closed form, by using essentially the same formulas.

Theorem 1 shows that a closed-form linear equilibrium of the model exists. The equilibrium is symmetric, in the sense that

the FTs have identical trading strategies, and so do the STs. I also provide asymptotic results when the number of FTs is large.

Theorem 1. Let NF > 0 be the number of FTs and NS ≥ 0 the number of STs, and define NL = NF + NS (the number of lag traders).

Then, there exists a symmetric linear equilibrium with constant coefficients, such that for all t ∈ (0, T]:

dxF
t
= 𝛾dwt + 𝜇d̃wt−1, dxS

t
= 𝜇d̃wt−1,

d̃wt−1 = dwt−1 − 𝜌dyt−1, dpt = 𝜆dyt,

where the coefficients 𝛾 , 𝜇, 𝜌, 𝜆 are:

21 I formalize this intuition in Section 4 in the Internet Appendix, where I introduce an orthogonal dimension of the fundamental value, and show that trading

strategies that rely on prices make an average loss.
22 Intuitively, this can occur if the FT must pay a higher processing cost per signal than the ST; see Footnote 26.
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𝛾 = 1

𝜆
1

NF + 1
, 𝜇 = 1

𝜆
1

NL + 1

1

1 + b
,

𝜌 = 𝜎w

𝜎u

√
(1 − a)(a − b2), 𝜆 = 𝜌

NF

NF − b
,

with 𝜔 = 1 + 1

NF

NL

NL+1
∈ [1, 2), b = 1

2

(
(𝜔2 + 4

NL

NL+1
)1∕2 − 𝜔

)
∈ [0, b∞), a = NF−b

NF+1
∈ (0, 1), with the following asymptotic limits

when NF is large: 𝜔∞ = a∞ = 1, b∞ = 1

2
(
√

5 − 1), 𝜆∞ = 𝜌∞ = 𝜎w

𝜎u

1√
NF

.23 The number b is increasing in both NF and NS.

Theorem 1 implies that FTs and STs trade with the same intensity (𝜇) on their lagged signals. This is true because the current

signal dwt is uncorrelated with the lagged signal d̃wt−1, which implies that the FTs and the STs get the same expression for the

expected profit that comes from the lagged signal.24

I now discuss some comparative statics regarding the optimal weights 𝛾 and𝜇 (for brevity, I omit the proofs). The FTs’ optimal

weight 𝛾 is decreasing in the number of FTs, yet it is increasing in the number of STs. The first statement simply reflects that,

when the number of FTs is larger, these traders must divide the pie into smaller slices. The same logic applies to the coefficient

on the lagged signal: 𝜇 is decreasing in both NF and NS, as the FTs and STs compete in trading on their common lagged signal.

This last intuition also shows that the FTs’ weight 𝛾 is increasing in the number of STs. Indeed, when there is more competition

from STs, the FTs have an incentive to trade more aggressively on their current signal, as the STs have not yet observed this

signal.

In Corollary 1, I state a few implications of Theorem 1 that help provide more intuition for the equilibrium.

Corollary 1. In equilibrium, the following formulas hold:

𝜆 𝛾 = NF

NF + 1
, 𝜆 𝜇 = 1

1 + b

NL

NL + 1
,

Var
(

d̃wt

)
dt

= (1 − a)𝜎2
w = 1 + b

NF + 1
𝜎2

w,
Cov

(
d̃wt,wt

)
dt

= 1 − a

1 + b
𝜎2

w =
𝜎2

w

NF + 1
.

(18)

The first equation in (18) implies that 𝜆𝛾dwt =
NF

NF+1
dwt , which shows that most of the current signal (dwt) is incorporated

into the price by the FTs. The intuition comes from the Cournot nature of the equilibrium. Indeed, when trading on the current

signal, the benefit of each FT increases linearly with the intensity of trading 𝛾 on his signal, while the price at which he eventually

trades increases linearly with the aggregate quantity demanded. Given that the price impact of the other NF − 1 FTs aggregates

to
NF−1

NF+1
dwt, the FT is a monopsonist against the residual supply curve, and trades such that his price impact is half of

2

NF+1
dwt,

that is, his price impact equals
1

NF+1
dwt .

After incorporating
NF

NF+1
dwt in trading round t, the FTs must compete with the STs for the remaining

1

NF+1
dwt in the next

trading round. As explained before, the speculators must trade a multiple of the unanticipated part of the lagged signal, d̃wt =
dwt − 𝜌dyt . Thus, when trading on the lagged signal, the benefit of each speculator—fast or slow—increases linearly with the

intensity of trading 𝜇, and is proportional to the covariance Cov
(

d̃wt,wt

)
. At the same time, each speculator faces a price that

increases linearly with the aggregate quantity demanded, and which is proportional to the lagged signal variance Var
(

d̃wt

)
. The

argument is now similar to the Cournot one above, except that everything gets multiplied by the ratio Cov(d̃wt,wt)∕Var(d̃wt),
which according to (18) is equal to 1∕(1 + b). This justifies the second equation in (18). It also implies that in the case of the

lagged signal, only a fraction 1∕(1 + b) of it is incorporated the price by the speculators.

In Proposition 1, I compute the expected profits of the FTs and the STs.

Proposition 1. In equilibrium, the expected profit at t = 0 of a FT and a ST satisfies, respectively,

𝜋F

𝜎2
w

= 𝛾
NF + 1

+ 1

NF + 1

𝜇
NL + 1

,
𝜋S

𝜎2
w

= 1

NF + 1

𝜇
NL + 1

. (19)

Thus, the FT-to-ST expected profit ratio is
𝜋F

𝜋S = 1 + (NL+1)2(1+b)
NF+1

, which implies that
𝜋S

𝜋F ≈ NF

(NF+NS)2
1

1+b∞
when NF is large.

23 If X is a variable that depends on NF , I say that X∞ is the asymptotic value of a number X, and write X ≈ X∞ , whenever the ratio X/X∞ converges to 1 as NF

approaches infinity.
24 This result does not generalize to the case when there are more lags (m > 1). In Section 1 in the Internet Appendix, there is a positive autocorrelation

between the signals of higher lags, which reflects a more complicated covariance structure. Mathematically, this translates into the covariance matrix A having

nonzero entries Ai,j when i > j ≥ 1.
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Thus, even if there is only one ST (i.e., NS = 1), the ST’s profit is small compared to a FT’s profit. The reason is that FTs also

trade on their lagged signals, and thus compete with the ST.25 Indeed, FTs compete for trading on dwt only among themselves,

while they also compete with the STs for trading on the lagged signal d̃wt−1.

Finally, Proposition 1 gives an estimate for the information processing cost Δ that would be sufficient to discourage specula-

tors from trading on lagged signals beyond one, if that were not imposed by the model. I state the following numerical result.

Result 1. Consider the alternative setup with NF FTs and NS STs, in which each speculator can use past signals at any lag, but must pay

for each signal (used with nonzero weight) an information processing cost 𝛿 = 1

NF+1

𝜇
NL+1

𝜎2
w

. Then, the alternative model is equivalent

to the benchmark model 1.

I now consider the general benchmark model 0,1, in which the FTs use only the current signal, while the STs use only the

lagged signal.26 The strategies of the FTs and STs are, respectively, of the form dxF
t
= 𝛾tdwt and dxS

t
= 𝜇t d̃wt−1, where d̃wt−1 =

dwt−1 − 𝜌tdyt−1. The dealer sets the price using the rule dpt = 𝜆tdyt . Let NF ≥ 1 be the number of FTs and NL ≥ 0 the number

of STs.

Corollary 2 shows that the model 1 with NF FTs and NS STs produces essentially the same outcome as the benchmark

model 0,1 with NF FTs and NL = NF + NS STs.

Corollary 2. Consider (a) the model 1 with NF ≥ 1 FTs and NS ≥ 0 STs, and (b) the model 0,1 with NF FTs and NL = NF + NS

STs. Then, the equilibrium coefficients 𝛾 , 𝜇, 𝜆, and 𝜌 in the two models are identical.

Because of this equivalence, in the rest of the paper I also call the model0,1 the benchmark model. There are two important

cases:

• If NL ≥ NF , the benchmark model is equivalent to the model 1 with NF FTs and NS = NL − NF STs;

• If NL = 0, the benchmark model is the model 0, with 0 lags.

3.2. Market quality

I next examine the effect of fast and slow trading on various measures of market quality. Following Corollary 2, I consider the

benchmark model in which NF ≥ 1 FTs trade only on the current signal, and NL ≥ 0 STs trade on the lagged signal. I define “fast

trading” as the speculators’ aggregate trading on their current signal, and “slow trading” as the speculators’ aggregate trading

on their lagged signal.

To define measures of market quality, I first decompose the aggregate speculator order flow into fast trading and slow trading.

Denote by dxt the aggregate speculator order flow. Let 𝛾 be the aggregate weight on the current signal (dwt), and 𝜇 the aggregate

weight on the lagged signal (d̃wt−1). I decompose the aggregate speculator order flow dxt into two components:

dxt = 𝛾 dwt
⏟⏟⏟

Fast Trading

+ 𝜇 d̃wt−1
⏟⏟⏟

Slow Trading

, with 𝛾 = NF𝛾, 𝜇 = NL𝜇. (20)

I call b = 𝜌𝜇 (defined in Theorem 1) the “slow trading coefficient.” Then, slow trading exists (is nonzero) only if the number

of traders who use their lagged signal is positive, or equivalently if b > 0. Note that the case when there is no slow trading

coincides with the model 0 with 0 lags from Section 2. In that case, NF FTs use only their current signal.

I now define the measures of market quality. Recall that the dealer sets a price that changes in proportion to the total order

flow dy = dxt + dut:

dpt = 𝜆 dyt = 𝜆
(
𝛾 dwt + 𝜇 d̃wt−1 + dut

)
. (21)

First, as it is standard in the literature, I measure illiquidity by the price impact coefficient 𝜆. Thus, the market is considered

illiquid if the price impact of a unit of trade is large, that is, if the coefficient 𝜆 is large.

Second, I define trading volume as the infinitesimal variance of the aggregate order flow dyt , that is, TV = 𝜎2
y
= Var(dyt)

dt
. I

argue that this is a measure of trading volume. Indeed, in each trading round the actual aggregate order flow is given by dyt .

Thus, one can interpret trading volume as the absolute value of the order flow: |dyt|. From the theory of normal variables, the

average trading volume is given by E
(|dyt|) = √

2

𝜋
𝜎y. As TV = 𝜎2

y
, it follows that T V is monotonic in E

(|dyt|), and thus T V can

be used a measure of trading volume. Using (21), the trading volume satisfies:

25 If instead the FTs traded only on their current signal, and only the ST used his lagged signal, then the formula (19) would still be correct if one set NL = 1.

In that case, the profit ratio πF∕πS = 1 + 4(1 + b)∕(NF + 1) would still be larger than one.
26 As in Result 1, 0,1 is equivalent to an alternative setup with information processing costs, in which (i) the STs pay the cost Δ from Result 1, while (ii) the

FTs pay a cost slightly higher than Δ. Indeed, if a FT paid Δ, he would be indifferent between using his lagged signal and not using it, while with a slightly higher

cost, he would be strictly worse off and would ignore his lagged signal.
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TV = 𝛾2 𝜎2
w + 𝜇2 𝜎2

w̃
+ 𝜎2

u , with 𝜎2

w̃
=

Var
(

d̃wt

)
dt

. (22)

The trading volume measure T V can be decomposed into the speculator trading volume and the noise trading volume:

T V = T Vs + T Vn, with TVs = 𝛾2𝜎2
w
+ 𝜇2𝜎2

w̃
and TVn = 𝜎2

u
.

Third, I define price volatility as the square root of the instantaneous price variance, that is, 𝜎p =
(

Var(dpt)
dt

)1∕2

. From (21), it

follows that the instantaneous price variance can be computed simply as the product of the illiquidity measure𝜆 and the trading

volume TV = 𝜎2
y

. Thus,

𝜎2
p = 𝜆2 TV = 𝜆2

(
𝛾2 𝜎2

w + 𝜇2 𝜎2

w̃
+ 𝜎2

u

)
. (23)

Fourth, I define price informativeness as a measure inversely related to the forecast error variance𝛴t = E((wt − pt−1)2). Thus,

if prices are informative, they stay close to the forecast wt (i.e., the variance 𝛴 t is small). In Section 1 in the Internet Appendix,

in the general model with at most m lagged signals (m), I show that 𝛴t evolves according to 𝛴′
t
= 𝜎2

w
− 𝜎2

p
, where 𝜎2

p
is the

price variance (Proposition IA.1). Therefore, since 𝛴′
t is inversely monotonic in the price variance, I do not use it as a separate

measure of market quality.

Fifth, the speculator participation rate is defined as the ratio of speculator trading volume over total trading volume:

SPR = TVs

TV
=

𝛾2 𝜎2
w
+ 𝜇2 𝜎2

w̃

𝛾2 𝜎2
w + 𝜇2 𝜎2

w̃
+ 𝜎2

u

. (24)

SPR can also be interpreted as the fraction of price variance due to the speculators.

Proposition 2 provides explicit formulas for the measures of market quality. As before, I use asymptotic notation when NF is

large: X ≈ Y stands for lim
NF→∞

X

Y
= 1.

Proposition 2. In the benchmark model with NF ≥ 1 FTs and NL ≥ 0 STs, the price impact coefficient, trading volume, price volatil-

ity, and speculator participation rate satisfy:

𝜆 = 𝜎w

𝜎u

√
(1 + b)(a − b2)√

NF + 1

NF

NF − b
, TV = 𝜎2

u (NF + 1) a

(1 + b)(a − b2)
,

𝜎2
p = 𝜎2

w

N2
F

(NF + 1)(NF − b)
, SPR = a + b2(1 + b)

NF − b
,

(25)

where b2 + b
(

1 + 1

NF

NL

NL+1

)
= NL

NL+1
, and a = NF−b

NF+1
.

Panel A of Fig. 2 shows how the four measures of market quality vary with the number of FTs (NF ), while holding the number

of STs (NL) constant. Panel B of Fig. 2 shows how the four measures of market quality vary with NL, while holding NF constant.

All four market quality measures vary in the same direction with respect to NF and NL. Nevertheless, the number of FTs has a

much stronger effect on these measures than the number of STs.

To get more intuition about the effect of fast trading on market quality, I consider the simplest case, when NL = 0. Since

all speculators trade only on their current signal, this case coincides with the model 0 as defined in Section 2. In this model,

there is no slow trading (𝜇 = 0), hence the slow trading coefficient b is zero. Moreover, a = NF−b

NF+1
= NF

NF+1
. Thus, one can solve

the model 0 by using Proposition 2. Nevertheless, in Proposition 3, I solve for the equilibrium of 0 independently.

Proposition 3. Consider the model 0, with NF FTs whose trading strategy is of the form dxt = 𝛾 tdwt . Then, the optimal coeffi-

cient 𝛾 is constant and equal to 𝛾 = 1

𝜆
1

NF+1
= 𝜎u

𝜎w

1√
NF

. The price impact coefficient, trading volume, price volatility, and speculator

participation rate satisfy, respectively,

𝜆 = 𝜎w

𝜎u

√
NF

NF + 1
, TV = 𝜎2

u (NF + 1), 𝜎2
p = 𝜎2

w

NF

NF + 1
, SPR = NF

NF + 1
. (26)

Using Proposition 3, I discuss the effect of the number NF of FTs on the measures of market quality. First, note that I obtain

the same qualitative results for Proposition 3 as those displayed in Fig. 2. Namely, illiquidity is decreasing in NF , while the other

three measures are increasing in NF .

An important consequence of Proposition 3 is that the speculator participation rate can be made arbitrarily close to 1 if the

number of FTs is large. In that case, noise trading volatility is only a small part of the total volatility. This stands in sharp contrast

for instance with the models of Kyle (1985) or Back et al. (2000), in which virtually all instantaneous price volatility is generated

by the noise traders at the high-frequency limit (in continuous time).

The market is more efficient when the number of FTs is large. Indeed, in the Proof of Proposition 3, I show that the rate of

change of the forecast error variance 𝛴′ is constant and equal to
𝜎2

w

NF+1
. Since by assumption there is no initial informational
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Fig. 2. Market quality with fast and slow traders. This figure shows the dependence of four market quality measures on the number of FTs (NF ) and the number of traders

that use lagged signals (NL). The four measures are: (i) the illiquidity 𝜆, (ii) the trading volume T V, (iii) the price volatility 𝜎p , and (iv) the speculator participation rate SPR.

In Panel A, I plot the four market quality measures against NF , while NL remains fixed at NL = 5. In Panel B, I plot the four market quality measures against NL , when NF

remains fixed at NL = 5. The other parameters are 𝜎w = 1 and 𝜎u = 1.

asymmetry (𝛴0 = 0), it follows that 𝛴t ≤ 𝜎2
w

NF+1
for all t. In other words, the price stays close to the fundamental value at all

times. Thus, a larger number NF of FTs, rather than destabilizing the market, makes the market more efficient.

The trading volume T V strongly increases with the number of FTs. This occurs because the competition among the FTs makes

them trade more aggressively, and as a result they reveal more information. As explained below, this lowers the traders’ price

impact, which has an amplifying effect on trading. As a result, the trading volume grows essentially linearly in the number of

FTs (see equation (26)). Moreover, the speculator participation rate SPR also increases in NF , since SPR is the fraction of trading

volume caused by the speculators.

Surprisingly, a larger number of FTs makes the market more liquid, as more information is revealed when there are more

competing speculators. This appears to contradict the fact that more informed trading should increase adverse selection. To

understand the source of this apparent contradiction, note that illiquidity is measured by the price impact 𝜆 of one unit of

volume. But, while the trading volume T V increases in NF in an unbounded way, its price impact is bounded by magnitude of

the signal dwt .
27 Thus, the price impact per unit of volume actually decreases, indicating that prices are more informative. This

makes the market more liquid overall. This result is consistent with the empirical studies of Zhang (2010), Hendershott et al.

(2011), and Boehmer et al. (2018a).

To understand the effect of FTs on the price volatility 𝜎p, consider the pricing formula dyt = 𝜆dyt , which implies 𝜎2
p = 𝜆2TV .

There are two effects of NF on the price volatility 𝜎P . First, the trading volume T V increases in NF , which has a positive effect on

𝜎P . Second, price impact 𝜆 decreases in NF , which has a negative effect on 𝜎P . The first effect is slightly stronger than the second,

hence the net effect is that price volatility 𝜎P increases in NF . This result is consistent with the empirical studies of Zhang (2010)

and Boehmer et al. (2018a).

A few caveats are in order. First, when discussing the effects of HFTs on market quality, the studies mentioned above do not

proxy HFT activity by the number of HFTs present in the market, but by the HFTs’ turnover or intensity of order-related message

traffic. An answer to this concern is that, as already noted, trading volume does increase in the number of FTs. Second, in my

paper I do not model “passive” HFTs, that is, HFTs that offer liquidity via limit orders. Therefore, it is possible that an increase

in the number of passive HFTs decreases price volatility, which would cancel the opposite effect of the number of “active” HFTs.

For instance, Hasbrouck and Saar (2013) document that HFTs exert a negative effect on volatility, possibly because they also

consider passive HFTs, which by providing liquidity have a stabilizing effect on price volatility. Moreover, Chaboud et al. (2014)

find essentially no relation. In my model, the dependence of price volatility on NF is weak, which may explain the mixed results

in the empirical literature.

3.3. Anticipatory trading

I start by analyzing the autocorrelation of the components of the order flow. Since the dealer is competitive and risk-neutral,

the total order flow dyt has zero autocorrelation. However, because the dealer cannot identify the part of the order flow that

27 In Section 1 in the Internet Appendix, I make this intuition rigorous in the general case; see the discussion surrounding Proposition IA.4.
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comes from speculators, the speculator order flow can in principle be autocorrelated.

As in Subsection 3.2, the aggregate speculator order flow decomposes into its fast trading and slow trading components:

dxt = dxF
t

⏟⏟⏟
Fast Trading

+ dxS
t

⏟⏟⏟
Slow Trading

, with dxF
t
= 𝛾 dwt, dxS

t
= 𝜇 d̃wt−1, (27)

where 𝛾 = NF𝛾 and 𝜇 = NL𝜇. As before, by definition, slow trading exists if b = 𝜌𝜇 > 0, or equivalently if NL > 0.

I define speculator order flow autocorrelation by Corr
(

dxt, dxt+1

)
. Because dxF

t+1
is orthogonal to both components of dxF

t
, I

obtain the decomposition:

𝜌x = Corr
(

dxt, dxt+1

)
=

Cov
(

dxF
t
, dxS

t+1

)
Var(dxt)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Anticipatory Trading

+
Cov

(
dxS

t
, dxS

t+1

)
Var(dxt)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Expectation Adjustment

. (28)

The “anticipatory trading” part is denoted by 𝜌AT , and the “expectation adjustment” part by 𝜌EA. The first component arises

because fast trading at t anticipates slow trading at t + 1. Indeed, there is a positive correlation between fast trading at t and

slow trading at t + 1 (𝜇d̃wt). The second component arises because slow trading at t + 1 is based on lagged signals, adjusted

by subtracting the dealer’s expectation which incorporates past lagged signals. Because of this expectation adjustment, the slow

order flow is negatively autocorrelated. Formally, slow trading at t + 1 (𝜇d̃wt) is proportional to the lagged signal minus the

dealer’s expectation, d̃wt = dwt − 𝜌dyt . But the dealer’s expectation is proportional to the total order flow at t, which includes

the previous slow trading (dyt = 𝛾 dwt + 𝜇 d̃wt−1 + dut). One obtains:

𝜌x = 𝜌AT + 𝜌EA, with 𝜌AT = 𝜇𝛾
Var

(
dwt

)
Var(dxt)

, 𝜌EA = − 𝜌𝜇3
Var

(
d̃wt−1

)
Var(dxt)

. (29)

Proposition 4 provides explicit formulas for the two components of the speculator order flow autocorrelation.

Proposition 4. Consider the benchmark model with NF ≥ 1 FTs and NL ≥ 0 STs. Then, the speculator order flow autocorrelation

and its components satisfy:

𝜌x =
b(b + 1)(a − b2)
a2 + b2(1 − a)

1

NF + 1
,

𝜌AT

𝜌x

= a

a − b2
,

𝜌EA

𝜌x

= − b2

a − b2
, (30)

where a and b are as in Proposition 2. Moreover, 𝜌x is strictly positive if and only if slow trading exists, that is, if and only if NL > 0.

One implication of Proposition 4 is that, as long as there is slow trading, the speculator order flow autocorrelation 𝜌x is

nonzero. To understand why, note that both the anticipatory trading component and the expectation adjustment component

depend on the presence of slow trading. Formally, if there is no slow trading, 𝜇 = 0 implies that both components of the specu-

lator order flow autocorrelation are zero.

Fig. 3 shows how the speculator order flow autocorrelation (𝜌x) and its anticipatory trading component (𝜌AT ) depend on the

number of FTs (NF) for four different values of the number of STs (NL = 1, 3, 5, 20). Both 𝜌x and 𝜌AT are decreasing in NF . Indeed,

when the number of FTs is large, there is only
1

NF+1
of the signal left in the next period for the STs. Hence, one should expect the

autocorrelation to decrease by the order of
1

NF+1
, which is indeed the case. For instance, when NL = 5, the speculator order flow

autocorrelation is 22.56% when there is one FT, but decreases to 2.84% when there are 20 FTs. My results are consistent with the

empirical literature on HFTs. For instance, Brogaard (2011) finds that the autocorrelation of aggregate HFT order flow is small

but positive.

Fig. 3. Speculator order flow autocorrelation. This figure shows the speculator order flow autocorrelation 𝜌x (solid line) and the anticipatory trading component 𝜌AT

(dashed line) as a function of the number of FTs (NF ). The four graphs correspond to four values of the number of speculators using their lagged signal: NL = 1, 3, 5, 20.
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The anticipatory trading component 𝜌AT is increasing in the number NL of STs (to see this, fix for instance NF = 10 in each of

the four graphs in Fig. 3). The intuition is simple: when the number of STs is larger, fast trading in each period can better predict

the slow trading the next period, hence the correlation 𝜌AT is larger. Using NASDAQ data on HFTs, Hirschey (2018) finds that HFT

order flow anticipates non-HFT order flow. But the NASDAQ defines HFTs along several criteria including the use of large trading

volume and low inventories. In my model, these characteristics may describe the FTs, but not the STs.28 Thus, if I interpreted

FTs in my model as HFTs and STs as non-HFTs, my previous results would imply that HFT order flow anticipates non-HFT order

flow.

4. Inventory management

In this section, I analyze the inventory problem of fast traders. In the benchmark model, speculators are risk-neutral and

therefore are not concerned about their inventories. I thus modify the model by introducing a type of trader called “Inventory-

averse Fast Trader” (IFT). The expected utility of the IFT is defined as in Section 2 (see the discussion before equation (12)), but I

introduce a penalty that depends on the IFT’s inventory xt in the risky asset:

U = E

(
∫

T

0

(vT − pt)dxt

)
− CIE

(
∫

T

0

x2
t dt

)
, (31)

where T = 1, and CI > 0 is a constant called the trader’s inventory aversion coefficient. I do not identify the exact source of

inventory costs for this type of trader, but the costs can be thought to arise either from capital constraints or from risk aversion.29

I call the resulting setup the model with inventory management. To get some intuition for this model, I first solve for the opti-

mal strategy of the IFT in a partial equilibrium framework, taking as fixed the behavior of the other speculators and the dealer.

The solution is provided in closed form. I continue with a general equilibrium analysis, and show that the equilibrium remains

qualitatively the same. I study the properties of the general equilibrium, as well as the effect of the inventory management on

market quality.

4.1. Setup

I consider a model with NF + 1 FTs (who trade only on their current signal) and NL STs, but I replace one risk-neutral FT with

an IFT with utility as in (31).30 Thus, there are NF FTs, NL STs, and one IFT.

To simplify the presentation, I assume directly that the speculators’ strategies have constant coefficients, and that the dealer

has pricing rules as in the benchmark model. Thus, the FT i = 1,… ,NF has a trading strategy of the form dxF
i,t
= 𝛾idwt, while

the ST j = 1,… ,NL has a trading strategy of the form dxS
j,t
= 𝜇jd̃wt−1. The coefficient 𝜆 is chosen so that the dealer breaks even,

meaning that her expected profit is zero.31

Since the IFT has quadratic inventory costs, it is plausible to expect that his optimal trading strategy is linear in the inven-

tory.32 Therefore, I assume that the IFT’s strategy is of the following type:

dxt = −Θ xt−1 + G dwt, (32)

with constant coefficients Θ ∈ [0, 2) and G ∈ ℝ. Equivalently, the IFT’s inventory xt follows an AR(1) process

xt = 𝜙 xt−1 + Gdwt , with an autoregressive coefficient 𝜙 = 1 − Θ ∈ (−1, 1].33

If Θ > 0, in each trading round the IFT removes a fraction Θ of his current inventory, with the goal of bringing his inventory

eventually to zero. One measure of how quickly the inventory mean reverts to zero is the “inventory half-life.” This is defined as

the average number of periods (of length dt) that the process needs to halve the distance from its mean, i.e.,

Inventory Half − Life = ln(1∕2)
ln(𝜙)

dt = ln(1∕2)
ln(1 − Θ)

dt. (33)

Hence, the IFT’s inventory half-life is of the order of dt. This in practice can be short (minutes, seconds, milliseconds), which

means that when Θ > 0 the IFT does very quick, “real-time” inventory management.

I next discuss the different types of inventory management. In Subsection 4.3, I find that there is a discontinuity between the

cases Θ = 0 and Θ > 0. Thus, I introduce a new case in which Θ is infinitesimal and of the form Θ = θdt, with θ ∈ (0,∞).

28 In Section 4, a FT with sufficiently large inventory costs (called the IFT) has large trading volume and infinitesimal inventory, while STs have a smaller trading

volume and relatively large inventories.
29 Like inventory aversion, risk aversion generates a quadratic penalty on inventory, but it generates other terms as well (e.g., Hendershott and Menkveld,

2014). Therefore, solving the model with risk-averse traders would be considerably more difficult.
30 In Subsection 5.6 in the Internet Appendix, I introduce more than one inventory-averse trader, which makes the problem more complicated, but does not

change qualitatively the main results.
31 Because of inventory management, the aggregate order flow is no longer unpredictable by the dealer. Nevertheless, the only source of predictability is the

IFT’s inventory, and as shown later, this inventory in equilibrium is very small due to mean reversion. In Subsection 5.4 in the Internet Appendix, I show that

the equilibrium does not change qualitatively if one properly accounts for inventory predictability.
32 This is standard in the literature, e.g., Ho and Stoll (1981), Madhavan and Smidt (1993), or Hendershott and Menkveld (2014).
33 A standard result is that the AR(1) process becomes explosive (with infinite mean and variance) if 𝜙 is outside [−1, 1], or equivalently if Θ is outside [0, 2].
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This intermediate inventory management regime continuously connects the other two. Thus, there are three different cases

(regimes):

• Θ = 0, the “neutral regime:” the IFT’s strategy is of the form dxt = Gdwt , similar to the strategy of a (risk-neutral) FT.

• Θ > 0, the “quick regime:” the IFT’s strategy is of the form dxt = − Θxt−1 + Gdwt . The inventory half-life is of the order

of dt.

• Θ = 𝜃dt, the “smooth regime:” the IFT’s strategy is of the form dxt = − 𝜃xt−1dt + Gdwt , with 𝜃 ∈ (0,∞).34 The inventory

half-life
ln(1∕2)

ln(1−𝜃dt) dt = ln(2)
𝜃

, which is much larger than the inventory half-life in the quick regime.

In Subsection 4.3, I show that the smooth regime continuously connects the cases Θ = 0 (neutral regime) with the case

Θ > 0 (quick regime). More precisely, 𝜃 = 0 in the smooth regime coincides with Θ = 0, while the limit when 𝜃 ↗ ∞ in the

smooth regime coincides with the limit when Θ ↘ 0 in the quick regime. In general, I show that the smooth regime is never

optimal for the IFT, and therefore I can focus on the comparison between the neutral and the quick regimes.

4.2. Zero inventories

In the quick regime, the IFT’s inventory follows an autoregressive process: xt = 𝜙xt−1 + Gdwt with coefficient 𝜙 ∈ (−1, 1).
Thus, the variance of the IFT’s inventory is Var(xt) = Var(dwt)∕(1 − 𝜙2); however, the variance of the increment dwt is equal

to 𝜎2
wdt, hence it is infinitesimal, and therefore so is the inventory xt .35 Thus, in the continuous-time limit, the inventory is

essentially zero at all times. This fact can also be seen from the formula (33), which shows that the inventory half-life in the

quick regime is a multiple of the infinitesimal time increment dt.

In general, the expected profit of any speculator satisfies:

𝜋 = E∫
T

0

(vT − pt)dxt = E
(

vT (xT − x0)
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Inventory Component

+ E∫
T

0

(−pt)dxt

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Cash Component

. (34)

The inventory component is the expected profit due to the accumulation of inventory in the risky asset. This does not translate

into cash profits until the liquidation date T. The cash component is the expected profit that comes from changes in the cash

account due to trading.

Proposition 5 provides a useful formula in the case of a speculator who has zero inventories, and who therefore gets all his

profits from the cash component.

Proposition 5. Consider a speculator with trading strategy dxt for t ∈ (0, T], such that the initial and final inventories are zero, i.e.,

x0 = 0 and xT = 0 almost surely. Then the speculator’s expected profit is:

𝜋c = E∫
T

0

xt−1 dpt. (35)

Thus, whenever inventory management results in zero inventories for the speculator, the trading strategy is only profitable

when the inventory level (xt−1) forecasts the subsequent change in price (dpt). In linear equilibria, the price change must be

proportional to the part of the aggregate order flow unanticipated by the dealer. Therefore, according to Proposition 5, the

speculator must be able to forecast the unanticipated aggregate order flow. This can occur only if the subsequent order flow

contains a component that is correlated with the speculator’s past trading.

I now define “slower trading” as the part of the aggregate order flow that is positively correlated with the speculator’s past

inventory. Proposition 5 then shows that the speculator makes positive profits while keeping zero inventory only if there is

slower trading.

In the case of the IFT, his inventory is zero at all times, so Proposition 5 can be applied. Note that there is indeed slower trading

coming from the STs (as long as NL > 0): the inventory of the IFT at t − 1 contains Gdwt−1, which is positively correlated with

the aggregate order flow at t via the orders of the ST, 𝜇jd̃wt−1. Hence, it is possible for the IFT to make positive profits while

keeping zero inventory.

4.3. IFT and inventory management

Consider the inventory management model with NF FTs, NL STs, and one IFT. In this subsection, I solve for the optimal strategy

of the IFT in a partial equilibrium analysis, keeping the behavior of the other players fixed. The behavior of the other players is

analyzed in Subsection 4.4.

34 This is called an Ornstein-Uhlenbeck process.
35 See also equation (69) in the Appendix, where I show that E(x2

t
) is of the order of dt.
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I thus fix the coefficients 𝛾 and 𝜇 that describe the strategies of the FTs and STs, and the coefficients 𝜆 and 𝜌 that describe the

dealer’s pricing rules. Suppose the IFT has a trading strategy as in (32): dxt = − Θxt−1 + Gdwt , which is not necessarily optimal.

The expected profit of the IFT can then be written as 𝜋 = E ∫ T

0
(wt − pt)dxt. Since wt = wt−1 + dwt and pt = pt−1 + 𝜆dyt , one

has the following decomposition:

𝜋 = GE∫
T

0

(dwt − 𝜆dyt)dwt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜋0

− ΘE∫
T

0

(wt−1 − pt−1)xt−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝓁r

+ ΘE∫
T

0

xt−1dpt

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜋a

. (36)

The first term, denoted by 𝜋0, is the IFT’s expected profit when Θ = 0, which reflects the profits that result from exploiting

his signals (dwt). The second term, denoted by 𝓁r , is the informational loss that comes from inventory mean reversion: indeed,

by reducing inventory by Θxt−1 each period, there is an expected loss coming from the correlation of xt−1 with the remaining

informational advantage wt−1 − pt−1. Put differently, by managing inventory the IFT trades against his previous signals. The

third term, denoted by 𝜋a, is the profit that comes from anticipation of slow trading: at time t, the IFT reduces his inventory by

Θxt−1, exactly when the STs submit a market order in the opposition direction (which is part of the current aggregate order flow

dyt). Note that the third term is equal to Θ𝜋c, where 𝜋c is the expected profit of a speculator who keeps all his profits in cash:

see equation (35).

When the IFT mean reverts his inventory (Θ > 0), his inventory is zero, and his profit is 𝜋 = 𝜋c. Equation (36) then implies

that 𝓁r = 𝜋0 − (1 − Θ)𝜋c. This implies that mean reversion fully erases all the profits obtained from the IFT’s trading on his

signals. To understand the intuition for this result, suppose the IFT observes a new signal dwt . Initially, the IFT trades on his signal

(Gdwt), but subsequently he fully reverses his trade by unloading a positive fraction of his inventory each period. Therefore, the

only way for the IFT to make money is to ensure that the inventory reversal is done at a profit. This can occur for instance if the

IFT expects that when he sells (Θxt−1), other traders buy even more, and as a result his overall price impact is negative. (The

profit from this activity is exactly the anticipation profit 𝜋a.) But this is only possible if there are STs, as their lagged signals can

be predicted by the IFT.

In order to formalize this last result, I define additional coefficients:

𝛾− = NF𝛾, 𝜇 = NL𝜇, a− = 𝜌𝛾−, b = 𝜌𝜇, R = 𝜆
𝜌
. (37)

The next result provides an explicit formula for the IFT’s expected profit.

Proposition 6. Let dxt = −𝛩xt−1 + Gdwt be the IFT’s strategy (not necessarily optimal), with 𝛩 > 0, and hence

𝜙 = 1 − Θ ∈ (−1, 1). Suppose b ∈ (−1, 1). Then, the IFT has all his profits in cash. His expected profit 𝜋 satisfies:

𝜋 = 𝜆
⎛⎜⎜⎝𝜇G

1 − a−

1 + 𝜙b
− G2

b + 1

1+𝜙
1 + 𝜙b

⎞⎟⎟⎠𝜎2
w
. (38)

Proposition 6 shows that, as a result of keeping all his profits in cash, the IFT behaves very differently compared to risk-

neutral speculators such as the FTs: while the risk-neutral speculator trades directly on his private information, the IFT benefits

only indirectly, from timing his trades and unloading his inventory to slower traders. Indeed, equation (38) shows that in the

absence of slow trading (𝜇 = 0), the IFT makes negative expected profits.

Equation (38) also explains how the IFT’s profit depends on the coefficients a− = NF𝜌𝛾 and b = NL𝜌𝜇, which respectively

measure the amount of fast trading and slow trading. When there is more fast trading (a− is higher), the IFT’s profit is smaller

because of increased competition from FTs. When there is more slow trading (b is higher), there is a larger benefit (𝜎2
w

RG(1 −
a−) b

1+𝜙b
) that comes from providing liquidity to STs, but also a larger cost (𝜎2

w
𝜆G2 b+1∕(1+𝜙)

1+𝜙b
). This cost arises from the fact that

when the IFT at t provides liquidity to the STs, these do not trade on the lagged signal (dwt−1) but rather on its unanticipated

part (d̃wt−1 = dwt−1 − 𝜌dyt−1), which reduces the IFT’s profits.36

I now describe the optimal strategy of the IFT. Recall that beside the expected profit, the IFT’s utility also includes a penalty

cost that is quadratic in the inventory: CIE
(∫ T

0
x2

t
dt
)

. This penalty is not relevant when Θ > 0, because in that case the IFT

has zero inventory. When Θ = 0, however, the penalty can be considerable, depending on the inventory aversion coefficient CI .

Theorem 2 describes the IFT’s optimal strategy when the slow trading coefficient b is above a threshold: b >
√

17−1

8
≈ 0.3904.

36 It turns out that, compared to the benefit, the cost is more strongly increasing in b, hence the optimal G is actually decreasing in b (see equation (40)).
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Fig. 4. Optimal IFT inventory management. This figure shows the coefficients of the IFT’s optimal trading strategy (dxt = − Θxt−1 + Gdwt) in the inventory management

model with NF = 5 FTs and NL = 5 STs. On the horizontal axis is the IFT’s inventory aversion, CI . The parameter values are 𝜎w = 1 and 𝜎u = 1. For the model coefficients,

I use the equilibrium values from Subsection 4.4: a− = 0.7088, b = 0.5424, 𝜆 = 0.3782, and 𝜌 = 0.3439. The formulas for G, Θ, and CI are computed using Theorem 2.

This condition is true if for instance there are NF ≥ 1 FTs and NL ≥ 2 STs.37

Theorem 2. In the inventory management model, suppose the coefficients satisfy the following inequalities: 0 ≤ a−, b < 1 and

𝜆, 𝜌 > 0. In addition, suppose b >
√

17−1

8
≈ 0.3904.38 Let CI = 2𝜆

(
(1−Ra−)2(1+

√
1−b)2

R2b(1−a−)2 − 1

)
. Then, if CI < CI, the optimal strategy

of the IFT is to set:

Θ = 0, G = 1 − Ra−

2𝜆 + CI

. (39)

If CI > CI, the optimal strategy of the IFT is to set:

Θ = 2 −
√

1 − b

b
∈ (0, 2), G = 1 − a−

2𝜌
(

1 + 1√
1−b

) . (40)

Theorem 2 implies that there are two different types of optimal behavior for the IFT, depending on how his inventory aversion

compares to a threshold value (CI).

1. (Neutral regime) If the inventory aversion coefficient is small (below CI), the IFT sets Θ = 0 and controls his inventory by

choosing his weight G. As his inventory aversion gets larger, the IFT reduces his inventory costs by decreasing G. The tradeoff

is that a smaller G also reduces expected profits. The behavior of the IFT when Θ = 0 is essentially the same as the behavior

of a FT.

2. (Quick regime) If the inventory aversion is large (above CI), the IFT manages his inventory by choosing a positive mean

reversion coefficient (Θ > 0). There is no longer a tradeoff between expected profit and inventory costs, as the IFT has zero

inventory costs. Hence, the IFT chooses the weight G and the mean reversion Θ to maximize expected profit (more details

below).

Thus, a small change in the IFT’s inventory aversion can have a large effect on the IFT’s behavior. Fig. 4 shows the coefficients

of the optimal strategy when there are NF = 5 FTs and NS = 5 STs. When the IFT’s inventory aversion rises above the threshold

CI = 0.1021, his optimal mean reversion coefficient jumps from Θ = 0 to Θ = 0.7530. Moreover, his optimal weight jumps

from G = 0.1186 (the left limit of G at the threshold) to G = 0.1708 (the constant value of G above the threshold).

To get more intuition for the discontinuity in the IFT’s optimal trading strategy, I examine the smooth regime in connection

with the neutral and the quick regimes. Recall that the IFT’s trading strategy is of the form dxt = − Θxt−1 + Gdwt , where either

(i) Θ = 0 (neutral regime), (ii) Θ = 𝜃dt (smooth regime), or (iii) Θ > 0 (quick regime). I then verify that the IFT’s expected

37 If instead b < 0.3904, one can show that a similar analysis holds (see Subsection 5.1 in the Internet Appendix). The IFT still manages inventory but the

optimal Θ is at its lowest possible value, denoted by 0+. This value is the same as θ = ∞ in the smooth regime.

38 In equilibrium (Subsection 4.4), I obtain the following numerical results: the condition b < 1 is always satisfied, and the condition b >
√

17−1

8
is equivalent

to having (i) NL ≥ 2 and (ii) NL ≥ 6 if NF = 0.
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Fig. 5. IFT inventory management and utility. This figure shows the maximum normalized expected utility of the IFT for a fixed mean reversion rate, in the inventory

management model with NF = 5 FTs and NL = 5 STs. On the horizontal axis is the IFT’s mean reversion rate given by (i) 𝜃 from the IFT’s trading strategy, dxt = −
𝜃 xt−1 dt + Gdwt (the smooth regime), or (ii) Θ from the IFT’s trading strategy, dxt = − Θxt−1 + Gdwt (the quick regime). On the vertical axis is the IFT’s maximum

expected utility U when G varies and Θ (or 𝜃) is fixed, normalized by the maximum expected profit 𝜋0 when G varies and Θ = 0 (the neutral regime). The other parameter

values are 𝜎w = 1 and 𝜎u = 1. For the model coefficients, I use the equilibrium values a− = 0.7088, b = 0.5424, 𝜆 = 0.3782, 𝜌 = 0.3439.

utility, along with its components described above, varies continuously across the three regimes. More formally, if I denote

by U(Θ) the IFT’s expected utility in either of the three regimes, lim𝜃→0U(𝜃dt) = U(0) and lim𝜃→∞U(𝜃dt) = limΘ→0U(Θ) (see

Subsection 6.1 in the Internet Appendix). Thus, the smooth regime indeed continuously connects the neutral regime with the

quick regime.

Fig. 5 shows the expected utility U as a function of Θ across the smooth and quick regimes. To simplify the presentation,

instead of considering U = U(Θ,G) as a function of both Θ and G, I only consider the value of G that maximizes U given

Θ.39 Formally, if U(Θ,G) indicates the dependence of U on both Θ and G, in Fig. 5 I plot U∕𝜋0, where U = maxGU(Θ,G) and

𝜋0 = maxG𝜋0(G). Fig. 5 shows that the IFT’s utility indeed changes continuously from the smooth regime to the quick regime.

Moreover, when the inventory aversion coefficient CI varies, there are two cases:

• If CI < 1.1021, the maximum U is attained at Θ = 0.

• If CI > 1.1021, the maximum U is attained at Θ = 2 −
√

1−b

b
≈ 0.7530.

I thus confirm a result proved in Theorem 2: when the inventory aversion CI crosses the threshold CI = 1.1021, the optimal Θ
jumps discontinuously from 0 to 0.7530. As observed in Fig. 5, the reason for this discontinuity is that in the smooth regime the

optimum 𝜃 is either zero or infinity, but never in between.

To understand the intuition behind this last fact, I describe in more detail how the IFT’s utility changes with Θ. By definition,

this utility is equal to the expected profit minus the quadratic penalty on inventory. From (36),

U = 𝜋0 − E∫
T

0

(wt−1 − pt−1)xt−1Θ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝓁r

+ ΘE∫
T

0

xt−1dpt

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜋a

− CIE∫
T

0

x2
t−1

dt

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝓁i

. (41)

The term 𝜋0 does not depend on Θ, and is the same for the smooth and quick regimes. The loss 𝓁r that comes from inventory

mean reversion is positive in both regimes: indeed, in both cases the IFT trades against his own past signal (more precisely, he

trades against the part of the signal that was not yet incorporated into the price: wt − pt). The loss 𝓁r is increasing in Θ (or 𝜃):

the more the IFT mean reverts his inventory, the larger the corresponding informational loss. The third term, 𝜋a, is zero in the

smooth regime, while it is positive only in the quick regime: this is because the IFT, who can anticipate slow trading, can benefit

from providing liquidity to STs only when he reverts a large enough part of his inventory, that is, when Θ is not infinitesimal

(the quick regime). The fourth term, the inventory penalty 𝓁i , is positive in the smooth regime, but starts decreasing fast in 𝜃

39 In all regimes, the expected utility is quadratic and concave in G. In the quick regime, U is given by equation (38). In the smooth regime, equation (IA.538) in

Section 6 in the Internet Appendix implies that
U

𝜎2
w

= G
(
(1 − Ra−) − F𝜃

(
1 − R

a−+b

1+b

))
− G2

2

(
2𝜆

(
1 − F𝜃

1+b

)
+ F2𝜃

(
𝜆

1+b
+ CI

𝜃

))
, where F𝜃 = 1 − 1−e−𝜃

𝜃
.
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when this coefficient is sufficiently large, and it approaches zero in the limit. Thus, in the quick regime, 𝓁i is zero, as the IFT’s

inventory is zero at all times.

I next explain why the IFT’s maximum utility U in the smooth regime only occurs either at 𝜃 = 0 or at 𝜃 = ∞ (see Fig. 5).

Initially, when the mean reversion coefficient 𝜃 is small, an increase in 𝜃 raises the informational loss 𝓁r from trading against

his own signals, while the associated reduction in inventory does not significantly diminish the penalty 𝓁i (which is quadratic in

inventory). However, when 𝜃 is large, the inventory penalty is reduced more dramatically and contributes to a rise in utility as

𝜃 approaches infinity. Because of the drop in utility in the middle range of 𝜃, the IFT’s maximum expected utility in the smooth

regime can only occur at either of the endpoints (0 or ∞).40

I also explain why the IFT’s maximum utility U in the quick regime is realized at an interior Θ (equal to 0.7530 in Fig. 5). First,

when Θ is in the quick regime, the inventory penalty 𝓁i is zero, hence there are only two nonzero terms that depend on Θ: the

informational loss 𝓁r that comes from mean reversion, and the gain 𝜋a that comes from anticipating STs. As Θ increases, the

mean reversion loss 𝓁r increases (it was already positive in the smooth regime), but the anticipatory gain 𝜋a increases as well

(it was zero in the smooth regime). When Θ is small, the term 𝓁r dominates and U is increasing in Θ. When Θ is large, the term

𝜋a dominates and U is decreasing in Θ. As a result, U has an interior optimum in the quick regime.

Thus, depending on their inventory aversion, the fast speculators fall into two sharply different categories. In both categories,

speculators generate relatively large trading volume. But in one category (when the speculators’ inventory aversion is low) the

speculators make fundamental bets and accumulate inventories, while in the other category speculators mean revert their

inventories very quickly, and keep their profits in cash. My results appear consistent with the “opportunistic traders” and the

“high-frequency traders” described in Kirilenko et al. (2017). Both opportunistic traders and HFTs have large volume and appear

to be fast. But while opportunistic traders have relatively large inventories, the HFTs in their sample (during several days around

the Flash Crash of May 6, 2010) liquidate 0.5% of their aggregate inventories on average each second. This implies that HFT

inventories have an AR(1) half-life of a little over 2 min.

I next examine how the IFT’s optimal strategy is correlated with slow trading. Proposition 6 shows that if there is no slow

trading, the IFT cannot make positive profits. Theorem 2 shows that with enough slow trading, the IFT can manage inventory

and make positive profits (see equation (83) in the Appendix). In the previous discussion, I argue that this is possible only if the

IFT trades in the opposite direction to the slow trading. Corollary 3 shows that this is indeed the case.

Corollary 3. Suppose the IFT is sufficiently inventory-averse (CI > CI). Denote by dxS
t
= 𝜇d̃wt−1 the slow trading component of the

speculator order flow. Then, the IFT’s optimal strategy is negatively correlated with slow trading:

Cov
(

dxt, dxS
t

)
= −ΘCov

(
xt−1, dxS

t

)
< 0. (42)

I call this phenomenon the “hot potato” effect, or the “intermediation chain” effect. The intuition is that the IFT’s current

signal generates undesirable inventory and must be passed on to slower traders in order to produce a profit. The passing of

inventory can be thought as the beginning of an intermediation chain. Weller (2012) and Kirilenko et al. (2017) document such

hot potato effects among high-frequency traders.

4.4. Equilibrium results

In this subsection, I solve for the full equilibrium of the inventory management model. For simplicity, I assume that the IFT

is sufficiently inventory-averse, meaning that his inventory aversion is above a certain threshold (formally, above the threshold

value CI from Theorem 2). Then, Theorem 3 shows that the solution can be expressed almost in closed form, except for the slow

trading coefficient b, which satisfies a non-linear equation in one variable.

Theorem 3. Consider the inventory management model with one sufficiently averse IFT , NF FTs, and NL STs. Suppose there is an

equilibrium in which the speculators’ strategies are: dxt = −𝛩xt−1 + Gdwt (the IFT), dxF
t
= 𝛾dwt (the FTs), dxS

t
= 𝜇d̃wt−1 (the

STs); and the dealer’s pricing rules are: dpt = 𝜆dyt , d̃wt = dwt − 𝜌dyt. Denote the coefficients R, a−, and b as in (37). Suppose√
17−1

8
< b < 1. Then, the equilibrium coefficients satisfy equations (84)–(86) in the Appendix.

Conversely, suppose that equations (84)–(86) have a real solution such that

√
17−1

8
< b < 1, a < 1, and 𝜆 > 0. Then, the spec-

ulators’ strategies and the dealer’s pricing rules with these coefficients provide an equilibrium of the model.

Rather than relying on numerical results to study the equilibrium, I start by providing asymptotical results when the number

of FTs and STs is large. The advantage to this approach is that the asymptotic results can be expressed in closed form, and thus

help provide a clearer intuition for the equilibrium. Let CI be the threshold aversion from Theorem 2. Let 𝜋 be the expected

profit of a sufficiently averse IFT (CI ≥ CI), and 𝜋
CI=0

be the maximum expected profit of a risk-neutral IFT (CI = 0), where the

behavior of the other speculators and the dealer is taken to be the same. Let 𝛾0 be the benchmark FT weight, and 𝜋F
0
= 𝛾0

NF+2
𝜎2

w

the benchmark profit of a FT, as in Proposition 1. I use the asymptotic notation: X ≈ X∞ stands for lim
NF ,NL→∞

X

X∞
= 1. Then,

40 This result is true in general: see the numerical Result IA.1 in Section 6 in the Internet Appendix.
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Proposition 7 provides an asymptotic description of the equilibrium.

Proposition 7. Consider (i) the inventory management model with one sufficiently averse IFT, NF FTs, and NL STs, and (ii) the

benchmark model with NF + 1 FTs and NL STs. Then, the equilibrium coefficients 𝛾 , 𝜇, 𝜆, 𝜌 are asymptotically equal across the two

models when NF and NL are large. Also, a ≈ 1, b ≈ b∞ = 0.6180, and the following asymptotic formulas hold:

Θ ≈ 1,
G

𝛾0

≈ 1 − b∞ = 0.3820,
𝜋
𝜋F

0

≈ 2b∞ − 1 = 0.2361,

𝜋

𝜋CI=0
≈ 4

5
b∞ = 49.44%, CI ≈ 1 + 5b∞

2
𝜆∞ ≈ 2.0451

𝜎w

𝜎u

1√
NF + 1

.

The first implication of Proposition 7 is that model with inventory management is asymptotically the same as the benchmark

model when both NF and NL are large. This is not surprising, since when there are many other speculators, the IFT has a relatively

smaller and smaller role in the limit.

The behavior of the IFT is more surprising. First, when there are many other speculators, the IFT’s inventory mean reversion

becomes extreme (Θ approaches 1). This means that the IFT’s inventory half-life becomes essentially zero, as the IFT removes

most of his inventory each period. This extreme mean reversion is possible because the existence of a sufficient amount of

slow trading allows the hot potato effect to generate positive profits for the IFT. Furthermore, the equation 𝜋 ≈ 49.44% × 𝜋
CI=0

implies that even under extreme inventory mean reversion (Θ ≈ 1), the IFT can trade so that he only loses on average about

50% of his maximum expected profits corresponding to an inventory aversion of zero (i.e., gets about half of the maximum profit

of a FT).41

The equation CI ≈ 2.0451
𝜎w

𝜎u

1√
NF+1

implies that the threshold inventory aversion above which the IFT chooses to mean

revert his inventory becomes very small when the number of competing FTs is large. This is perhaps counterintuitive, since one

may think that the IFT chooses fast inventory mean reversion because he has very high inventory aversion. This is not the case,

however. Indeed, even when the IFT has small inventory aversion, a sufficient amount of slow trading is enough to convince the

IFT to engage in very fast inventory mean reversion. This is because inventory management is a zero/one proposition. Once the

IFT engages in inventory management (Θ > 0), any profits from fundamental bets become zero, and the hot potato effect is the

sole source of profits.

I now compare the IFT with the other speculators. For the IFT, I consider the following variables: T Vx = Var(dxt)∕dt, the

IFT’s trading volume, measured by his order flow variance (as in Subsection 3.2); 𝜌x = Corr(dxt, dxt+1), the IFT’s order flow

autocorrelation; and 𝛽x,xS = Cov(dxt, dxS
t
)∕Var(dxS

t
), the regression coefficient of the IFT’s strategy (dxt) on the slow trading

component (dxS
t
). I also consider: TVxF , the individual FT volume; TVxF , the aggregate FT volume; TVxS , the aggregate ST volume;

𝜌xF , the aggregate FT order flow autocorrelation; and 𝜌xS , the aggregate ST order flow autocorrelation.

Proposition 8 provides formulas for all these quantities, as well as asymptotic limits when both NF and NL are large. Note that

some of these results provide new testable implications, regarding the relation between trading volume, order flow covariance,

and inventory.

Proposition 8. For a sufficiently averse IFT, the variables defined above satisfy the following formulas:

TVx

TVxF

= 2G2

(1 + 𝜙)𝛾2
≈ 4 − 6b∞ = 0.2918,

TVxS

TVxF

= b2(1 − a)
(a−)2

≈ b∞
NF + 1

,

𝜌x = −Θ
2

≈ −1

2
, 𝜌xF = 0, 𝜌xS ≈ −b∞ = −0.6180,

𝛽x,xS = − Θ(1 − a−)
2b(1 + 2

√
1 − b)

≈ − 3 + b∞
5(NF + 1)

= −0.7236

NF + 1
.

(44)

The last formula illustrates the hot potato effect. The IFT’s order flow has a negative beta on the STs’ aggregate order flow,

which means that the IFT and the STs trade in opposite directions. As the number of FTs becomes larger, there is more informa-

tion released to the public by the trades of the FTs, hence there is less room for slow trading. As a result, the hot potato effect is

less intense when there is a large number of FTs.

Proposition 8 implies that in the limit when NF and NL are large, the IFT’s trading volume is about 30% of the individual

FT trading volume. This implies that the IFT’s trading volume is comparable to that of a regular FT. By contrast, just as in the

benchmark model, the volume coming from STs is much smaller than the volume coming from FTs. This confirms the intuition

that in an empirical analysis that selects traders based on volume, the IFT and the FTs are in the category with large trading

volume, while the STs are in the category with small trading volume.

If one compares order flow autocorrelations, one sees that the IFT is similar to the STs, but not to the FTs. Indeed, the IFT and

the STs have negative and large order flow autocorrelation. By contrast, the FTs have zero order flow autocorrelation.42 Finally,

if one compares inventories, the IFT has infinitesimal inventory, while the variance of the other speculators’ inventory increases

41 This recalls the saying attributed to Joseph Kennedy (the founder of the Kennedy dynasty) that “I would gladly give up half my fortune if I could be sure the

other half would be safe.”
42 Even if the FTs were allowed to trade on lagged signals, the autocorrelation of their order flow would still be very small (of the order of

1

NF+1
).
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Fig. 6. Equilibrium coefficients with inventory management. This figure shows several equilibrium coefficients that arise in the inventory management model. If X is a

variable in the inventory management model, I denote by X0 the corresponding variable in the benchmark model. On the vertical axis I consider the following (normalized)

coefficients: Θ,
G

𝛾0

,
𝛾
𝛾0

,
𝜇
𝜇0

,
𝜆
𝜆0

, and
𝜌
𝜌0

. In Panel A, I plot each coefficient against the number of FTs (NF ), while fixing NL = 5. In Panel B, I plot the six coefficients against the

number of STs (NL), while fixing NF = 5. The other parameters are 𝜎w = 1 and 𝜎u = 1.

over time.43 Nevertheless, the STs’ inventories are smaller relative to FTs’ inventories, since the STs have smaller volume.

I next present some numerical results for the equilibrium coefficients. Fig. 6 shows the equilibrium coefficients Θ, G, 𝛾 , 𝜇,

𝜆, and 𝜌, when NF and NL vary.44 Some of these coefficients are normalized by the corresponding coefficient in the benchmark

model.

As expected, the mean reversion coefficient Θ is increasing in the number of STs (NL). This is because the IFT needs slow

traders in order to make profits. The IFT’s weight G is less than half the benchmark weight 𝛾0, indicating that the IFT shifts

towards inventory management in order to make profits. This leaves more room for fundamental profits, which explains why

both the FTs and the STs are better off with inventory management than in the benchmark model (𝛾∕𝛾0 and 𝜇∕𝜇0 are both

above one), despite the price impact 𝜆 being larger than in the benchmark (𝜆∕𝜆0 > 1). The reason why the market is more

illiquid in the inventory management model is that the IFT trades much less intensely on his signal (G is less than half of 𝛾0), and

therefore the informational efficiency is lower. To see directly that the market is less informationally efficient in the inventory

management model, I use the fact that in my model price volatility is a proxy for informational efficiency (see the discussion in

Subsection 3.2). Then, I verify numerically that indeed 𝜎p∕𝜎p,0 < 1, which implies that with inventory management the market

is less informationally efficient.

5. Robustness and extensions

In this section, I discuss several model assumptions, and verify that the results remain qualitatively the same when these

assumptions are relaxed.

An important assumption of the benchmark model is that speculators use strategies of the type (11) that are linear in the

unanticipated part of signals up to a certain lag. In Section 2, I justify this by an information processing cost per signal. But by

choosing strategies as in (11), I also implicitly assume that speculators (i) must process each signals individually, and (ii) cannot

use their signals to learn about the other speculators’ forecasts.

Assumption (i) can be relaxed by allowing other combinations of past signals, such as the price to be part of the trading

strategy.45 Thus, one can add a Kyle term of the form 𝛽 t(wt − pt)dt to the strategy in (11). In that case, the speculator might be

adversely selected if the price pt is also affected by speculators who learn about other components of the fundamental value. To

formalize this intuition, in Section 4 in the Internet Appendix, I introduce an orthogonal dimension of the fundamental value,

and show that trading strategies with a Kyle component add relatively little to a speculator’s profit, and, depending on the

parameter values, often lead to a loss.

Assumption (ii) can be relaxed by allowing slower speculators to learn about faster speculators’ forecasts. This is not an

issue in the benchmark model 1: indeed, STs do not need to learn at t about the FTs’ previous signal dwt−1, because at t they

already learn dwt−1 perfectly. Nevertheless, in the model 2 (in which speculators use signals with a maximum lag of two),

the slowest traders at t observe the double-lagged signal dwt−2 but could also get a noisy signal about dwt−1 by observing the

aggregate order flow at t − 1. Thus, the slowest traders at t observe a signal is of the form 𝛾dwt−1 + dut , which is the aggregate

43 For the IFT, Var(xt) =
G2

1−𝜙2 𝜎2
w

dt (see equation (68) in the Appendix), while for the FT, Var(xF
t
) = t𝜎2

w
, as the FT’s inventory follows a random walk.

44 I consider NF , NL ≥ 2. The reason is that in order to apply Theorem 2, one needs to have b >
√

17−1

8
. This is true in equilibrium if NF , NL ≥ 2.

45 One need not worry about finite combinations of signals, since it is plausible in that case that one needs to pay attention to the individual signals that are

part of the combination. But, as the model is set in continuous time, the price is an infinite combination of past signals.
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order flow dyt−1 minus the part 𝜇d̃wt−2 + 𝜈d̃wt−3 already observed by the slowest traders at t.46 I argue that such learning from

the order flow is difficult and risky, because then the slowest traders must know (and be confident about) the aggregate trading

coefficients of everyone else. Nevertheless, in Subsection 2.2 in the Internet Appendix, I consider an extension of 2 in which

the slowest traders can learn from the order flow at no cost. In this extension, I verify that the main results of the benchmark

model are robust. In particular, even after learning from the order flow, the slowest traders’ profits are an order of magnitude

smaller than those of the other traders.

One related extension is to allow signals that are not perfectly correlated. In that case, one would encounter the phenomenon

of Foster and Viswanathan (1996), that speculators need to forecast the forecasts of others. Even though I have not been able to

solve such an extension, the intuition would likely remain very similar. Indeed, as observed by Back et al. (2000), when signals

are not perfectly correlated, initially speculators trade very aggressively on the common part of their signals (the “rat race”).

Because in my model speculators drop their signals after a few lags, it is plausible that the speculators would trade as if they had

nearly identical signals.

Another way of justifying the trading strategy in (11) is to add (lagged) public news to the benchmark model. Suppose at

every t a public signal, called “news”, is revealed about the k-lagged signal dwt−k. In that case, Foucault et al. (2016) show

that the optimal strategy of a (fast) speculator must be of the form dxt = 𝛽t(wt − pt)dt + 𝛾0
t

dwt + · · · + 𝛾kd̃wt−k. Thus, the only

difference between this strategy and the strategy in (11) is the Kyle term 𝛽t(wt − pt)dt. But, as seen before, this term can

be ignored if speculators want strategies that protect against the price containing information about other components of the

fundamental value.

In Section 3 in the Internet Appendix, I consider an extension of the model 1 in which the speculators’ signals are made

public with a lag k = 2. For this extension, the precision of public news, which is measured by the ratio 𝜎w∕𝜎v (see equation

(4)), becomes a parameter that continuously connects the benchmark model 1 with a strong-form efficient model in which

the fundamental value is revealed with lag 2. It turns out that for most values of the news precision parameter (𝜎w∕𝜎v less than

0.8), the speculators’ equilibrium behavior in this extension is much closer to the benchmark model1 than to the strong-form

efficient model. Moreover, for the same parameter values, the contribution of the public news to price variance is usually less

than 1% of the price variance due to the order flow. Thus, in the first approximation, public news can be ignored, and the results

in the model 1 are robust to this extension.

Another issue in the benchmark model is the assumption (13) that the signal covariances do not depend on the speculators’

strategies and are set by the dealers (e.g., the price impact coefficient 𝜆 depends on the covariance of the forecast wt with the

aggregate order flow dyt , but is set by the dealer). To estimate the effect of this assumption, in Section 7 in the Internet Appendix,

I analyze an extension 1, which is a discrete version of 1 in which in addition I allow these covariances to depend on

speculators’ strategies. Then, by taking the limit of 1 when the time interval approaches zero, one sees that the limit differs

from 1 by a term of the order of 1∕(NF + NS)2. Numerical results show that this difference is indeed very small.

One potential extension of the model is to consider traders who process information at different frequencies, that is, they

receive signals every L periods, which would justify calling them high-frequency traders. Such a model appears too complicated

to solve in closed form, and even numerically. Nevertheless, this alternative model appears to be a mixture of two types of

models, one of which is essentially my benchmark model. To see this, suppose that L = 2 for low frequency traders (LFTs), and

L = 1 for high-frequency traders (HFTs). Then, when t is even (t = 2k), both LFTs and HFTs receive updates, while when t is odd

(t = 2k + 1), only the HFTs receive updates. So the proposed extension would be a mixture of the following two models: (i) one

model (corresponding to t even) in which multiple informed traders use their current signals; (ii) one model (corresponding to t

odd) in which HFTs use their current signal, while LFTs can only use their lagged signal. This is essentially my benchmark model

with FTs and STs, if one assumes that larger lags are not used. Intuitively, my main results are likely to be true in the proposed

setup. For example, HFTs make larger profits than LFTs because when t is odd, the HFTs have an informational advantage and

use their current signals, while the LFTs use their lagged signals, which produces lower profits.47

I also examine several extensions of the model with inventory management, and show that the main results are robust. First,

in Subsection 5.3 in the Internet Appendix, I consider a more general IFT strategy that has a component of trading on the lagged

signal: dxt = −Θxt−1 + Gdwt + Md̃wt−1.48 Second, in Subsection 5.4 in the Internet Appendix, the dealer takes into account that

the aggregate order flow has a predictable component, coming from the mean reversion term −Θxt−1. In this extension, the

dealer no longer sets (as in Section 4) the price change at dpt = 𝜆tdyt , where 𝜆t is determined by her expected profit being

zero, but she correctly sets dpt = 𝜆td̃yt , where d̃yt is the unanticipated part of the aggregate order flow at t.

The main result in Section 4 is that a sufficiently inventory-averse IFT optimally engages in quick inventory mean reversion,

and in effect provides liquidity to the STs. In Subsection 5.5 in the Internet Appendix, I show in an extension to multiple IFTs

that this result holds even if all FTs become IFTs, and the only speculators remaining are slow. In that case, the FTs (that are only

IFTs) no longer speculate on the long-term value, but just pass their inventory (the “hot potato”) to the slower traders.

46 Here I denote by 𝛾 , 𝜇, and 𝜈 the aggregate coefficients on the signals of lag 0, 1, and 2, respectively.
47 Also, a HFT with inventory costs (call him the IFT) would also find it optimal to use quick mean reversion for his inventory, at least at times when t is odd,

but most likely at all times (as long as the IFT’s trading is correlated with aggregate trading next period, which can also come from the HFTs when they trade on

their lagged signals).
48 In Subsection 6.3 in the Internet Appendix, I also show that smooth strategies of the form dxt = −𝜃xt−1dt + Gdwt + Md̃wt−1 are never optimal when

θ ∈ (0,∞).
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Finally, in Subsection 5.6 of the benchmark model 2 that has both an inventory-averse fast trader (IFT) and an inventory-

averse medium trader (IMT). Note that in 2 there are three types of speculators: fast traders (FTs), who at t observe dwt;

medium traders (MTs), who at t observe dwt−1; and slow traders (STs), who at t observe dwt−2. In this extension, I consider an

IFT with strategy dxt = − Θxt−1 + Gdwt , and an IMT with strategy dzt = −𝛺zt−1 + Hd̃wt−1. This creates an intermediation

chain with two links: (i) the IFT, who provides liquidity to the IMT and the MTs; and (ii) the IMT, who provides liquidity to the

STs. Compared to the situation in which one link is missing, the chain with two links has the effect that G decreases for the IFT

and H increases for the IMT. Intuitively, the IFT trades less aggressively on his signal (that is, G is lower) because the IFT now

does not benefit as much from slower trading: the IMT (who is part of the slower trading) is not as aggressive as a regular MT

in trading on his signal. By contrast, the IMT trades more aggressively on his signal (that is, H is higher) because for the IMT

the liquidity provision by the IFT decreases the IMT’s relative price impact from trading on his signal and thus makes him more

aggressive.

6. Conclusion

I have presented a theoretical model in which traders continuously receive signals over time about the value of an asset,

but only use each signal for a finite number of lags (which can be justified by an information processing cost per signal). I find

that competition among speculators reveals much private information to the public, and the value of information decays fast.

Therefore, a trader who is just one instant slower than the other traders loses the majority of the profits by being slow. Another

consequence is that the market is very efficient and liquid. As a feedback effect, because of the small price impact (high market

liquidity), the informed traders are capable of trading even more aggressively. In equilibrium, the fast speculator trading volume

is very large and dominates the overall trading volume. I also considered an extension of the model in which a fast speculator,

called the inventory-averse fast trader (IFT), has quadratic inventory costs. I find that a sufficiently averse IFT has a very different

behavior compared to a risk-neutral fast trader. The IFT keeps his profits in cash, makes no fundamental bets on the value of

the risky asset, and quickly passes his inventory to slow traders, who use their lagged signals. This hot potato effect is possible

because the existence of slower traders more than reverses the price impact of the IFT.

Appendix A. Proofs

I start with some notation preliminaries. Recall that t − k is notation for t − kdt, and

T = 1. (45)

For a process Xt , I denote by 𝜎X,t the instantaneous volatility of Xt , which is the limit lim
Δt→0

Var(ΔXt )
Δt

, if this limit exists. In general,

a tilde above a symbol denotes normalization by 𝜎w or 𝜎2
w

. For instance, if 𝜎u is the instantaneous volatility of the noise trader

order flow, and 𝜎y the instantaneous volatility of the total order flow, denote:

𝜎u = 𝜎u

𝜎w

, 𝜎y =
𝜎y

𝜎w

. (46)

If dxt is a trading strategy, t ∈ (0, T], let 𝜋 be the normalized expected profit at t = 0:

𝜋 = 1

𝜎2
w

E

(
∫

T

0

(wt − pt)dxt

)
. (47)

For covariances, a tilde above a symbol means normalization by both 𝜎2
w

and dt:

Ṽar
(

d̃wt

)
=

Var
(

d̃wt

)
𝜎2

wdt
= At , C̃ov

(
wt, d̃wt

)
=

Cov
(

wt, d̃wt

)
𝜎2

wdt
= Bt . (48)

Proof of Theorem 1. I look for an equilibrium with the following properties: (i) the equilibrium is symmetric, in the sense that

the FTs have identical trading strategies, and the same for the STs; (ii) the equilibrium coefficients are constant with respect to

time.

To solve for the equilibrium, in the first step the dealer’s pricing functions are taken as given, and I solve for the optimal

trading strategies for the FTs and STs. In the second step, the speculators’ trading strategies are taken as given, and I compute

the dealer’s pricing functions. In Section 2, I assumed that the speculators take the signal covariance structure as given (see

equation (13)). In the current context, this means that the speculators consider the following covariances At and Bt from (48) as

fixed constants. Thus, in the rest of the Appendix, I assume that the dealer also sets A and B, in addition to setting 𝜆 and 𝜌.

Speculators’ optimal strategy (𝛾 , 𝜇)

Since I search for an equilibrium with constant coefficients, I assume that the speculators take as given the dealer’s pricing

rules dpt = 𝜆dyt and zt−1,t = 𝜌dyt−1, and also the covariances A = Ṽar(d̃wt) and B = C̃ov(wt, d̃wt).
Consider a FT, indexed by i = 1,… ,NF . He chooses dxi

t
= 𝛾 i

t
dwt + 𝜇i

t
d̃wt−1, and assumes that at each t ∈ (0, T], the price
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satisfies49:

dpt = 𝜆dyt, with dyt =
(
𝛾 i

t + 𝛾−i
t

)
dwt +

(
𝜇i

t + 𝜇−i
t

)
d̃wt−1 + dut, (49)

where the superscript “−i” indicates the aggregate quantity from the other speculators. Since dwt and d̃wt−1 are both orthogonal

on the public information set t , and pt−1∈ t , it follows that dxi
t

is orthogonal to pt−1 as well. The normalized expected profit

of FT i at 𝜏 ∈ [0, T) satisfies:

𝜋F
𝜏 = 1

𝜎2
w

E∫
T

𝜏

(
wt − pt−1 − 𝜆

(
(𝛾 i

t
+ 𝛾−i

t
)dwt + (𝜇i

t
+ 𝜇−i

t
)d̃wt−1 + dut

))
dxi

t

= ∫
T

𝜏

(
𝛾 i

t
− 𝜆𝛾 i

t

(
𝛾 i

t
+ 𝛾−i

t

)
+ 𝜇i

t
B − 𝜆𝜇i

t

(
𝜇i

t
+ 𝜇−i

t

)
A
)

dt.

(50)

This is a pointwise optimization problem, hence it is enough to consider the profit at 𝜏 = 0, and maximize the expression over

𝛾 i
t

and 𝜇i
t
. The solution of this problem is 𝜆𝛾 i

t
= 1−𝜆𝛾−i

t

2
, and 𝜆𝜇i

t
= B∕A−𝜆𝜇−i

t

2
. The ST j = 1,… ,NS solves the same problem, only

the coefficient on dwt is 𝛾 j

t
= 0. Thus, all 𝛾′s are equal for the FTs, and all 𝜇′s are equal for the FTs and STs. I also find that they

are constant, and since NL = NF + NS, one obtains:

𝛾 = 1

𝜆
1

1 + NF

, 𝜇 = B∕A

𝜆
1

1 + NL

. (51)

Dealer’s pricing rules (𝜆, 𝜌, A, B)

The dealer takes the speculators’ strategies as given, and assumes that the aggregate order flow is of the form:

dyt = dut + 𝛾 dwt + 𝜇 d̃wt−1, with 𝛾 = NF 𝛾, 𝜇 = NL 𝜇. (52)

Moreover, the dealer assumes that, in their trading strategy, the speculators set:

d̃wt−1 = dwt−1 − 𝜌∗ dyt−1. (53)

Later I require that in equilibrium the dealer’s pricing coefficient 𝜌 coincides with the coefficient 𝜌∗ used by the speculators.

Since the order flow dyt is orthogonal to the dealer’s information set t , the dealer sets 𝜆t , 𝜌t , At , and Bt , such that the

following equations are satisfied:

𝜆t =
C̃ov(wt, dyt)

Ṽar(dyt)
= 𝛾 + 𝜇 Bt−1

𝜎2
y,t

, dpt = 𝜆tdyt,

𝜌t =
C̃ov(dwt, dyt)

Ṽar(dyt)
= 𝛾

𝜎2
y,t

, d̃wt = dwt − 𝜌tdyt,

𝜎2
y,t = Ṽar(dy2

t ) = 𝜎2
u + 𝛾2 + 𝜇2 At−1,

Bt = C̃ov
(

wt, dwt − 𝜌∗dyt

)
= (1 − 𝜌∗𝛾) − 𝜌∗𝜇Bt−1,

At = Ṽar
(

dwt − 𝜌∗dyt

)
= 1 − 2𝜌∗𝛾 + 𝜌2

∗𝜎
2
y,t

= 1 − 2𝜌∗𝛾 + 𝜌2
∗(𝜎

2
u
+ 𝛾2) + 𝜌2

∗𝜇
2 At−1.

(54)

Consider the last equation in (54), At = 1 − 2𝜌∗𝛾 + 𝜌2
∗(𝜎

2
u + 𝛾2) + 𝜌2

∗𝜇
2 At−1, which is a recursive equation in At . Then, Lemma A.1

implies that A does not depend on t, as long as |𝜌∗𝜇| < 1. But, since the dealer takes the speculators’ strategies as given, I can

use the equilibrium condition 𝜌∗𝜇 = b ∈ (0, 1). The same method shows that B does not depend on t. Moreover, Lemma A.1 can

be used to compute the constant values of A and B:

A =
(1 − 𝜌∗𝛾)2 + 𝜌2

∗𝜎
2
u

1 − (𝜌∗𝜇)2
, B = 1 − 𝜌∗𝛾

1 + 𝜌∗𝜇
. (55)

Then, equation (54) shows that 𝜆, 𝜌, and 𝜎y are independent on t as well.

Equilibrium conditions

49 By the assumption (13), the speculators take the covariance structure as computed by the dealer. By construction, the lagged signal d̃wt−1 is orthogonal to

the dealer’s information set at time t, which includes the price pt−1, hence the covariance cov(d̃wt−1 , pt−1) is set to zero.
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I now use the equations derived above to solve for the equilibrium values of 𝛾 , 𝜇, 𝜆, 𝜌 = 𝜌∗ , A, B, and 𝜎y. Denote:

a = 𝜌𝛾, b = 𝜌𝜇, R = 𝜆
𝜌
. (56)

From (55), one gets A = (1−a)2+𝜌2𝜎2
u

1−b2 . Then, substitute A in 𝜎2
y
= 𝜎2

u
+ 𝛾2 + 𝜇2A from (54) to obtain 𝜌2𝜎2

y
= 𝜌2𝜎2

u+(a
2+b2−2ab2)

1−b2 . To

summarize,

B = 1 − a

1 + b
, A =

(1 − a)2 + 𝜌2𝜎2
u

1 − b2
, 𝜌2𝜎2

y
=

𝜌2𝜎2
u
+ (a2 + b2 − 2ab2)

1 − b2
. (57)

Using (54), one gets R = 𝜆
𝜌
= 𝛾+𝜇B

𝛾
=

a+b
1−a

1+b

a
= a+b

a(1+b) . Also, the equation for 𝜌 implies 𝜌 = 𝛾
𝜎2

y

= 𝜌a

𝜌2𝜎2
y

. Using the formula for 𝜌2𝜎2
y

in (57), one computes 𝜌2𝜎2
u
= (1 − a)(a − b2). Using this formula, one obtains 𝜌2𝜎2

y
= a and A = 1 − a. To summarize,

R = 𝜆
𝜌
= a + b

a(1 + b)
, 𝜌2𝜎2

u
= (1 − a)(a − b2), 𝜌2𝜎2

y
= a, A = 1 − a. (58)

From (51), one has
NF

NF+1
= 𝜆𝛾 = 𝜆

𝜌
a = a+b

1+b
. From this, a = NF−b

NF+1
, and B = 1−a

1+b
=

1+b
NF+1

1+b
= 1

NF+1
. Also,

B

A

NL

NL+1
= 𝜆𝜇 = 𝜆

𝜌
b = b(a+b)

a(1+b) .

Since
B

A
= 1

1+b
, one has

NL

NL+1
= b(a+b)

a
, or

a

b(1+b)
NL

NL+1
= a+b

1+b
. The two formulas for

a+b

1+b
imply b(1 + b) NF

NF+1
= a

NL

NL+1
. To summarize,

a = NF − b

NF + 1
, B = 1

NF + 1
, b(1 + b) NF

NF + 1
= NF − b

NF + 1

NL

NL + 1
. (59)

From
𝜆
𝜌

a = NF

NF+1
and a = NF−b

NF+1
, one gets

𝜆
𝜌
= NF

NF−b
, as stated.

From (59), one obtains the quadratic equation b2 + b𝜔 = NL

NL+1
, with 𝜔 = 1 + 1

NF

NL

NL+1
. One solution of this quadratic equation

is b =
𝜔+

(
𝜔+4

NL
NL+1

)1∕2

2
≥ 1, which leads to a negative 𝜎2

y
(see (57)). Thus, I choose the other solution, b =

−𝜔+
(
𝜔+4

NL
NL+1

)1∕2

2
≥ 0.

Let b∞ =
√

5−1

2
. Since b2

∞ + b∞ = 1 and𝜔 ≥ 1, one has b2
∞ + b∞𝜔 ≥ 1. Moreover, since b2 + b𝜔 = NL

NL+1
< 1, one gets b2 + b𝜔 <

b2
∞ + b∞𝜔. But the function b2 + b𝜔 is strictly increasing in b when b ≥ 0, hence one obtains b < b∞. Thus, b ∈ [0, b∞), as

stated in Theorem 1. I also obtain a = NF−b

NF+1
∈ (0, 1). The proof of the exact formulas in (17) is complete.

I next derive the asymptotic formulas in (17). When NF is large, note that a = NF

NF−b
≈ a∞ = 1, 𝜔 = 1 + 1

NF

NL

NL+1
≈ 𝜔∞ = 1.

Therefore, one also gets b ≈ b∞ =
√

5−1

2
. It is simple to verify that the formulas for 𝛾∞, 𝜇∞, 𝜆∞, and 𝜌∞ are as stated in (17).

I next show how b depends on NF and NL (the dependence on NS is the same as the dependence on NL = NF + NS). Con-

sider the function F(𝛽,𝜔) =
√
𝜔2 + 4𝛽 − 𝜔, and note that b = F(𝛽,𝜔)∕2, with 𝛽 = NL

NL+1
and 𝜔 = 1 + 𝛽

NF
. One computes

𝜕𝛽
𝜕NF

=
𝜕𝛽
𝜕NL

= 1

(NL+1)2 ,
𝜕𝜔
𝜕NF

= − NL(NL+1)−NF

N2
F
(NL+1)2

< 0,
𝜕𝜔
𝜕NL

= 1

NF (NL+1)2 > 0. Also,
𝜕F

𝜕𝛽
= 2√

𝜔2+4𝛽
> 0, and

𝜕F

𝜕𝜔
= 𝛽√

𝜔2+4𝛽
− 1 = − b√

𝜔2+4𝛽
< 0.

Then,
𝜕(2b)
𝜕NF

= 𝜕F

𝜕𝛽
· 𝜕𝛽
𝜕NF

+ 𝜕F

𝜕𝜔
· 𝜕𝜔
𝜕NF

> 0, and
𝜕(2b)
𝜕NL

= 𝜕F

𝜕𝛽
· 𝜕𝛽
𝜕NL

+ 𝜕F

𝜕𝜔
· 𝜕𝜔
𝜕NL

= 1

(NL+1)2
√
𝜔2+4𝛽

(
2 − b

NF

)
> 0, where the last inequality

follows from b ∈ (0, 1).
I end the analysis of the equilibrium conditions, by proving several more useful inequalities for a and b. Let 𝛽F = NF

NF+1
,

and recall that 𝛽 = NL

NL+1
. Then, b satisfies the quadratic equation b2 + b𝜔 = 𝛽 , with 𝜔 = 1 + 𝛽

NF
. Start with the straightfor-

ward inequality 𝛽 < 𝛽F + 1, and multiply it by 𝛽F . One gets 𝛽𝛽F < 𝛽2
F
+ 𝛽F . Since 𝛽F = 1 − 𝛽F

NF
, one gets 𝛽(1 − 𝛽F

NF
) < 𝛽2

F
+ 𝛽F ,

or equivalently 𝛽 < 𝛽2
F
+ 𝛽F (1 + 𝛽

NF
). Since b2 + b𝜔 = 𝛽 and 𝜔 = 1 + 𝛽

NF
, one gets b2 + b𝜔 < 𝛽2

F
+ 𝛽F𝜔. Because the func-

tion f(x) = x2 + x𝜔 is increasing in x ∈ (0, 1), one has b < 𝛽F = NF

NF+1
. This inequality is equivalent to NF − b > NFb.

Dividing by NF + 1, one gets a = NF−b

NF+1
> NF b

NF+1
= b𝛽F . But I have already shown that 𝛽F > b, hence a > b𝛽F > b2. To

summarize,

b <
NF

NF + 1
, a > b2. (60)

Lemma A.1 can now be used to show that the coefficients A and B are constant. Indeed, in the proof of the Theorem, both At

and Bt satisfy recursive equations of the form Xt = 𝛼 + 𝛽Xt−1, with 𝛽 ∈ (−1, 1). Then, Lemma A.1 implies that Xt converges

to a fixed number
𝛼

1−𝛽 , regardless of the starting point. But, since the model is set in continuous time, and t + 1 actually stands
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for t + dt, the convergence occurs in an infinitesimal amount of time. Thus, Xt is constant for all t, and that constant is equal to
𝛼

1−𝛽 . ■

I now state the Lemma that is used in the Proof of Theorem 1.

Lemma A.1. Let X1 ∈ ℝ, and consider a sequence Xt ∈ ℝ, which satisfies the following recursive equation:

Xt − 𝛽Xt−1 = 𝛼, t ≥ 2. (61)

Then the sequence Xt converges to X = 𝛼
1−𝛽 , regardless of the initial value of X1, if and only if 𝛽 ∈ (−1, 1).

Proof. First, note that X is well defined as long as 𝛽 ≠ 1. Let Yt = Xt − X. Then, the new sequence Yt satisfies the recursive

equation Yt − 𝛽Yt−1 = 0, which has the following general solution:

Yt = C𝛽t, t ≥ 1, with C ∈ ℝ. (62)

Thus, Yt is convergent for any values of C if and only if all 𝛽 ∈ (−1, 1]. But when 𝛽 = 1, the value of X is not defined. This

finishes the proof. ■

Proof of Corollary 1. In the Proof of Theorem 1, equation (51) implies 𝜆𝛾 = NF

NF+1
, 𝜆𝜇 = B

A

NL

NL+1
. But from (57) and (58), one has

B

A
= 1

1+b
, which proves the first row in (18). The second row in (18) just rewrites the formulas for A and B from equations (57)

and (58). ■

Proof of Proposition 1. From Corollary 1, 𝜆𝛾 = NF

NF+1
and 𝜆𝜇 = B

A

NL

NL+1
. From (50), the equilibrium normalized expected profit

of the FT is:

𝜋F = 𝛾 − 𝜆𝛾𝛾 + 𝜇B − 𝜆𝜇𝜇A = 𝛾
(

1 − NF

NF + 1

)
+ B𝜇

(
1 − NL

NL + 1

)
(63)

From (59), B = 1

NF+1
, which proves the desired formula for 𝜋F . The profit of the ST is the same as for the FT, but with 𝛾 = 0. The

last statement now follows from the asymptotic results in Theorem 1. ■

Justification of Result 1. According to Proposition 1, Δdt is the expected profit that speculators get per unit of time dt from

trading on their lagged signal (d̃wt−1). Given that all speculators break even on this lag, they would not trade on any signal with

a larger lag, as this would cost them the same (Δ), but would bring a lower profit. For this last statement, I use Proposition IA.3

in Section 1 in the Internet Appendix, which shows numerically and asymptotically that the profit generated by lagged signals

is decreasing in the number of lags. ■

Proof of Corollary 2. One simply follows the Proof of Theorem 1 to solve for the equilibrium in the 0,1 model. The key step

is to observe that in Theorem 1 the FT’s choice of 𝜇 is the same as the ST’s choice of 𝜇, and therefore it does not matter who does

the optimization, as long as the total number of speculators using their lagged signal is the same. ■

Proof of Proposition 2. Since 1 − a = 1+b

NF+1
, equation (17) implies that 𝜆 = 𝜌 NF

NF−b
= 𝜎w

𝜎u

√
(1 − a)(a − b2) NF

NF−b
=

𝜎w

𝜎u

√
(1+b)(a−b2)√

NF+1

NF

NF−b
, which proves the first equation in (25).

By definition, the trading volume is TV = 𝜎2
y

. From (58), TV = 𝜎2
y
= 𝜎2

y
𝜎2

w
= a𝜎2

w

𝜌2 . From (17), 𝜌2 = 𝜎2
w

𝜎2
u

(1 − a)(a − b2), hence

TV = 𝜎2
u

a

(1−a)(a−b2) . Substituting 1 − a = 1+b

NF+1
, one gets TV = 𝜎2

u
(NF + 1) a

(1+b)(a−b2) , which proves the second equation in (25).

The price volatility is 𝜎2
p
= 𝜆2TV =

(
𝜆
𝜌

)2

𝜌2TV =
(
𝜆
𝜌

)2

a𝜎2
w

. From (17),
𝜆
𝜌
= NF

NF−b
, hence 𝜎2

p
=
(

NF

NF−b

)2
NF−b

NF+1
𝜎2

w
=

N2
F

(NF+1)(NF−b) 𝜎
2
w

, which proves the third equation in (25).

The speculator participation rate is SPR =
𝛾2 𝜎2

w+𝜇
2 𝜎2

w̃

TV
=

𝜌2(𝛾2 𝜎2
w+𝜇2 𝜎2

w̃
)

a𝜎2
w

. Since 𝜌𝛾 = a, 𝜌𝜇 = b, and 𝜎2

w̃
= (1 − a)𝜎2

w, one gets

SPR = a2+b2(1−a)
a

. This proves the last equation in (25), since
1−a

a
= 1+b

NF−b
. ■

Proof of Proposition 3. As in Theorem 1, I start with the FTs’ choice of optimal trading strategy. Each FT i = 1,… ,NF observes

dwt , and chooses dxi
t
= 𝛾 i

t
dwt to maximize the expected profit:

𝜋0 = E

(
∫

T

0

(
wt − pt−1 − 𝜆t(dxi

t
+ dx−i

t
+ dut)

)
dxi

t

)
= ∫

T

0

𝛾 i
t
𝜎2

w
dt − 𝜆t𝛾

i
t

(
𝛾 i

t
+ 𝛾−i

t

)
𝜎2

w
dt, (64)

where the superscript “−i” indicates the aggregate quantity from the other FTs. This is a pointwise quadratic optimization

problem, with solution 𝜆t𝛾
i
t
= 1−𝜆t𝛾

−i
t

2
. Since this is true for all i = 1,… ,NF , the equilibrium is symmetric and one computes

𝛾t =
1

𝜆t

1

1+NF
.

The dealer takes the FTs’ strategies as given, thus assumes that the aggregate order flow is of the form dyt = dut + NF𝛾 tdwt .
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To set 𝜆t , the dealer sets pt such that dpt = 𝜆tdyt , with 𝜆t =
Cov(wt ,dyt )

Var(dyt)
= NF𝛾t𝜎

2
w

𝜎2
u+N2

F
𝛾2

t
𝜎2

w

. This implies 𝜆2
t
𝜎2

u + (NF𝛾t𝜆t)2𝜎2
w =

NF𝛾t𝜆t𝜎
2
w. But NF𝜆t𝛾t =

NF

NF+1
. Hence, 𝜆2

t
𝜎2

u +
(

NF

NF+1

)2

𝜎2
w = NF

NF+1
𝜎2

w, or 𝜆2
t
𝜎2

u = NF

(NF+1)2 𝜎
2
w, which implies the formula 𝜆 =

𝜎w

𝜎u

√
NF

NF+1
. I then compute 𝛾t =

1

𝜆t

NF

1+NF
= 𝜎u

𝜎w

1√
NF

.

One has TV = 𝜎2
y
= N2

F
𝛾2𝜎2

w
+ 𝜎2

u
. But NF𝛾 = 𝜎u

𝜎w

√
NF , hence TV = 𝜎2

u
(1 + NF). Next, 𝜎2

p
= 𝜆2TV = 𝜎2

w

𝜎2
u

NF

(NF+1)2 𝜎
2
u
(NF + 1) =

𝜎2
w

NF

NF+1
. Also, SPR = TV−𝜎2

u

TV
= 𝜎2

u (NF+1)−𝜎2
u

𝜎2
u (NF+1)

= NF

NF+1
.

Finally, one computes 𝛴′. From the formula above for 𝜆, one gets Var(dpt) = 𝜆2Var(dyt) = 𝜆Cov(wt, dyt) = Cov(wt, dpt).
Since 𝛴t = Var(wt − pt−1) = E

(
(wt − pt−1)2

)
, one computes 𝛴′

t
= 1

dt
E
(

2(dwt+1 − dpt)(wt − pt−1) + (dwt+1 − dpt)2
)
=

−2
Cov(wt ,dpt)

dt
+ 𝜎2

w
+ Var(dpt)

dt
= 𝜎2

w
− 𝜎2

p
= 𝜎2

w

NF+1
. ■

Proof of Proposition 4. I use the formulas from the Proof of Theorem 1. Since d̃wt is orthogonal on dyt , one has

C̃ov
(

d̃wt, dwt

)
= C̃ov

(
d̃wt, d̃wt

)
= A = 1 − a = 1+b

NF+1
. Then, C̃ov

(
d̃wt, d̃wt−1

)
= C̃ov

(
dwt − 𝜌𝛾dwt − 𝜌𝜇d̃wt−1, d̃wt−1

)
=

−𝜌𝜇A. Therefore,

C̃ov
(

dxt+1, dxt

)
= C̃ov

(
𝛾dwt+1 + 𝜇d̃wt, 𝛾dwt + 𝜇d̃wt−1

)
= 𝜇𝛾A + 𝜇2 (−bA)

Ṽar
(

dxt

)
= Ṽar

(
𝛾dwt + 𝜇d̃wt−1

)
= 𝛾2 + 𝜇2A.

(65)

By multiplying both the numerator and denominator by 𝜌2, one computes:

𝜌x =
𝜇𝛾A

𝛾2 + 𝜇2A
− b𝜇2A

𝛾2 + 𝜇2A
= ab(1 − a)

a2 + b2(1 − a)
− b3(1 − a)

a2 + b2(1 − a)
= 𝜌AT + 𝜌EA. (66)

Then, 𝜌x =
ab−b3

a2+b2(1−a) (1 − a) = (a−b2)b
a2+b2(1−a)

1+b

NF+1
, which implies the desired formulas.

I next prove that 𝜌x > 0 if and only if there is slow trading. When there is no slow trading, b = 𝜌𝜇 = 0, hence 𝜌x =
0. When there is slow trading, I show that 𝜌x =

b(b+1)(a−b2)
a2+b2(1−a)

1

NF+1
> 0. Indeed, one has b > 0, a < 1, and from equation

(60), a − b2 > 0. ■

Proof of Proposition 5. By definition, d(xtpt) = xtpt − xt−1pt−1 = ptdxt + xt−1dpt . Integrating this equality, one gets xT pT −
x0p0 = ∫ T

0
ptdxt + ∫ T

0
xt−1dpt . But xT = x0 = 0 (almost surely), hence − ∫ T

0
ptdxt = ∫ T

0
xt−1dpt . One also has ∫ T

0
vT dxt = vT (xT −

x0) = 0. Thus, 𝜋 = E ∫ T

0
(vT − pt)dxt = −E ∫ T

0
ptdxt = E ∫ T

0
xt−1dpt . ■

Proof of Proposition 6. If xt is the IFT’s inventory in the risky asset, denote:

𝛺xx
t =

E
(

x2
t

)
𝜎2

wdt
, Xt =

E
(

xtd̃wt

)
𝜎2

wdt
, Zt =

E
(

xt−1dyt

)
𝜎2

wdt
. (67)

Since Θ > 0, one has Θ ∈ (0, 2), or 𝜙 = 1 − Θ ∈ (−1, 1). From (32), xt satisfies the recursive equation xt = 𝜙xt−1 + Gdwt .

One computes 𝛺xx
t

= E((xt )2)
𝜎2

wdt
= E((𝜙xt−1+Gdwt)2)

𝜎2
wdt

= 𝜙2𝛺xx
t−1

+ G2. Since 𝜙2 ∈ (−1, 1), I apply Lemma A.1 to the recursive formula

𝛺xx
t

= 𝜙2𝛺xx
t−1

+ G2. Then, 𝛺xx
t

is constant and equal to:

𝛺xx = G2

1 − 𝜙2
= G2

Θ(1 + 𝜙)
, (68)

which is the usual variance formula for the AR(1) process. From (68) it follows that:

E
(

x2
t

)
= 𝛺xx𝜎2

w
dt, (69)

which implies that the inventory is infinitesimal. It follows that the inventory costs are zero, and all the profits are in cash.

Also, the IFT’s expected utility is the same as his expected profit. As the initial inventory is x0 = 0, one has that xT = 0, and

Proposition 5 implies that the IFT’s expected profit is:

𝜋
Θ>0

= 𝜆E∫
T

0

xt−1dyt = 𝜆∫
T

0

Ztdt. (70)

The order flow at t is dyt = −Θxt−1 + 𝛾dwt + 𝜇d̃wt−1 + dut , with 𝛾 = 𝛾− + G. Then, Zt is a function of Xt−1:

Zt =
E
(

xt−1dyt

)
𝜎2

wdt
= −Θ𝛺xx

t−1
+ 𝜇Xt−1 = − G2

1 + 𝜙
+ 𝜇Xt−1. (71)
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The recursive formula for Xt is Xt =
E(xt d̃wt)
𝜎2

wdt
= E((𝜙xt−1+Gdwt)(dwt−𝜌dyt))

𝜎2
wdt

= −𝜙𝜌Zt + G − G𝜌𝛾 = −𝜙𝜌𝜇Xt−1 + 𝜙 𝜌G2

1+𝜙 + G − G𝜌𝛾 =

−𝜙bXt−1 + G(1 − a−) − 𝜌G2

1+𝜙 . By assumption, 0 ≤ b < 1, hence 𝜙b ∈ (−1, 1). Lemma A.1 implies that Xt is constant and equal

to:

X =
G(1 − a−) − 𝜌G2

1+𝜙
1 + 𝜙b

. (72)

From (71), Zt is also constant and satisfies:

Z = 𝜇X − G2

1 + 𝜙
= 𝜇G

1 − a−

1 + 𝜙b
− G2

b + 1

1+𝜙
1 + 𝜙b

. (73)

From (70), the IFT’s expected profit is:

𝜋
Θ>0

= 𝜆Z = 𝜆
⎛⎜⎜⎝𝜇G

1 − a−

1 + 𝜙b
− G2

b + 1

1+𝜙
1 + 𝜙b

⎞⎟⎟⎠ . (74)

This finishes the proof. ■

Proof of Theorem 2. Let Θ = 0. Then, the IFT’s strategy is of the form dxt = Gdwt . The IFT’s expected profit is 𝜋
Θ=0

=
E ∫ T

0
(wt − pt)dxt = E ∫ 1

0

(
wt−1 − pt−1 + dwt − 𝜆dyt

) (
Gdwt

)
= E ∫ 1

0

(
dwt − 𝜆dyt

) (
Gdwt

)
= E ∫ 1

0

(
dwt − 𝜆𝛾dwt

) (
Gdwt

)
=

G(1 − 𝜆𝛾)𝜎2
w

. But 𝜆𝛾 = 𝜆G + 𝜆𝛾− = 𝜆G + Ra−. The IFT’s normalized expected profit is:

𝜋
Θ=0

= G(1 − 𝜆𝛾) = G(1 − Ra−) − 𝜆G2. (75)

To compute the IFT’s inventory costs, denote by 𝛺xx
t

= E(x2
t
)

𝜎2
w

. One computes
d𝛺xx

t

dt
= 1

𝜎2
wdt

E
(

2xt−1dxt + (dxt)2
)
=

1

𝜎2
wdt

E
(

2Gxt−1dwt + G2(dwt)2
)
= G2. Since 𝛺xx

0
= 0, the solution of this first order ODE is 𝛺xx

t
= tG2, for all t ∈ [0, 1].

Hence, the inventory costs are equal to:

CIE∫
1

0

x2
t dt = CI G2 ∫

1

0

tdt = CI

2
G2. (76)

From (75) and (76), the IFT’s normalized expected utility when Θ = 0 is:

Ũ
Θ=0

= G (1 − Ra−) − G2

(
𝜆 + CI

2

)
. (77)

The function Ũ
Θ=0

attains its maximum at G = 1−Ra−

2𝜆+CI
= 1−Ra−

2𝜆
(

1+ CI
2𝜆

) , as stated in Theorem 2. The maximum value is:

Ũ
max

Θ=0
= (1 − Ra−)2

2(2𝜆 + CI)
. (78)

Let Θ > 0, which is equivalent to 𝜙 = 1 − Θ ∈ (−1, 1). In the Proof of Proposition 6, I have computed the IFT’s expected

profit (see (38)), and shown that the IFT’s inventory costs are zero. Hence, the IFT’s expected utility is the same as his expected

profit, and satisfies Ũ
Θ>0

= 𝜋
Θ>0

= 𝜆
𝜌

(
bG

1−a−

1+𝜙b
− 𝜌G2

b+ 1
1+𝜙

1+𝜙b

)
. The first order condition with respect to G implies that at the

optimum:

G = b(1 − a−)
2𝜌

(
b + 1

1+𝜙

) , (79)

which expresses the optimum G as a function of 𝜙. The second order condition for a maximum is 𝜆
b+ 1

1+𝜙
1+𝜙b

> 0, which follows

from 𝜆 > 0, b ∈ [0, 1), and 𝜙 ∈ (−1, 1). For the optimum G, the normalized expected utility (profit) of the IFT is:

Ũ
Θ>0

= (Rb(1 − a−))2

4𝜆(1 + 𝜙b)
(

b + 1

1+𝜙

) . (80)

I now analyze the function:

f (𝜙) = (1 + 𝜙b)
(

b + 1

1 + 𝜙

)
⟹ f ′(𝜙) = b2(1 + 𝜙)2 + b − 1

(1 + 𝜙)2
. (81)
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The polynomial in the numerator has two roots:

𝜙1 = −1 +
√

1 − b

b
𝜙2 = −1 −

√
1 − b

b
. (82)

By assumption b < 1, hence both roots are real. Clearly, 𝜙2 < − 1. I show that 𝜙1 ∈ (−1, 1). First, note that 𝜙1 is decreasing

in b. For b = 1, one has 𝜙1 = − 1, while for b =
√

17−1

8
(which satisfies 4b2 + b = 1) one has 𝜙1 = 1. Since by assumption√

17−1

8
< b < 1, it follows that indeed 𝜙1 ∈ (−1, 1). Thus, f′(𝜙) is negative on (−1, 𝜙1) and positive on (𝜙1, 1). Hence, f(𝜙)

attains its minimum at 𝜙 = 𝜙1, which implies that the normalized expected utility Ũ
Θ>0

from (80) attains its maximum at

𝜙 = 𝜙1, or Θ = 2 −
√

1−b

b
, as stated in Theorem 2. Also, if one substitutes 𝜙 = 𝜙1 in (79), one gets G = 1−a−

2𝜌

(
1+ 1√

1−b

) , as stated

in Theorem 2. The maximum value (over both G and Θ) is:

Ũ
max

Θ>0
= (Rb(1 − a−))2

4𝜆b(1 +
√

1 − b)2
. (83)

To determine the cutoff value for the inventory aversion coefficient CI , set Ũ
max

Θ=0
= Ũ

max

Θ>0
. From (78) and (83), algebraic manip-

ulation shows that the cutoff value is CI = 2𝜆
(

(1−Ra−)2(1+
√

1−b)2
R2b(1−a−)2 − 1

)
, as stated in Theorem 2. ■

Proof of Corollary 3. Let Θ > 0. In the context of Theorem 2, b >
√

17−1

8
> 0 and 𝜌 > 0, hence 𝜇 = b

𝜌
> 0. The IFT’s strategy is

dxt = − Θxt−1 + Gdwt , while the slow trading component is dxS
t
= 𝜇d̃wt−1. Since dwt is orthogonal to d̃wt−1, Cov(dxt, dxS

t
) =

−ΘCov(xt−1, dxS
t
) = −Θ𝜇Cov(xt−1, d̃wt−1). This proves the equality in (42). Since Θ > 0 and 𝜇 > 0, one needs to prove the

inequality Cov(xt−1, d̃wt−1) > 0. But Cov(xt−1, d̃wt−1) = X𝜎2
wdt (see (67)). From (72), X =

G(1−a−)− 𝜌G2

1+𝜙
1+𝜙b

. Substituting the optimal

G and 𝜙 = 1 − Θ from Theorem 2, one obtains X = (1−a−)2

4(1+
√

1−b)
. As in Theorem 2, a−, b ∈ [0, 1), hence X > 0 and the proof is

complete. ■

Proof of Theorem 3. Consider the following implicit equation in b:

2b(1 + b)(2B + 1)
nL

= Q

B2(a− + b)
+ 3bB + 2b2B − 1 − b

b
(1 − a−) − 2, (84)

where the following substitutions are made50:

nF = NF

NF + 1
, nL =

NL

NL + 1
, B = 1√

1 − b
,

q = (B + 1)(2(B2 − 1) − nF(3B2 − 2)),

a− = −q ±
√

q2 + nFB5((4 − nF)B + 2(2 − nF))
B2((4 − nF)B + 2(2 − nF))

,

Q = B3(a−)2 + 2(3B3 + 3B2 − 2B − 1)a− + (B3 + 2B2 − 2).

(85)

I write the equations for the other coefficients:

R = 4(B + 1)B2(a− + b)
Q

, a = (2B + 1)a− + 1

2(B + 1)

𝜌2 =
(
(a − b2) + 2bB − 1

2B + 1
(1 − a)

)
(1 − a)

𝜎2
w

𝜎2
u

, 𝜆 = R𝜌

Θ = 2 −
√

1 − b

b
, G = 1 − a

𝜌(2B + 1)
, 𝛾 = a−

𝜌NF

, 𝜇 = b

𝜌NL

.

(86)

The proof is now left to Subsections 5.1 and 5.2 in the Internet Appendix. ■

Proof of Proposition 7. See Subsection 5.2 in the Internet Appendix. ■

Proof of Proposition 8. See Subsection 5.2 in the Internet Appendix. ■

50 To be rigorous, I have included the case when a− is negative. However, numerically this case never occurs in equilibrium, because it leads to 𝜆 < 0, which

contradicts the FT’s second order condition (IA.315) in Section 5 in the Internet Appendix.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.finmar.2019.02.003.
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