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This document includes supplementary material to the paper. Section 1 analyzes the
general benchmark model M,,, with m > 0 lags, in which speculators do not use their signals
beyond lag m. Section 2 describes the particular benchmark model Ms with m = 2 lags,
and also analyzes an extension in which the slowest traders are able to learn from the order
flow. Section 3 describes the benchmark model M; with fast and slow traders, but where
certain signals about the increments of the fundamental value are made public with a delay
of two periods. Section 4 verifies that the intuition of the benchmark model Mj in the paper
extends to a setup in which the fundamental value has more than one component. In addition,
Section 4 studies the decision of speculators to use “smooth” trading strategies as in Kyle
(1985). Section 5 discusses the general equilibrium of the model with inventory management
from Section 4 in the paper, and provides the proofs that have been left out of the paper.
In addition, Section 5 extends the model with inventory management by introducing more
general strategies, predictable order flow, multiple IF'Ts, or more links in the intermediation
chain. Section 6 analyzes a partial equilibrium of the model with inventory management from
Section 4 in the paper, in which the IFT chooses to trade in the “smooth regime.” Section 7
considers a discrete-time version of the benchmark model M in the paper, and shows that

the difference between the two models is small.
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1 Benchmark model with m lags

In this section, I analyze the benchmark model M,, with m > 0 lags, in which specula-
tors do not use their signals beyond lag m. Two particular cases are already discussed
in the paper: m = 0 (Proposition 3 in Subsection 3.2 in the paper) and m = 1 (Sub-
section 3.1 in the paper). In both these cases, the equilibrium is described in closed
form.

For the case m > 1, I show in Subsection 1.2 of this Internet Appendix that the equi-
librium reduces to system of non-linear equations in the coefficients. In Subsection 1.3,
I discuss the particular case in which all speculators have the same speed: if Ny is the
number of /-speculators, then Ny > 0, and N; = --- = N,,, = 0. The proofs are provided

in Subsection 1.4.

1.1 Notation preliminaries

To simplify the presentation, I use matrix notation. All vectors are in column format,
and I denote by X’ the transpose of the vector X.
I normalize some variables by dividing them with the forecast variance, o2. I denote

this by placing a tilde above the variable. For instance, I define the normalized instan-

2

,» as well as the normalized instantaneous noise trader

taneous order flow variance &

variance G2 as follows:

3 Var(dy;) y Var(duy) o2
2 _ 2 _ _ u
Tyt = o2dt ’ v o2dt o2’ (TA.1)

where both these ratios are limits of the corresponding discrete ratios when At converges
to zero (see the notation preliminaries in the Appendix in the paper).
Recall that an /-speculator in the model M,,, observes the signals after = 0,1,...,m

lags, and has a trading strategy of the form:

dry, = ’yé?(dwt,g — Z—et) + ’Ygg%,t(dwtfﬁl — Zg1g) + o+ ’Yﬁ,?t(dwtfm — Ztemit),
(IA.2)
where z;_; »,, is the dealer’s expectation of the j-lagged signal dw;_;, and ¢t — j is notation
for t — jdt (see the discussion following equation (11) in the paper).
I collect the coefficients of the trading strategy in (IA.2) in a vector:

£
FO = [0, .., 407, (IA.3)



which contains only the entries corresponding to j = ¢,£+1,...,m. If one needs to sum
~© over different ¢, I make a slight abuse of notation and use the notation 4 for the

same vector as in (IA.3) but padded with zeros at the entries j =0,1,...,¢ — 1:
¢
YO =1T10,...,0,%, ..., 797 (IA.4)

In general, if A is a matrix with elements A;; for 4,57 = 0,...,m, I denote by A_,
the matrix with elements A, ; for i, j > ¢; and similarly for the vectors B., and p_,. A
sum of vectors X, over different £ is carried by padding X_, with zeros for the first ¢
entries.

I follow the usual convention that sums from a larger index to a smaller index are
equal to zero. For instance, if m = 0, for any variable X; the sum from the index 1 to

m is by convention equal to zero:
m=0 = ) X;=0 (IA.5)

Similarly, an enumeration from a larger index to a smaller index is by convention the
empty set. For instance, if m = 0, saying that the condition P; holds for i = 1,... ,m is

equivalent to imposing no condition at all.

1.2 General speed case

In this subsection, I solve for the equilibrium of the model M,, when the number of
lags m > 0 is fixed. Under an additional assumption stated below, I show that the
equilibrium reduces to the solution of a system of equations (see Theorem IA.1). This
system can be solved in closed form in some particular cases of interest, and can in
principle be solved numerically.

To proceed with the solution, one needs to be more specific about how the dealer
sets her expectation z;_;; = E(dw;—; | {dy,},<¢). Since dw,_; is the speculator’s signal
from i trading rounds before (corresponding to calendar time t — i dt), it is plausible to
expect that (i) z;_;; only involves the order flow from at most ¢ periods before, and (ii)
Zi—i is linear in the order flow. Thus, I assume (and show it to be true in equilibrium)
that:

Zimit = posdyi—i + -+ picrdye—1, =0,1,...,m, (IA.6)

where dy;—; is the order flow from j trading rounds before. Define the “fresh signal”



d,w;_; to be the unanticipated part of the signal at ¢:
dtwt_i = dwt_i — Zt—i,t' (IA?)

For all lags 7,7 = 0, ..., m, denote:

Cov (dtwt_i, dtwt_j) Cov (wt, dtwt_j)
Ai,j,t = 0‘120 a4 s Bjﬂg = 0_12” d . (IAS)

Since A measures the instantaneous covariance of fresh signals at the relevant lags, I call
A the “fresh covariance matrix.” The vector B measures the instantaneous contribution
of each fresh signal to the profit, thus I call B the “benefit vector.” In Section 2, it is
assumed that the speculator takes A and B as fixed, and considers them as set by the
dealer (just as p;; and \;).

Theorem TA.1 shows that a linear equilibrium exists if a certain system of equations

is satisfied.

Theorem IA.1. Let m > 0 be fized, and consider the model M,,, with m lags, and N,
speculators of type £ = 0, ..., m. Suppose there exists a linear equilibrium of the model

with constant coefficients, of the form:

dxl(ee) = ’Vtgé)dtwt—f +o A, =0, m,

dewy—; = dwy; — 2is, -i =0,1,...,m, (IA.9)
Z—ig = podye—i + -+ piadyea, 1=0,1,...,m,

dp; = Mdy;.

Then, the constants X\, p;, 7(6

7

) satisfy the following system of equations (i =0,...,m):

_ - 1 (1 .
= w10 = ()7 ()
£=0

2 ~2 / ~2 5-’3

a,p = A7, o,A = B, G, = s (IA.10)
min(z,5) i

Azy = ]-z*j 0-12/ Z Pi—kPj—k, B; = 1_5-;)‘sz—ka
k=1 k=1

where 1p 1s the indicator function, which equals 1 if P s true, and 0 otherwise.

Conversely, suppose the constants X\, p;, ”y@ satisfy (IA.10), and in addition the

7

following conditions are satisfied: (i) A > 0; (i) for all £ = 0,...,m, the matriz A_,



is invertible; and (iii) the numbers B) = Z:Z)k PiYkwi satisfy 1 > By > -+ > B, > 0.
Then, the equations in (IA.9) provide an equilibrium of the model.

Note that p,,, the last entry of the vector p = [ P05 - s Pm }/, is not part of the
dealer’s expectations z;_;, but I introduce it in order to simplify notation. In particular,
the last row of the equilibrium equation &2 p = A% can be omitted.

In principle, the system of equations (IA.10) can be solved numerically as follows.
To simplify notation, I make a change of variables and denote by r; = o,p;, A = 7\,
g= % Then, suppose I start with some values for r; and A. Then, A can be expressed
only in terms of r;, and the equation &gp = A% implies that ¢ = A~'r can also be
expressed only in terms of ;. Also, B can be expressed only in terms of r; and A. Then,
the first equation in (IA.10) and A = B’g (which is the rescaled equation, 5;A = B'Y)
become m + 2 equations in the variables r; and A.

In practice, however, this procedure does not work well. Numerically, it turns out
that the solution is badly behaved, especially when N or m are large.! Moreover,
without more explicit formulas, it is difficult to study properties of the solution. In the
next subsection, I provide a more explicit solution for the case when all speculators have
the same speed, i.e., when there are only 0-speculators.

I now analyze the forecast error variance:
Et = Var((wt — pt71>2)- (IAll)

Note that 3, is inversely related to price informativeness. Indeed, when prices are
informative, they stay close to the forecast w;, which implies that the variance ¥; is
small. Define the instantaneous price variance:

2 Var(dpy) A? Var(dy,)

_ _ _ \2.2
. = P = % = \o,. (IA.12)

The next result shows that growth rate of ¥ is constant, and it is equal to the difference

between the forecast variance o7, and the price variance 0.

Proposition TA.1. The growth in the forecast error variance is constant and satisfies

the following formula:
Y, = o2 — 012). (TA.13)

!This is because in that case the matrix A is almost singular, and thus the equation g = A~ !r
produces unreliable solutions. Indeed, equation (IA.82) from Subsection 1.4 shows that that the deter-

m+1
minant of (A%)~!, a matrix close to A™!, is equal to ((NH)

Tt NTI This is a large number when m or N

are large.



This result can be explained by the fact that competition among speculators increases
price volatility, with an upper bound given by the forecast volatility o2 . But competition
also makes prices more informative, which implies that the forecast error variance grows
more slowly. As shown in the next subsection, it is a feature of this equilibrium to
have the forecast error variance grow at a positive rate. This result is in contrast to
Kyle (1985), in which the forecast error variance decreases at a constant rate, so that
it becomes zero at the end. The reason for this difference is that in my model traders
in equilibrium only use their most recent signals, and thus do not trade on longer-lived

information.?

1.3 Equal speed case

In this subsection, I search for an equilibrium of the model M,,, with m > 0 lags in the
simpler case when there is no speed difference among speculators. This translates into
all speculators being O-speculators, i.e., Ng > 0 and N; = Ny = --- = N,,, = 0. Because
there are only 0-speculators, I write their number simply as N = Nj.

Theorem IA.2 provides an efficient numerical procedure to solve for the equilibrium.
When the number of speculators is large, I also obtain asymptotic formulas for the
equilibrium trading strategies and pricing functions. Proposition IA.3 then shows that
the value of information decays exponentially. This result is proved rigorously only
asymptotically, when the number of speculators is large. However, I verify numerically
that the result remains true for a large number of parameter values.

Proposition TA.2 is a restatement of Theorem IA.1 to the case when all speculators

have the same speed.

Proposition IA.2. Let m > 0 be fixed, and consider the model M., with m lags, and
N speculators with equal speed (of type £ = 0). Suppose there exists a linear equilibrium

of the model with constant coefficients, of the form:

do; = ydawy + ndawe—r + - + Ypdiwi—p,
dw_i:dw_i—z_i, i:O,l,...,m,
o o (IA.14)
iz = podyi—i + -+ pimady—, 1=0,1,...,m,

dpt = )\dyt .

Then, the constants X\, p;, v; and v; = N~; satisfy the following system of equations

2For a discussion on why traders might not want to use longer-lived information, see Section 4 in
this Internet Appendix.



1 N
by (N + 1)1

1 N (N4 1)2mina) —q
S22 N+2 (N4 1)t
(IA.15)

Bi= ——— &,=6 VN+L &p =

aop = A7, G\ = By, Aij = Lizy

Conversely, suppose the constants X, p;, i satisfy (IA.15), and in addition the fol-
lowing conditions are satisfied: (i) X > 0; (ii) the matriz A is invertible; and (iii)
the numbers B, = Z:’:Ok PiYkvi satisfy 1. > By > --- > B, > 0. Then, the equations
in (IA.14) provide an equilibrium of the model.

Note that the system of equations (IA.15) has a simpler form. Following the discus-
sion after Theorem IA.1, I make a change of variables and denote by 7; = o,p;, A = 0,
% W can further be expressed in terms of A.
This suggests the following procedure to search for a solution of (IA.15): Suppose one

g= Ul In this case, one sees that r; =
Yy

starts with some value for A. From (IA.15) one sees that all the constants of the model
(g9, A, B, r) can be expressed as a function of A. Then, the equation A = ¢’B becomes
the equation that determines A. In Subsection 1.4, I show that the equation in A is an
infinite polynomial equation, which in practice can be solved very accurately. Then, the
conditions (i) and (ii) from Proposition IA.2 follow from a certain condition (IA.77) on
A from the proof of Theorem IA.2.

The next result uses the procedure outlined above to find approximations for the

equilibrium coefficients, which use the “big-O” notation.?

Theorem IA.2. Let m > 0 be fixed, and consider the model M, with m lags, and N
speculators with equal speed (of type £ = 0). Define the following numbers:

Oy 1 m—1+1

0 .
S = — s Z:O,l,...,m,
v ow VN+1 m+1

Ow N

0 _ _ _
Py = o (N T D) i=0,1,...,m—1, (TIA.16)

U
ouw VN +1

3For a € R, I say that the expression xy is of the order of N, and write zny = Ox(N®), if there
exists an integer N, and a real number M such that |zy| < M ]N | for all N > N,. In other words,

xyy is of order N¢ if £t is bounded when N is sufficiently large.




Then if conditions (IA.76) and (IA.77) from Subsection 1.4 are satisfied,* there exists
an equilibrium. In this equilibrium, the coefficients of the optimal strategy (v;) and of

the pricing functions (X, p;) approximate the coefficients in (IA.16) as follows:
v = 7?(1+0N(1)), i=0,1,....m,
0 = p?(1+ON(%)), i=0,1,...,m—1, (IA.17)
A= N(1-0n(3)).

Figure IA.1 shows the optimal weights for various numbers of speculators N and

various maximum signal lags m. For all the parameter values considered, the weights

decrease with the lag. However, while the approximate weights, 79 = o 1\} — mnzﬁl,
decrease at the same rate, the actual weights decrease less quickly for smaller lags, and
then decrease faster for larger lags. When m is large, one can also see that the initial
decrease in the actual weights is very small.’

Proposition TA.3 shows that the expected profit from each additional signal decays

exponentially.

Proposition TA.3. Let my be the expected profit at t = 0 of a speculator in equilibrium,
and let v; be his optimal trading weight on the signal with lag i = 0,...,m. Then the

profit can be decomposed as follows:

2 = 2 Yo 71 TYm
_ E o o ) TA .18
T = Tw fo g = Ow (N 1 (N +1)2 + (N + 1)m+1> ( )

Moreover, the ratio of two consecutive components of the expected profit is:

Toj+1 _ Y+ L 0
0,5 Vi N"—l N(

). (IA.19)

z|=

A graphic illustration of this result is in Figure IA.2, which shows the profits of a
speculator who can trade on at most m = 5 lagged signals. The cases studied correspond
to the number of speculators N € {1,2,3,5,20,100}. One sees that indeed, when N is

4Numerically, these conditions are satisfied for all the values of N and m considered.

5Thus, in the limit when m approaches infinity, I conjecture that the weights become approximately
equal. In that case, the informed traders behave as in Kyle (1985), by trading a multiple of the sum
fg dw, = w; — wg. However, one can see from Theorem IA.2 that in my model the weights do not
become of the order of dt¢, as in the Kyle model, but rather remain of the same order of magnitude as
for the lower m. In my model therefore prices are very close to strong-form efficient when m is large.
This equilibrium resembles that of Caldentey and Stacchetti (2010).



large, the profits coming even from a signal of lag 1 are small.

I next analyze price volatility. Proposition IA.4 shows that price volatility has an
upper bound, which makes rigorous the intuition for the general case, discussed after
Proposition IA.1. Moreover, Proposition IA.4 provides a more thorough understanding
about how information is revealed over time by trading. For this purpose, I define
“signal revelation” as the covariance of a signal dw; with dp;., the price change from

k trading periods later:

~ Cov(dwy,dpeyr)  Cov(dw_g,dpy) B
SRy = —rT - E ra k=0,1,.... (IA.20)

Since ZZO:() dw;_, = w; (speculator’s initial forecast is wy = 0), the sum of all SRy

equals:

, (IA.21)

o2 dt B o2 dt o2

iSRk _ Cov(wy,dpr) _ ACov(wy dy,) _ Na?
k=0

Sqw |'qu

where I use the formula Cov(wy,dy;) = A Var(dy,) = Ao} from the dealer’s pricing

equation for A, proved in (IA.46) in Subsection 1.4.

Proposition TA.4. Price volatility is always smaller than the forecast volatility. Their

difference is small when the number of speculators is large:
oo —0r = On(%). (TA.22)

The signal revelation measure satisfies:

N m
SRj, = ———— k=0,1,....,m, = ZSszl—(
k=0

(N + i gy 1429)

Therefore, the difference o2 — 0'5 15 also small when m is large.

Thus, an interesting implication of the Proposition is that, when the number of lags m
is large, each signal dw; gets revealed by trading almost entirely. From Proposition IA.1,

this case coincides with the one in which the growth rate of 3, the forecast error variance,

is very small.

10



1.4 Proofs

Before I proceed with the proofs of the equilibrium results, I introduce more useful nota-
tion. As before, a tilde above a symbol denotes normalization by o,,, while Cov and Var
are the instantaneous covariance and variance (already normalized by dt), normalized
by 2. For instance:

Ou 5 ~ Var(dy;)

o = —, o; = Var(dy;) = 2 dt (TA.24)

Y

I denote by M, the set of matrices of real numbers with a rows and b columns, by
M, = M, , the set of square matrices, and by V, = M, the set of column vectors.

If ¢ € {0,1,...,m}, recall from Subsection 1.1 that the vector v} collects the ¢-
speculator’s weight on dw;_; — 2;_;;. By a slight abuse of notation, I also write ~©
as a vector in V.1 by padding with zeros for the entries j = 0,...,¢ — 1. Define the

aggregate speculator weights, ¥ € V,,,11:

¥ =Y Nyl (IA.25)
=0
Let p € V41 be the vector that collects the coefficients involved in the dealer’s expec-
tation z_;; of dw;_;:
p=1pos s pml, (IA.26)

where p,, is not part of the dealer’s expectations z;_; (¢ =0, 1,...,m), but is introduced
in order to simplify notation.
Fori=0,...,m, let dyw,_; be the unpredictable part of the signal dw;_; (computed
before trading at ¢):
dyw—; = dwi—; — 24—y (IA.27)

Define the matrices A € M,,y1 and B € V,,,,1. For 7,57 =0, ..., m, define:

— 1
Ai,j = COV(dtwt_i,dtwt_j) = 0_2 dt COV(dtwt_i,dtwt_j>,

- v (TA.28)
Bj = Cov(wt,dtwt_j) = % Cov(wt,dtwt_j).

I rescale 7, p, A\, by defining r,g € V,,,.1 and A € R as follows:
_ 7 _ 5 _ 5
g = —, o= Gy, p, A=, (IA.29)
Ty

11



Proof of Theorem IA.1. I need to prove that a linear equilibrium exists if there is

a solution (g,7, A, 7,, A, B) to the following system of equations:

m 1 1
g = ZNE (A>z) <K B>z T>z)7
(=0
/ ~2 &2
r = Ag, A = ¢'B, g, = g (TIA.30)
min(4,7) i
Ai,j = 1= — Z TikTj—k, B; = 1—/\27“1‘%-
k=1 k=1

Recall that 1p is the indicator function, which equals 1 if P is true, and 0 otherwise.
Also, A,

and r_,. The sum of vectors X, over different ¢ is carried by padding X, with zeros

, 1s the matrix with elements A, ; for ¢, j > ¢; and similarly for the vectors B.,

for the first ¢ entries.

Speculators’ optimal strategy (7)

I begin by analyzing the optimal strategy of an (-speculator, where ¢ € {0,...,m}.
This speculator takes as given (i) the dealer’s pricing rules: dp; = Ay, and z,_;; =
podys—; + -+ + piody,—y for i = 0,1,...,m; and (ii) the other speculators’ trading
strategies. For instance, if another speculator is of type k, he is assumed to trade
according to dxik) = Z;”:k yj(k)dtwt_j. Also, the f-speculator chooses among trading
strategies of the form: da; = vy, dywi—¢ + - - - + Y pdewi—p,. Therefore, the f-speculator

assumes that the total order flow at ¢ satisfies:

(-1 m
dyt = dut + Z ’detwt,j + Z(,yj’t + vf)dtwt,j. (IA31)
j=0 j=t

J
_ . _ VA .
Y= N G=0m gy = e+ Y N, =t

k=0 k=0
=,
(TIA.32)
At t =0, equation (12) implies that his normalized expected profit is:
. s 1 T
o= —5 = —E (/ (we = pe1 — Adyt)dxt) : (IA.33)
Uw O_w 0

12



By construction, the terms d,w;_; are orthogonal to Z;, hence also to p;_;. Hence, dz; is
also orthogonal to p;_1. I now use (IA.31) and the definitions: A; ; = a)T/(dtwt_,-, dywy_j),

B; = a)T/(wt,dtwj) to compute:

T /-1 m
T = E (/ <wt - )\Z’_}/idtwtfi — AZ(’VM + )dtwt 1> Z”YJ rdyw; ])
0 =

=0 Jj=£

= (1A.34)
= ZB]’YJt AZZ’Y@ i3 Vit — AZ fylt—i_% 1Jf}/j7t'
=0 j=/( ,5=L

Thus, I have reduced the problem to a linear—quadratic optimization. The first order

condition with respect to i, for k =/¢,...,m, is:

Bk - A Zr?iAlﬁk - A Z(Q’Yi’t + ’Yz_)Ang = 0. (IA35)

Denote by 7, the (m — ¢ + 1)-column vector of trading weights at ¢. I divide the matrix
A into four blocks, by restricting indices to be either < ¢ or > ¢. With matrix notation,
the first order condition (IA.36) becomes:

B.,—AA

— XA, 2% +97) = 0. (IA.36)

>e.<t V<t

Then, for any ¢-speculator and any ¢, one has:

1

2+ = (Azz)il (XBZZ — AL 7<e) . (IA.37)

This equation implies that the (-speculators have identical weights in equilibrium (previ-

ously denoted by v¥)), and these weights do not depend on ¢. I then have () 4y~ = Voe>

hence:
1 _ _
fy(ﬁ) — (AM) (XBN, — A24,<e ”yd) ~ Vs (TA.38)

Thus, equation (IA.38) reduces the computation of the optimal weights 7) to the
computation of the aggregate weights 7.

I now derive the equation that 4 must satisfy in equilibrium. To simplify formulas,

note from (IA.47) that Ay = &.p, or in block matrix notation A_, , 5., + A_, 7., =
65 p-,- Using this, equation (IA.39) becomes:
-1 (1 .
A0 = (Aze) <XB>Z — 05 ,0>L,) : (TA.39)



To obtain the equation that determines 7, I multiply (IA.39) by N, and sum over all

¢=0,...,m, padding with zeroes where necessary. One obtains:

m m B 1 i
/=0 (=0

After dividing this equation by &,, use g = &iy, r = o,p, and A = &, \ to obtain the
corresponding equation in (IA.30).

So far, I have shown that equation (IA.39) is a necessary condition for equilibrium. I
now prove that it is also sufficient condition for the speculator’s problem, if one imposes
two additional conditions: (i) A > 0; and (ii) for all £ = 0,...,m, the matrix A_, is
invertible. Indeed, the second order condition in the maximization problem above for
the l-speculator is:

A det(A,) > 0. (IA.41)

Normally, one expects that det(A_,) > 0, since economically A is the covariance matrix
of the fresh signals, and the signals dw;_; are independent. But if A is just the solution
of a system of equations, this condition needs to be checked. If det(A_,) > 0, then the

second order condition from (IA.41) becomes A > 0, which is just condition (i).

Dealer’s pricing rules (A, p, A, B)

The dealer takes as given that the aggregate order flow is of the form:

dyt = dut + '70dwt + ﬁldtwt_l + s + ﬁmdtwt_m, (IA42)
where, for £k = 0,...,m, the speculators set:
dyws—, = dwi_p — (p(’;dyt_k +-+ pz_ldyt_l), (TA.43)

with pf constant. (Of course, in equilibrium the dealer will eventually set p; = pi.) 1

combine the two equations:

m m k—1
dy; = duy + Z Vrdwg_g, — Z Vi Z 05 Yt —kori
h=0 =0 =0 (IA.44)

m m m—k
= du + Z Yedw,_p, — Z 0 Vie+i Y-
k=0

k=1 1=0

Because each speculator only trades on the unpredictable part of his signal, dy, are
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orthogonal to each other. Thus, the dealer computes:

k—1
Zt—kt = E(dwt—k | dye—g, - - ;dyt—l) = Z Pit—kWi—kri, k=0,...,m,
i=0

(IA.45)
dp; = Mdys,
where the coefficients p;;_r and ), are:®
pi,tfk = Cov{dwt_k? dyt_k""i), k - 07 , M, 1= OJ 7k - 17
Var(dy: ) (IA.46)
N = Cov(vi,dy;)  Cov(wy,dy,) )
"7 Var(dy,) — Var(dy,)

At the end of this proof, I show that the following numbers do not depend on t: A, p; 4,
A= E:)T/(dtwt_i, dywy_j), Bjy = a;/(wt, dyw;).

Taking these numbers as constant, I now prove the rest of the equations in (IA.30).
First, note that in equilibrium p} = p;. I rewrite the equation for p in (IA.46) by taking
k = 1. Thus, p; = M, and note that dy; is orthogonal on all other dy;_; for

Var(dy:)
k > 0. Hence, from (IA.42) and (IA.43), one obtains:

. Cov(dywy s, dy)  Cov(dawes, X1y Fpdawr—j) 370 Aij¥ (IA.47)
‘ \Er(dyt) \Er(dyt) o | |

Since g = Uiy and r = &, p, one gets r; = (Ag);, or in matrix notation r = Ag. This
proves the corresponding equation in (IA.30). Also, from the equation from A in (IA.46),
one obtains:

Cov(wy,dy,)  Cov(wy, X7ty ydewe;) 7,7 B;

A= — = — = = . (TA.48)
Var(dy,) Var(dy,) 0y

Since A = A gy, one gets A = Z;nzo g;B;, or in matrix notation A = ¢’B. This proves
the corresponding equation in (IA.30).

By computing Ea/(dyt, dy,) and using (IA.42), it follows that &, = ﬁr(dyt) satisfies

~9 _ ~92 m _ . . . ~9 _ ~9 A= . - ~
Gy = 0+ 2150 Aij¥i7y, or in matrix notation &7 = & +4'A5. Since ¥ = g4, one

computes:

o, = YAy + 6, = g'Aga. + 5. (IA.49)

SNote that in principle p; ;—, might also depend on ¢, the time at which the expectation is computed.
However, the formula shows that p only depends on 7 and ¢ — &, and not on ¢ separately.
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2
Y

corresponding equation in (IA.30).

2

u?

which implies 6, = fg,r. This proves the

Since Ag = r, one gets & :

=gro, +6

Now, consider the equation Ay, = E:)T/(dtwt_k,dtwt_g). From (IA.43), dyw;_ =
dw;_j, — (podyt,k + - 4 pkfldyt,l). But d;w;_, is orthogonal to the previous order
flow, hence Ay, = a;/(dwt,k, dyw;_y). Because A is a symmetric matrix, without loss of
generality assume k > ¢, which implies ¢ = min(k, ¢). Since E&(dwt_i, dy;) = pz-éz 1,50,

one obtains:

Apy = 6;\//<dwt—k> dwi—¢ — (podye—e + -+ + Pe-1dyt—1)>

-1 4 (IA.50)
= 1o — ijpk—EJrj 55 = 1L — Zpkfipffi 55-
§=0 i=1
Since r = paJy, one gets Ay, = 1p— — Zﬁzl ry—iTe—;, which proves the corresponding

—

equation in (IA.30). I also compute By = Cov(wy, dywy). From (IA.43), one gets:

B, = Ec\)T/(wt, dwe—g — (podys—e + -+ + pe—ldyt_1)> (TA.51)

= 1=Apo+ -+ pea)

Since A = Ao, and r = pag,, one gets By = 1 — AZﬁ;(l) rj=1-— AZle ri—x. This
proves the corresponding equation in (IA.30).

I now prove that the various pricing coefficients do not depend on ¢. For this, I show
that the following numbers are independent of t: Cov(dwy, dy,1x) for all k; Cov(wy, dysix)
for all k; Var(dy;); Cov(wy, dyw;) for j =0, ..., m; and Cov(dyw;, dyw;) fori,j =0,...,m.

First, I prove by induction that a;/(dwt,dyprk) does not depend on t for £ > 0.
(This is trivially true for k£ < 0.) The statement is true for & = 0, since equation (IA.42)
implies Eg;(dwt,dyt) = 7. Assume that the statement is is true for all i < k. I
now prove that a)T/(dwt, dys1x) does not depend on t. Equations (IA.44) implies that
dy;1 only involves three types of terms: (i) dugig, (ii) dwiig—; for i@ = 0,...,m, and
(ill) dysyg—1-; for i = 0,...,m — 1. Also, the coefficients p; do not depend on time.
Therefore, by the induction hypothesis all these terms have covariances with dw; that
do not depend on t.

Next, I prove that a; = a;/(wt, dy;) does not depend on ¢t. Equation (IA.44) implies
the following recursive formula for all ¢:

m m—k
> P kit (IA.52)
—

1 =

m
ay = E Ve —
k=0
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But Lemma IA.1 below implies that a; does not depend on ¢, provided that:
m—k
1> B > > B, >0, with B = Y piFes (IA.53)
i=0

Therefore, ES\//(wt, dy;) does not depend on ¢. This result also implies that E:)T/(wt, dyiir)
does not depend on ¢ for any integer k. To see this, note first that the case k£ > 0 reduces
to the case k = 0. Indeed, a;/(wt, dyik) = a;/(wt%, dyiar) — Zle a;/(dwtﬂ-, dyesr),
and I have already proved that all these terms are independent of t. Also, the case k < 0
reduces to the case k = 0, since a;/(wt, dy;—;) = a)T/(wt_i, dy, ;) if i > 0.

I now prove that \//;r(dyt) = > o7 Cov (dtwt_k, dyt) does not depend on . Since
dy; is orthogonal to previous order flow, V;r(dyt) = o7k Cov (dwt,k, dyt). But these
terms have already been proved to be independent of ¢.

Finally, one uses the results proved above to show that B;; = Ec\)T/(wt,dtwj) and
A= E\OT/(dtwi, d;w;) do not depend on t. Indeed, I have shown that E\c;/(dwt, dy )
and a;/(wt, dy,_1) are independent of ¢, and all is left to do is to use the fact that dy;
are orthogonal to each other.

So far, I have provided necessary equations for the equilibrium. I now prove that
the conditions in (IA.30) except for the first one are also sufficient to justify the dealer’s
pricing equations, if one imposes an additional condition: (iii) the numbers f; =
Zf:ok Pikss satisfy 1 > B > -+ > f,, > 0. But, as shown before, condition (iii)
ensures that the equilibrium pricing coefficients are well-defined and constant. More
generally, Lemma TA.1 can be used to replace condition (iii) with the condition that the
(complex) roots of the polynomial Q(z) = 2™ + 312"  + -+ + Bp_12 + B lie in the
open unit disk D = {z € C | |z| < 1}. The proof is now complete. |

Lemma IA.1. Let X4,...,X,, € R, and consider a sequence X; € R which satisfies the

following recursive equation:
Xi+60Xia+ -+ BpnXimwm = a, t>m+ 1. (TA.54)

Then the sequence X; converges to X = regardless of the initial values

X1, ...y Xom, if and only if all the (complex) roots of the polynomial Q(z) = 2™+ 12" 1+
oo+ Bm-12 + B lie in the open unit disk D = {z € C | |z| < 1}. For this, a sufficient

condition s that the coefficients [5; satisfy:
1> 06 > -+ > B, > 0. (IA.55)
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Furthermore, if a = a4 is not constant, then under the same conditions on (;, the

difference X; — j converges to zero, regardless of the initial values for X.

(873
1+(Bi++Bm

Proof. First, note that X is well-defined as long as 1 + 31 + - - + B, # 0. Indeed, if
1+ 61+ + Bmn =0, then Q(2) would have z = 1 as a root, which does not lie in the
open unit disk D. Denote by qi, ..., gn the roots of Q(2). Let Y; = X; — X. Then, the
new sequence Y; satisfies the recursive equation Y; + 51Y;_1 + -+ - + B Yi—m = 0, which

has the following general solution:
V, = Cigi + - Cudl,, t>1, (IA.56)

where C,...,C,, are arbitrary complex constants.” Thus, Y; is convergent for any
values of C; if and only if, for all i = 1,... ,m, either ¢; € D or ¢; = 1. But when ¢; =1
for some i = 1,...,m, one has 0 = Q(1) = 1+ S + - -+ + B, hence the value of X is
not defined. This completes the proof of the “if and only if” statement.

The statement that (IA.55) implies that all roots of @ lie in D is known as the
Enestrom—Kakeya theorem. For completeness, I include the proof here. First, I prove
that all roots of @ must lie in D = {z € C | |z| < 1}. By contradiction, suppose that
there exists z, a root of ) with |z,] > 1. Then, I also have (1 — z,)Q(z.) = 0 which
implies 2z = 3, + Z:':Ol(ﬁz — Biy1)2"" where 3y = 1. After taking absolute values,
one gets [2I""] < B, + Z:'r:ol(ﬁz‘ = Bu) |27 < Bl + Z?;)l(ﬁi = Bin)|2 =
(B + S8 - Biv1)) |20 = |2"|. Thus, [2"!| < [27"], which is a contradiction. I
have just proved that all the roots of ) must lie in D. Finally, I show that the roots of
any Q(z) = 2™+ B12™ 1 4+ - + B_12 + B satisfying (IA.55) must actually lie in D.
Let r < 1 be sufficiently close to 1 so that I have r™ > B17™ 1 > ... > B,,_1r > 5, > 0.
Then, the polynomial Q,(z) = Q(rz) must have all roots in D. Let 2, be a root of Q.
Then, QT(ZT*) = Q(z) = 0, which implies that 2 ¢ D, or equivalently z, € »D. But
rD C D, and the proof is now complete. [ |

Proof of Proposition IA.1. Since the forecast error variance equals ¥; = Var(w; —
Pio1) = E((wt — pt_l)z), one computes the derivative of ¥, as follows:

1 2
& E<2(dwt+1 —dpe)(wy — pe—1) + (dwepr — dpy) >7
_2Cov(wt7 dpy) PN Var(dpy)

5 =
(IA.57)

dt v dt

"To obtain real values of Y;, one needs to impose the following conditions: (i) if ¢; is real, then so
is C;; and (ii) if ¢; and g; are complex conjugate, then so are C; and C;.
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The pricing equation (IA.46) from the proof of Theorem IA.1 shows that Cov(w;,dy;) =
A Var(dy,) = )\05, therefore using dp; = Ady; one obtains:

Var(dp;) Cov(wy, dpy)

2_2 2
P = % = No, = 0, (IA.58)
The equation (IA.57) now implies that ¥} = o7, — o2, which finishes the proof. |

Proof of Proposition IA.2. Compared to the setup of Theorem IA.1, here there are
only speculators with zero lag (¢ = 0). Therefore, to finish the proof of this Proposition,
I need to show that the system in (IA.10) reduces to the system in (IA.15). With the
usual notation, the system in (IA.10) translates into (IA.30).

When all speculators are of type ¢ = 0, and there are Ny = N of them, equa-
tion (IA.30) becomes:®

A ! + ! B A A 'B 52 %

—_ = — r = = =

N9+ 1B 9, g8, 0y =10

min(i,j) p (IA.59)
Aij = Z TiekTj—k: By = 1-=A) riy
k=1

The first two equations imply Ag = r = % % B. When ¢ = 0, this equation implies
ro = /1\ Ny1- When i =1, one gets r; = %NL( —Arg) = % (N]J\:l) By induction, one

gets (1 =0,...,m):

1 N
L= 1A.60
" A (N 1 1)t ( )
This proves the equation for p; in (IA.15). One also obtains:
[ — (TA.61)
Y (N1 '
which proves the equation for B; in (IA.15). Moreover, one computes ¢'r = ¢'B % .
But ¢'B = A, hence:
N
'r = ——. IA.62
9T NT (14.62)
This implies:
~2
3 o2 3 3 3
G, = g (N+1)52, or &, = VN+14,, (IA.63)

8Note that except for the first equation, the other equations in (IA.59) are the same as in (IA.30).
I also provide a direct derivation of the first equation in the proof of Proposition TA.3.
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which proves the equation for &, in (IA.15). Using the formula (IA.60) for r, I use (IA.59)

to compute (7,7 =0,...,m):

1 N (N + 1>2min(i,j) -1
A2 N2 (N + 1)itd

Ay =1 , (IA.64)
which proves the equation for A, ; in (IA.15). Finally, the two equations, r = Ag and
A = ¢'B, after rescaling are equivalent to &jp = A% and 62)\ = B’3, which finishes
the proof. [ |

Proof of Theorem IA.2. 1 use the notations from the proofs of Theorem IA.1 and
Proposition TA.2. The idea is to study the behavior of (A, A,r, g) around A = 1, but
without yet imposing the condition A = ¢’B. To do that, define the following numbers:

N (N + 1)2min(z‘,j) -1

AV =1, — — Ay =1
%,] =J N +92 (N + ]_)H—] ) 0 )
, (TA.65)
0 N o _ N (m—i+1)N+1
' (N + 1)1’ gi N+1 (m+1)N+1
One verifies the formula:’
A%° = 0 or, equivalently, ¢° = (AO)ATO‘ (IA.66)
For € < 1, define the following variables:
1 N (N 4 1)2minG3) 1
A = 1, — — , A = V1-—
v 7 1—e N+2 (N 4 1)its c (1A.67)
1 N '
ré¢ = gE = (AE)_l TE,

P T (N4 )i

whenever A is invertible. Using (IA.66), it follows that the variables defined in (IA.65)
are the same as the variables in (IA.67) in the particular case when ¢ = 0. In other

words, given a solution (A, B, A, g,5,) to the system (IA.30), if one defines:
e = 1-A% (IA.68)
it follows that the variables (A, A, r, g) satisfy:

A=A, A=A r =1 g=4g°. (IA.69)

9This can be done either directly, or by using the method described below, which involves recursive
computation of the inverse matrix, (A%)~!. Then, one verifies by induction that (A%)~1r0 = ¢0.
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Multiplying the equation for A = A® from (IA.67) by A> =1 — ¢, one obtains:
ANA = A% —el, (IA.70)

where I is the identity matrix (I;; = 1;-;). This implies A~ = (A% — 8])_1. Multi-

0

plying this equation to the right with r = %r , one obtains:

L= @-enh (IA.71)
Multiplying this equation to the left with B’, and using B’g = A, one obtains:

1 = B/(A°—el) " (IA.72)

This equation determines ¢, or equivalently A = /1 —e. I make this equation more
explicit by observing that the inverse matrix (AO —el )_1 has the following series ex-

pansion:

(A° —el) ™ = (AN 4 e(A) 24 2(A) B 4o, (IA.73)
Multiplying this equation to the left by B’ and to the right by 7°, one obtains:

1

1 =B (A —cl) " = BA)Y " +eB(A") " + 2B/ (A0 + ... (IAT4)

1

N Since (Ao)flro = ¢", one obtains:

One computes 1 — B'¢° =

1
(m+1)N +1

= ¢e¢B (AO)_lgO + 2B’ (AO)_290 + 3B’ (AO)_3g +ee (TA.75)

I next determine sufficient conditions for the existence of an equilibrium. From the
previous discussion, one needs the following conditions: (i) ¢ < 1 (A is well-defined
and A > 0); (ii) (AY — &) is invertible or equivalently A = A° is invertible (g is well-
defined); and (iii) the numbers fj from the proof of Theorem IA.1 satisfy (IA.53) for
k =1,...,m (which implies Cov(wy, dy;) is independent of ¢). With the current notation,

condition (iii) requires that:'°

—k
1> B > o> B >0, with By = ) rigrgs (IA.76)
=0

00ne can check that condition (iii) is implied by the condition g; > go > -+ > g > 0.
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I also introduce the following condition that implies (i) and (ii):

: ) 1
Equation (IA.75) has a solution ¢ € (O ' NontZP e > (IA.77)
8 m+1
Since N(mgz)Q + (”;121)2 > 1, clearly (IA.77) implies € < 1, which proves (i). The difficult

part is to show that (IA.77) also implies that (A% — &) is invertible, which proves (ii).
For this, one needs a better understanding of the inverse matrix (AD)_l. Denote by
A(()m) € M,,;1 the matrix A° from (IA.65) by making explicit the dependence on m.
Since A? satisfies A7, = 1,—; — i od) g eri_g, it follows that the block (A(()m))n,
which is obtained A(()m) by removing the last row and the last column, is the same as

A?m_l). One then obtains:

A0 =
(m)
Ay Cm)

A0 .
(m-1) %m) ] , (IA.78)

for some m-column vector a(,), and scalar a(,). Write the inverse matrix H,) =

(A(()m))*1 also in block format:

Hll hm

Hpy = [ (m) )]. (IA.79)
/
h(m) Tl(m)

1
= ) = Ay (A% 1)) Ay
By = =) (A1) @m). (IA.80)
1 _ 0 -1 h(m)h/(m)
Himy = (Auey) — + nom
By induction, one verifies that:
o = LD
N2 . (TA.81)
My = m[o, 1, m—1].

Using the equations above, one can now prove various useful formulas. As a first result,
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I prove by induction that:

(m+1)N+1

det(Ay) = P Ty

(TA.82)
For m = 0, the equality is true, since in this case A(()o) = 1. Suppose it is true for m — 1.

From the theory of block matrices,

0
det(A? ) = det(AY det —a) (A? - :—det<A(m1)
et ( <m>) et ( (m—n) et | A(m) %n)( (mfn) A(m) ;

T(m)
(TA.83)
which together with the formula for 7,y from (IA.81) proves the induction step. Another
useful result is:

ij 20, 47=0,...,m. (IA.84)

Indeed, one uses the recursive formula H, (172) = Hp—1)+ and the explicit formulas

h(m)hl(m)
N(m)
in (IA.81) to verify by induction that all entries of H = Hy,,) are positive.'!

In order to prove that the matrix (A° — 1) is invertible, I rewrite equation (IA.85):
(A —eD)™" = H (14 eH + 202+ 81 + ). (IA 85)

Thus, if one can show that the right-hand side is a convergent series (in the space of
matrices), then its limit is a matrix that coincides with the matrix inverse (AO —el )71.

To prove convergence, I use the infinity norm, ||H ||, which is the maximum absolute

row sum of the matrix, ie., H = max Z] " o|Hi |, . Thus, if one can show that

=0

lleH||oo < 1, this proves condition (11).

I now search for an upper bound for ||H||~. For instance, I show that || W H

%(1 + ON%)). For this, define fz(m) the (m + 1)-column vector given by (ﬁ(m))i =
(N+1)((m+1)N +1) > o(Hmy) ;- This is proved by induction to be a polynomial
in N of degree 3. Denote by C,, the vector of coefficients of N* in l_z(m). Note that
max hgny = N?(m + 1)|[H|w(1 4+ On+)). At the same time, one has max hy,) =

i=0,...,m i=0,...,m

N3Z n&%)’(m (m), which implies Hme = m .max Cim (1 + ON%)). Now

one computes C(g) = 0, and for m > 1 one uses the recursive formulas above for H to get

. . Cim Cime : .
a recursive formula for C'. More precisely, <m(—+i> = (%) +ifori=0,....,m—1,
(] 1

and (Tﬂ) = 3. By induction then, one shows that maX(C’(m))i < W, which

implies the upper bound stated above for ||H||,. By similar methods, one verifies a

"The inequality is strict except that H;o=Hp; =0 fori>0.
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sharper estimate:

1 1
= R — IA.
S 3T mrON (1A.86)

H
N(m + 2)?

[e.9]

Note that condition (TA.77) implies ¢ N (m+2)? < ﬁ, which together with (TA.86)
8

(m+1)N

implies:

elHllo < 1. (IA.87)

This proves that the series 1 +cH +&?H? +e3H3 4 - - - is convergent, and that the limit
coincides with (A° —ef )_1.
Next, I analyze how well (A, r, g) approximate (A% 7%, ¢%). Recall that:

, (IA.88)

where from (IA.63) one obtains:
G, = VN+16, = VN+122, (IA.89)
Ow

Note that in the statement of Theorem IA.2, I have defined (i =0,...,m):

. G, m—i+1 , 1 N .1
0 _ (R S L TA.90
BTN+ mrl 0 T 5 (N G, (1A.90)

Condition (TA.77) implies ¢ < which shows that ¢ = ON(%). Also, since

1
N(m+2)2 | (m42)2)
8 + m+1

A =+/1—¢, it follows that A =1 — ON(%). Thus, one obtains:
e=0n(%), A= VIi-ec=1-0x(3) (IA.91)

Now, from (IA.88) and (IA.90), one gets & = A = 1 — Oy(%). This proves the

approximate equation for A in (IA.17). From (IA.88) and (IA.90), I also compute S—é =
:—5), since Y = ﬁ But r = £, which implies /;L? =+ =1+ On(%). This proves
the approximate equation for p; in (IA.17). Finally, from (IA.88) and (IA.90), one gets
L= gL - = g—é (14 On(%))- I now show that 5_16 = On(1), which proves the

0
Vi N+l m+1

approximate equation for 7; in (IA.17). Since 1) = Op(1), it is enough to show that

9i — g? = On(1), or from (IA.91) it is enough to show & — ¢? = On(1). If I combine

equations (IA.71) and (TA.85), and use (AO)_lro = ¢°, one obtains:

=l

= (1 +eH +H? +*H? + - ) q°. (TA.92)
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Therefore, one gets 4 — ¢° = (eH + e?H* + 3H? + --+) ¢°. But (IA.87) implies that
the convergent series of matrices is of the order On(1), hence it remains of order On(1)
when multiplied with ¢° = Ox/(1). [ |

Proof of Proposition IA.3. Following the proof of Theorem TA.1, consider a spec-
ulator who must choose the weights 7;; on d;w;—;. He assumes that all the other
speculators use 77, hence with an aggregate weight of (N — 1) on dsw;—;. Then,

equation (IA.33) for the speculator’s normalized expected profit at ¢ = 0 becomes:

- U 1 T
Ty = 0—2 = 0—2 E /0 (wt_ptfl_)\dyt)dxt

= E (/0 (wt — Ai(%’t + (N — 1)7f)dtwt,i) Xm:’yj,tdtwtj> (IA.93)
— gy
= Z Bjvje — A Z Yie + (N = 1)97) Ai v
i,j=0
The first order condition with respect to v, for £ =0,...,m, is:
By, — X i(zm + (N = 1)) A = 0. (TA.94)

Since this equation is true for all speculators, one obtains that all ~;; are equal and

independent on t, i.e., v; = ﬁ = % Using matrix notation, B = A(IN + 1)A~, hence
_ YN+l g%

B = MHA5'? Thus, N+1

+—=B = MA7, which implies B — \Ay = NLH. Thus, in
equilibrium the normalized expected profit is equal to:

- < - B B.
o= Z (BJ - )‘ZAJ‘,M) vio= N ji 17 (IA.95)
Jj=0 i=0 =0
From equation (IA.61), B, = (NH)] One computes:
~ T - - n Vi
Ty = ZTFOJ Z W’ (TA.96)

I
o

j=0 J

12Since A = A\, and g = &i, one gets %B = %A g, which provides a direct proof of the first
“ v
equation in (TA.59).
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which proves (IA.18). The ratio of two consecutive components is:

Tog+1 _ Yj+r 1 gir1 1
= = ) IA.97
7~T07j Vi N + 1 g; N + 1 ( )
But in the proof of Theorem IA.2, I show that g; = On(1). Thus, %jl = ON(%),
which finishes the proof. [ |

Proof of Proposition IA.4. Let oy, — 02 = 0., (1—N\°6,) = 0,,(1 — A?). In the proof
of Theorem IA.2, one has 1 — A2 = ¢, and this is strictly positive according to the
condition (IA.77). Moreover, from (IA.91), one has ¢ = Oy(+), which finishes the first

part of the Proposition.

For the second part, one only needs to prove the equation SRy = W when
k=0,...,m. From the definition of SR, one obtains:
A Cov(dw;_y, dy;) Apx Var(dy,) 5
SRy, = = = A = — IA.98
k o2 dt o2 dt POy = N UA9S)

where the second equality comes from (IA.46), and the last equation comes from (IA.15).
[ |
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Figure TA.1: Optimal trading weights

Consider the model with m € {1,2,5,20} lags and N € {1,5,100} identical speculators.
(continuous line)
(m—i+1)N+1

The figure shows the rescaled aggregate weight g; = N; \/A}—H o
. . . . 0 o N
against the lag ¢ = 0,...,m, and compares it with the value g;' = 5

(dashed line).
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Figure T1A.2: Profit from lagged signals

The figure shows the percentage of a speculator’s profit from each his lagged signals when
there is competition among N € {1,2,3,5,20,100} identical speculators. In these examples,
the speculators can trade up to m = 5 lagged signals.
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2 Fast, medium, and slow informed trading

2.1 Benchmark model with m = 2 lags

I consider the benchmark model in which speculators can use signals with m = 2 lags.
Thus, there are three types of speculators: fast trader (FT), medium trader (MT), and
slow trader (ST). Recall that ¢t — & denotes t — kdt.

I look for an equilibrium with the following properties: (i) the equilibrium is sym-
metric, in the sense that the F'T's have identical trading strategies, and the same for the
MTs and STs; and (ii) the equilibrium coefficients are constant with respect to time. For
simplicity, I assume that all coefficients are constant, but the analysis carries through
with non-constant coefficients as well.

To solve for the equilibrium, in the first step the speculators’ trading strategies are
taken as given, and I compute the dealer’s pricing functions. In the second step, the
dealer’s pricing functions are taken as given, and I solve for the optimal trading strategies
for the FTs and STs.

Dealer’s pricing rules (A, p, A, B)
According to the model timeline, before trading at ¢ the dealer observes dw; o (or

equivalently w;_s). Then, she observes the order flow dy; and sets the price p; at which

trading takes place:
Pt = E(wt ’ It7 dyt); with It = {dyt—17 dyt—Qa .. } (IA99)

The aggregate order flow satisfies:

dyt = ’det —+ ﬂ(/i—\’lz]t_l + ﬂa—:l/l]t_g + dut, (IAlOO)

where 7, 1, and 7 are the aggregate trading coefficients, &Z;H is the unexpected part

of dw;_; (the component orthogonal on Z;), and cT[uH is the unexpected part of dw;_s:

—~ —

dw,—; = dw, —(L\Ut—l, dA{Ut = dwy_o —&\UH, with
(IA.101)

a7;11r/—1 = E(dwt—l |It), al\Ut—2 = E(dwt—Q |It)~
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I introduce the following notation, where for simplicity, the ¢ subscript is omitted:

—~ —~

E[(dw;)?] E[dw;dw, ] E[(dw;_1)?]
= a0 T a0 T T aw
v o v (IA.102)
- E[wtdwt] - E[wtdwt_l] - E[(dyt)2]
Bi==0w 2= "auw VT Taa

Note that dy;_, is orthogonal on Z;_;, hence it is also orthogonal on dy;_». Also,

dw;_1 is orthogonal on Z; ;. The dealer computes:

Cov(dw;_1,dy;—1)

az\Ut—l = E(dwt—l ’ dyt—l) = pdy;—1, with p =

Var(dy;,—1)
= ) Cov(dw;_o, dy;_
dw;—p = E(dwtﬂ | dytfladyth) = Pldytq‘i‘l)dyt—z, with PI = \(/ar(td; ?;t 1)
t—1
(IA.103)
Using (IA.100) and (IA.102), one obtains:
Cov(dwy,d 0
Y = 74 A+ P Ayt 2ipAy 482, p = oddendy) T
Var(dy) Y (IA.104)
, _ Cov(dwy—y,dy,) _ Cov(dw,—y,dy,) _ A1 + vAs,
P Var(dy,) Var(dy,) Y ’

Next, one computes the price p;, = E(wy|Zy, dy;) = pe—1 + E(wy — pe—1|Zs, dy). But

dy; and w; — p;_1 are orthogonal on Z;, which includes p;_1, therefore one obtains:

P = P+ Ay, (IA.105)
where: Cov(utn. dup) 5 5
ov(wy, dyy Y+ pbL + VD
A= = . [A.106
Var(dy;) Y ( )
Note that (IA.104) and (IA.106) imply that:
E [dwtdyt] E [dwt_ldyt] ’ E [wtdyt}

30



Using (IA.107), one obtains the following formulas for A;; and B;:

E [(dwt - det)2]

= 1-20°Y +p?Y = 1-p%,

oZdt
E|(dw; — pdyy)(dwy_1 — p/dy, — pdy,—
A = (d ) gtz(lit : )] _ —p'pY = pp'Y + pp'Y = —pp'Y,
El(dwi_1 — p/'dy, — pdy,1)?
Ay = [( Wi—1 gQ(?ﬁ PAYt 1)] = 14 0% + p2Y — 202V — 202V = 1 - p%Y — p%,
E [wt(dwt - pdyt)]
B = o2 dt = 1=pW,
E dw,_1 — p/dy; — pdy,_
B, _ [wi(dwy r/dy. = pdy )] LAY Y.
o2dt
(IA.108)
I introduce the following notation:
/
A
a=p3 b=opn c=pp S=p% r=5 R=2Z2
p p
(IA.109)
Using (IA.104) and (IA.108) one computes:
Y = a, ppY = ra, oY = r?a,
AH = ].—CL, A12 = —ra, A22 = 1-@-7’2@,
By = 1— Ra, By = 1—1rRa— Ra,
b(l—a
ra = ppY = bAy+cAp = b(l—a)—cra = r = a((l—i-ci’
Ra = pA\Y = a+bBy+¢By = a+b+c— Ra(b+c+re) (IA.110)
. p_ a+b+c _ (1—#0)(0L+b+c)7
a(l+b+c+re) a(l+¢)24+bla+c)
a=pY = a>+b(1—a)+c*(1—a—r%a)+2bc(—ra) +§
5 _ (1—a)(a—c)(a— (%))
- :
One also computes:
b(1 - a) (1 = a)(al1 + 0 — 12(1 — )
11 a, 12 T 22 a(l + c)? )
_ l—a+rec _1—-a—r(a+d)
P it bt etre ? l+b+c+re’
(TA.111)
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One needs the variances p?Y = a, §, A;; = 1 — a and Ay, to be positive, which is

equivalent to:
max{ (%)",¢*} < a < 1. (IA.112)

Speculators’ optimal strategy (v, u, v)
Consider a FT, indexed by ¢ = 1,..., Np. At t = 0 he chooses a trading strategy of the

form:

dr! = ~'dw; + w'&fut_l + uia@vut_g, (TA.113)

where dw and dw satisfy:

az}tfl = dw;—1 — pdy;-1, a\{ﬂt72 = dw_y — p'dys—1 — pdys—o, (IA.114)

with fixed coefficients p and p’.!3 The aggregate order flow is of the form:

—~

dy, = Adwy + jidw,_y + vdw, 5 + du,  with (IA.115)

Y=ty R=ptpT, 7= U4

FT i takes as given the coefficients v~¢ and p~?, and assumes the following functional

form for the price:
pe = pi—1+ Ady, (IA.116)

with fixed coefficient A\. The normalized expected profit of FT 7 at t = 0 is U% E fOT(wt —
pe)dxt:

T — = . o~ ==
o= = E/ [wt — Pi_1 — )\(ﬁdwt + pdw;_1 4+ vdw_o + dut)} <7’dwt + p'dw,_q + Vldwt_2>
0

=~ — My + MBl - /\,uiﬂAH — /\(,uiﬂ + l/’ﬁ)/hz + V' By — A\ Aso,
(IA.117)

13T equilibrium, dw;_; and dw;_» are, respectively, the components of dw;_; and dw;_» that are
orthogonal to the information set Z; before trading at ¢.
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where the coefficients A;; and B; are computed by the dealer. The first order conditions

to maximize 7% are:

L=A('+7) =0,
BQ - )\(,M + ﬂ)Alg - )\(Vz + D)AQQ = 0.

The second order condition with respect to ¢ is that A > 0. The Hessian matrix for the

variables other than v is —A, where:

All A12
A12 A22

A = . (IA.119)

The conditions in (IA.112) must hold in equilibrium, hence one obtains the following
inequalities:
(1 —a)*(a(l +c)* —b?)

AH > 0, A22 > 0, det(A) = a(1+c)2 > 0. (IA120)

These inequalities show that —A is negative definite, hence the second order condition
is satisfied.

Note that the first order conditions for MT i are the same as the last two equations
from (IA.118), as 7; does not appear in these last two equations. This implies that the
MTs trade with the same coefficients p* and v as the FTs. The situation is different
for the STs, however, because the last equation in (IA.118) changes when u’ = 0. The

first order condition for ST 7 is:
B2 - /\ﬂAlg - )\(VZ + D)AQQ = 0. (IA121)

I search for a symmetric equilibrium in the sense that each type of speculator has the
same optimal strategy. Define by N the number of speculators who trade on lagged
signals (with lag one), and by Np the number of speculators who trade on double-lagged

signals (with lag two):
N = Np+ Ny, Np = Np+ Ny + Ns. (IA.122)

As explained above, one expects the coefficients p and v to be the same for the FTs and
MTs, but the coefficient v is not the same for the MTs and STs. I keep the notation v
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for the FTs and MTs, but denote by v/ the coefficient for the STs. One then has:
¥ = Np7, i = Nppu, v = Npv+ Ngv/' (TA.123)

The first order conditions in (IA.118) and (IA.121) imply the following system:

(N + DpAn + ((Np + v+ Nsv') A = B, (IA.124)
(NL+1),LLA12+((NL+ 1/+N51/) = %7
NL/LAlg + (NLV + (NS + 1) )Agg = BT
Taking the difference between the last two equations, one obtains:
A
V- = A—” : (IA.125)
22

I now express the first three equations in (IA.124) in terms of 7, i, and . Using (IA.125),

one has v = Nyv + Ngv/ = Npvy + Nsﬁ”,u, hence one computes:

yoo Ly Nedw oo, Lo Nide
Np  NpAxn'’ Np  NpAx'’
Np+1_ NgAp

I/ — Xt A )
Np Np A"
= (Np+Dpdis+ (Np+ 1)+ Ngv/') Ay =

= (Np+1)v+ Ngv/' =

Np+1
Np

(NL/LAlg + DAQQ).
(IA.126)

Taking the difference in (IA.124) between the second equation multiplied by Ajy and
the third equation multiplied by A;s, one obtains:

B A By A
(NL + 1)(14111422 - A%Q),U/ = 1)\ 22 - 2)\ 12. (IA127)

Using (IA.126) and (IA.127), the system (IA.128) implies (with the notation in (IA.109)):

Np+1 1
a — =
Np R’
bl (AnAm—Au)b —31222——32;;‘12, (TA.128)

This system can be solved numerically.
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2.2 Learning from order flow

I now assume that the STs are able to learn about the lagged signals by watching the
order flow. Thus, the STs observe the aggregate order flow dy, ; after trading at t — 1
and receives the double-lagged signal dw;_5. Using all this information, before trading

at t the last ST can observe the following component of the lagged order flow:
dy? | = ydw;_q + du;_;. (IA.129)
The information set of STs before trading at ¢ is:
Ki = {dw;_o,dw;_s,...,dy;1,dys_o, ..., dyd |, dyd,, ...}, (TA.130)

Using this information, STs form a more precise forecast about dw;_; than the dealer’s

forecast (Tz\ut,l. The dealer’s forecast satisfies:

Cov(dwy;_1,dys—1)
Var(dy,—1)

dwy = E(dwi_y | dysm1) = pdy—y, with p = (IA.131)

—~0 —~0
Denote by dw,_, the last forecast of the ST, and by dw,_; the part of this forecast that
is unexpected by the dealer:

—

—~0 —~0 —~0
dw, ; = E(dwt_l | ICt), dw, ; = dw, ; — dw;_;. (TA.132)

One computes:

—~0 0y _ 0 : _ Cov(dwy_y,dy) ) gl
dw, | = E(dwt_l | d?/t—1) = pody;_,, with py = Var(d? ) = it
(IA.133)
It follows that &Tuf,l satisfies:
dw, ; = pody;_; — pdy;_1. (TA.134)

Thus, I assume that ST j has a trading strategy of the form:
. ~0 =
de; = phdw,_; + v dw,_s. (TA.135)

—~0 —0 —
Since the STs trade on dw, ; = dw,_; — dw;_1, the optimal trading strategy of

the FTs and MTs must also include a term proportional to the difference between
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dw;_1 — @S_l, which is the difference between the lagged signal (which they observe
precisely) and the STs’ forecast. But this last difference is the same as dA[Ut_l — (/i\[ui)_l,
therefore it is equivalent to assume that the trading strategy of the FTs and MTs
includes, besides a term proportional to cfl:c/vt,l, also a term proportional to cT{uf,l. Thus,

FT 7 has a trading strategy of the form:

—~

. L~ . ~0 =
dz, = ~'dw; + p'dwe—s + podw,_; + v'dw;—s. (TA.136)

Dealer’s pricing rules (), p, A, B)
The dealer regards the order flow as being of the form:

—

— —0 =
dy, = ydw, + pdw_1 + fodw, ; + vdw,_o + duy, (TA.137)

where 7, [i, fig, and U are the aggregate coefficients of all speculators. As in (IA.102), I

introduce the following covariances:

E[(dw,)? E [dw,dw, - E[(dw;—1)?
All = M’ A12 — |: w; Wy 1:|7 A22 _ |:( ,L;)t 1) :|7
det det O'wdt
E [w,du E [w,dw; E[(dy;)?
b= [w;—dltﬂ’ B = [wtzzl); 1]’ Y= [(iitt) }’
o T Tl (IA.138)
—~0,2 —~ 0~ ~0=
A — E[(dwt)} B E[dwtdwt] B E[dwtdwt_l}
00 — O'lzvdt ) 01 — O'?Udt ) 02 — O'adt )
B, — M V. — E[(dy))] 7 E[dydy}]
0 o2dt 0 o2dt ' 0 o2dt
Equation (IA.137) implies new formulas for Y, p, p/ and A:
Y = 3+ P An + iAo + 7 Ag + G5 + 20f0An + 2i7 Arz + 2[io7 Aga,
_ Cov(dwy,dy,) 3
~ Var(dy,) Y’
/ — Cov(dwt—lﬂ dyt) _ COV(&TL/Ut_l, dyt) _ [I’All —|— ﬁvol —|— ]7A12 (IA139)
P Var(dy;) Var(dy,) Y ’
\ Cov(wy,dy,) 7+ By + figBo + 7 Bs
~ Var(dy,) Y '
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Similar to (IA.109), define:

a = py, b= pp, bo = pho, c=pr, 0 =p
As in (IA.108) and (IA.110), one computes:

Y = a, § = a—a®>—b*Ay — biAg — ¢? Agy — 2bbyAgy — 2bc A1y — 2bgcAgs,

Ay = 1—a, A = —ra, Apy = 1 —a—ra,

By = 1— Ra, By = 1— Ra— Rra,

bA11 + bpAps + CA12, R a+bB; + byBy + cBQ'
a a

r =

(IA.141)

—~0
I now compute the covariances that involve dw, and dy?. First, note that Yy = Z.
From (IA.129) and (IA.133) it follows that:

Yo = Zy = +a6., pYy=d+0, p = %:P—Qi(sx
2 “ (IA.142)
Y, = 7 Y, = 2V, = poy =
Poto 7 PPoto a, Poto Po”Y 1o
Using (IA.142) one computes:
E[(pody? — pdye)”] @’
Ay = = p2Yy — 2p0pZo + p2Y = —
E[(pody; — pdy:) (dw; — pdy)] a?
Ay = — 007 — popZo — p7 - P?Y = -
01 o2t PoY — popLo — pY +p 215 @
E dy? — pdy, ) (dw,—y — p'dy; — pdy;—
4q, — Ellpodsl = pdys)( ;U;di Py — pdyi—1)] g Zo— oY + 0¥, = —ra.
E[we(pody? — pdyt) ] a*
0 o2 di poY = P s e
(IA.143)
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Speculators’ optimal strategy (v, p, po, V)

The normalized expected profit of FT i at t =01is > E fOT(wt — py)day:

i 1 T 3 o~ _ —~0 =
Tp = = E/ [wt — D1 — )\(’ydwt + pdwy—q + figdw,_; + vdw;_o + dut) .
w 0

, o~ L ~—0 ==
. (7 dw; + p'dwe—q + podw,_; +v dwt—2> (TA.144)

= 7' =M+ p' By = M pAsy — Ao + poin) Aot — Ap'v + V') A
+ 115 Bo — MptoitoAoo — Mo + V' fio) Aoz + V' By — A'p Ay,

where the coefficients A;; and B; are as in (IA.138). Note that F'T i regards the aggregate
coefficients as functions of his own coefficients: 5 = 7' +~v7%, i = p’ +p~", fio = pb+ g,

and 7 = V' + v

The first order conditions to maximize 7% with respect to 7%, u’, ) and v are:

1= +%) =0,

By — Mp* 4 i) Ay — A + fio) Aor — AM(v* +0) A1z = 0,
By — Mp' + 1) Aot — A + fio) Ago — A" + ) Agz = 0,
By — Mp' + 1) A1g — AN + fio) Aoz — AV + ) Age = 0

(IA.145)

The first order conditions for MT i are the same as in (IA.145), except for the first
equation. The first order conditions for ST ¢ are similar to the last two equations
in (TA.145), except that the coefficient u* = 0:

{ By — MiAor — Myt + fio) Aop — A(V' + 7)Agy = 0, (IA.146)

By — MNiAyy — M + fig) Agg — MV + D) Agy = 0
Note that the Hessian matrix with for the coefficients other than ~* is — A, where:

All AOI A12
A - AOl AOO A02 . (IA147)
A12 AOQ A22

Recall that in a symmetric equilibrium speculators of the same type have identical
coefficients in their trading strategies. Denote by v, i, to, and v the coefficients of the
FTs, which are the same as for the MTs (except for 7). Denote also by py and v’ the
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coefficients of the STs. The aggregate coefficients then satisfy:
’7 = ]\/vF’}/7 ﬂ = NLM, ﬂo = NLNO+NSM67 v = NLV+N5V/. (IA148)

Putting together the first order conditions for all speculators, it follows that in a sym-

metric equilibrium:

N+l 1

T =

Mo aAn + (no + fo) Ao + (v + 7) A = 5§,

Nt 5 Aoy + (o + fio) Aoo + (v + D) Aoy = 22, (IA.149)
Mt A + (o + o) Ao + (v + 9)An = B,

iAot + (h + fio) Ago + (V/ + ) Agy = 52,
ﬂAlQ + (ME' + IaO)AO2 + (V/ + D)AQQ = %

\

In this system take the difference between the fifth and third equations, and the sixth

and fourth equations, to obtain:

o = po+aop, Vo= vtag,

Ay Ap2 Qo _ (All)—l
Agy Az 7 &%)

Aoy (IA.150)

A12

All —

The equations in (IA.150) replace the last two equations in (IA.149). Using the aggregate
coefficient formulas in (IA.148), it follows that the first four equations in (IA.149) are

equivalent to:

( Np+lg _ 1
Ny LT %
Np+1 dde(t,(ﬁ%) i = Bl—ozoB;\O—asz
N, et )
[A.151
HoL (A i+ Agofio + A7) = B2, ( )
\ S (Apfi+ Angfio + Agev ) = B2
Using the formulas in (IA.141) and (IA.143) for A;;, one verifies that:
det(A )
a =1, ay = 1, t(4) _ (IA.152)

det(A) — a4 6§
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Therefore with the notation in (IA.140), the system of first order conditions implies:

4

Np+1 _ 1

—~£1T-q = E’

Np+1 ) b _ Bi1—Bg
NL a2+(5 - R )

EptL (Ag1b + Agobo + Agac) =

\ N]l\)[—;_l Algb + Aogbo + AQQC =

(IA.153)

| =[S

Note that equations (IA.150) and (IA.152) imply that:
o = fo + s Vo= b (IA.154)

Thus, the trading strategies of the FTs, MTs, and STs are, respectively,

—~ —~0 =
dz{ = ~dw; + pdw,_y + podw,_; + vdw_s,

—~

—~ —~0 =
dxi\/l = pdwi—y + podw,_; + vdw;_o, (IA.155)

S 70 ~
dzy = (pu+ po)dw,_; + vdw;_s.

Numerically, it turns out that the optimal coefficients are positive except for g, which
is negative. To understand this sign, note that the benefits of trading on &Z}SA are
given by By, which is negative. But By is by definition the (normalized) instantaneous
covariance of w; with c/l\[ui) = pody? — pdy;, and dy only contains the increment dwy,
while dy; also contains the lagged increments dw,;_; and dw,_s which positively covary
with w,.™

Now suppose that one slow trader, ST i, stops learning from the order flow. I want

to compare his expected profit with that of a regular ST. In general, the equilibrium

14 A simple example illustrates the negative sign of By. Suppose in a one-period model a speculator
wants to exploit information about v = v; + v with IID components v; ~ N (0,%;), i = 1,2. The
speculator observes vy + u, while the dealer observes v; +v5 +u. Suppose the speculator’s strategy is to
trade on a multiple of the unexpected part o7 = E(v1|v1+u)—E(v1 |v1+vetu) = po(v1+u)—p(v1+ve+u),

— 21 J— El * . . ~ _
where py = ST > and p = SSTES Shen S Then, the equivalent of By is the covariance Cov(vy + ve, 1) =
PRI

TET e Ty < 0, and the speculator’s optimal strategy has a negative coefficient on v.
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normalized expected profits corresponding to the strategies in (IA.155) are:

Tr = 7= M7+ B — ApfiAn — Mpfo + poft) Aot — AMpv + vi) A
+ poBo — AMuofio Ao — NP + viig) Aga + v By — AvivAgy,
Ty = pB1 — ApftAn — Mpfio + poft) Aor — AM(uv + vii) Ars
+ poBo — Miofio Ao — AN(po? + viig) Ave + v By — Avi Ay,
s = poBo — MuojtAor — AiiAra — NugjioAgg — A jo? + vjig) Aga + v By — AvivAgs.
(TA.156)

If ST ¢ does not learn from the order flow, then his trading strategy is of the form
dzi = I/iazvut,z. Let v~ be the equilibrium aggregate coefficient of the other speculators.
Then, the normalized expected profit of ST i is:
ﬁj = ViBg — )\ViﬂAlg — )\ViﬂOAOQ — )\I/iDAQQ, with
5 | (IA.157)
v=v4+v, v~ = (Np—1)v.

As long as Ags and A are positive, which are part of the overall second order conditions,
ST ¢ maximizes his profit by setting v = BAv" A2 where B = By — AMiA1a — ANigAos.

2XAo0
The corresponding maximum normalized profit is:

(Bz — MiAya — AigAgz — )\V_A22)2

e = IA.1
7TS,max 4)\1422 ( 58)

Numerical results show that this profit is much smaller than 75 when ST 7 can learn
from the order flow. Thus, it makes more sense for STs to use their information to infer

more recent signals using the order flow.
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3 Fast and slow trading with public news

I consider the benchmark model in the paper (with FTs and STs), but assume that
signals about the increments of the fundamental value dv; = v, — v;_; are made public
with a delay of k periods. Denote by w; the public forecast of the fundamental value at
t. Thus, the increment dwy is revealed to the public just before trading at t — k. Recall
that ¢ — k denotes t — kdt.

3.1 Public revelation after two lags

In this simplest model, dw, is observed by FTs at ¢ (just before trading), by STs at
t — 1, and by the public at t — 2.

I look for an equilibrium with the following properties: (i) the equilibrium is sym-
metric, in the sense that the FTs have identical trading strategies, and the same for the
STs; and (ii) the equilibrium coefficients are constant with respect to time.

To solve for the equilibrium, in the first step the speculators’ trading strategies
are taken as given, and I compute the dealer’s pricing functions. In the second step,
the dealer’s pricing functions are taken as given, and I compute the optimal trading
strategies of the FTs and STs.

Dealer’s pricing rules (A, a, p)

According to the model timeline, before trading at ¢ the dealer observes dw;_ o (or
equivalently w;_5). Then, she observes the order flow dy; and sets the price p, at which

trading takes place:
pe = E(w | Z,,dy), with Z, = {dy—1,dyia,...,dw_s, dwy_s,...}. (IA.159)
The aggregate order flow satisfies:
dy, = ydw, + fidw,_y + duy, (IA.160)

where 4 and i are the aggregate trading coefficients, and &TUH is the component of

dw,;_1 orthogonal on the dealer’s information set Z;, i.e., the dealer computes:

(/]:\?_/Ut = dwt — E(dwt | It+1). (IA161>

42



By definition, Z; ;1 = Z; U (dy;, dw,_1) = Z; U (dy, &ZUH>. But dwy, dy; and df\&)t,l are

all orthogonal on Z;, hence the dealer computes:

al\Ut = E<dwt |It+1) = E(dwt |It>dyt,&ZUt—1) = E(dwt ‘ dytaa:[ut—l)

- (IA.162)
= p1dy; + padwi,
where: )
d d
P = Var e Cov | dwy, e . (IA.163)
p2 dwtf]_ dwt*l
Define:
.o E[(dw,)?] E[(dy,)?] E [dy,dw; ]
Tu oy We o2dt ' ! o2dt ! o2t
= &31727 a = py, b = pp, ¢ = IO25-12L = a- CLQ,
= a+b(1—a)7 a=1-a
a+b*(1—a)
(TA.164)

From (IA.160) it follows that Y; = 42+ i*W;_; +62 and X; = iW;_1, hence one obtains:
=2 | 2 =2 - s 7
[pl YA+ Wi +o, uWH] lvl_lﬁl_lp
P2

Wiy Wiy 0 e
which implies (using the formula dy, = ydw, + /lazvut_l + duy):

T 52+42

dw, = pdy, — bdw,_, = adw, + dug,
Nt pPAY t—1 t T PAU (IA.166)

dw; = adw; — pduy,.
Using (IA.166) the order flow at ¢ can be expressed as:
dy; = Aydw, + padw,_1 + duy — ppdug_q. (TA.167)

I now compute the price at t. Note that (?1:0,;_2 is in Z;: indeed, dw;_s is in Z; and
@t_g by definition is in Z;_5 which is included in Z;. Thus, if I define:

dyty = dyoy — idw,—s = Fdw,; + du_y, (IA.168)
it follows that dy;- | is the component of dy;_; orthogonal on Z; ; U (dw;_»). Hence, one
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has Z; = Z;_1 U {dy;_1,dwy_o) = T;_1 U {dyi |, dw;_»). Using the fact that dw;_; and

dw; are orthogonal on Z; ; and dw;_», the dealer sets the price at ¢:

bt = E(wt | L1, dys—1, dwi_o, dyt) = Wi+ E(dwt—l + dwy | dyil, dyt)
(IA.169)
= wio + Mdy;s; + Aedyy,

where the constants A\; and Ay are computed using equations (IA.168) and (IA.167):

-1
A dyi- dy;-
Y1 — Var Yi-1 Cov | dw;—1 + dwy, Y1
Ao dy, dy:

. (IA.170)
_ | e Vhia — fipd, g
Vi — fipay 3+ B’ 4 @*p*al + o Y+ af
One computes:
a+b(1—a)
A= A=A = p———=. IA.171
1 P 2 Y a+ b2(1 _ Cl) ( )
Therefore, the price at t satisfies:
Pt = Wi_o + pdytJll + )\dyt, (IA172)
or, using the formula dy;, = dy; 1 — ﬂcfl\ﬂ)t,g, it satisfies:
Pt = Wi_2 + pd’yt,1 — b&\&)t,Q + )\dyt (IA173)

Note that the last formula uses only quantities observed directly by the dealer: dy,
dy;—1 and &Tut_g. According to (IA.166), the last quantity is computed by the dealer
using the recursive equation (izvut = dw; — pdy, +b&/ut_1, which implies pdy; —b(/i?ut_g =

dw;_, — dw,_;. The pricing formula is then equivalent to:!®
pe = weot — dw,_y + Ady.. (IA.174)

[ am interested in computing the infinitesimal covariance of &Tut from the perspective
of the dealer, but also from the perspective of the speculators. According to (IA.166),
gl?ut satisfies the recursive equation &:Ut = dw; — pdy; + bcflzut_l = (1 — py)dw; — pdu; +

15Note that neither w;_; nor dw;_, is observed by the dealer at ¢, but the difference w;_; — dw;_,
is observed as it is equal to w;_o + pdy;—1 — bdw;_1.
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(b— pﬂ)(fl\?jvt,l. For the dealer, b = ppi, and therefore dw; = adw; — pduy, which implies:

E[((ijut)ﬂ B E[(adw, —pdut)2}

W, — —
! o2dt o2dt

= 042—|-p25'3 = . (IA175)

For a speculator, the aggregate coefficients 4 and ji include his own coefficients +* and

1, which can be different from the equilibrium values. Hence, the speculator computes:

E[((1 — py)dw, — pdu, + (b — pﬂ)a@vut_l)2]
o2dt (IA.176)
= (1= p3)* +p°as + (b— pit)* W1

Wt:

Using Lemma A.1 in the Appendix in the paper, if the coefficient b — pii € (—1,1), the

covariance W, is constant and equal to:

(1= p7)* + 5,

W = -
1—(b—pp)?

(IA.177)

Speculators’ optimal strategy (v, p)
Consider a FT, indexed by ¢ = 1,..., Np. At t =0 he chooses a trading strategy of the

form:
dxf; = ~'dw, + ,ui(ﬂ)t_l, (TA.178)

where &?ut satisfies a recursive equation of the form:
(/i_TUt = dwt — pdyt —+ b&TUt,h (IA179)
and the coefficients p and b are fixed.'® The aggregate order flow is of the form:

dy; = ~Fdw, + fdw,_; + dug,  with
Yt AW T AW t (IA.180)

Y= p= T

29

where the superscript “—i” indicates the aggregate quantity from the other speculators.
FT i takes as given the coefficients v~¢ and p~?, and assumes the following functional
form for the price:

pe = weor — dw,_y + Ady,, (IA.181)

16Tn equilibrium, (iqvut,l is the component of dw;_; orthogonal to the information set Z; before
trading at t.
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where the coefficient A is fixed. Using (IA.177), the FT also computes:

E[(dw)?] (1 p9)* + 252

W = = [A.182
o2 0 o) (IA.182)
The normalized expected profit of FT i at t =01is % E fOT(wt — py)dat:
. 1 T — — 4 .
’ﬂ';;v = ; E/ |:U)t — W1 + dwt,1 — )\(’det + ﬁdwt,l + dut)} : (’}/Zdwt + ,uldwt,l)
v 0
1 T _ . —
= ; E/ {dwt(l — )\"_)/) + d’lUt—l (1 - )\/TL) — )\dutl . (’yldwt + /le'wt,1>
v 0
= 7 = MY+ W (' = ')
i i L=p)’+c r
=7V =M+ —F 5 W= AR,
1—(b—pp)? ( )
(TA.183)

where the last equality follows from (IA.182). This optimization problem can be solved
by considering the first order conditions and then imposing the equilibrium conditions

derived below.

Equilibrium conditions

Besides the equations that describe the optimization problem of the FTs and STs, the
equilibrium conditions for the dealer’s coefficients are already in (IA.164).
An important quantity is the “speculator participation ratio,” which I define as the
ratio of speculator trading variance over total trading variance:
Var(dy;) — Var(du,) Qdvdy _ Qdudu

PR = = . TA.184
SPR Var(dy;) Qdy.dy ( 84)

Using the formulas in (IA.164), one computes:
(IA.185)
But a and b converge to one when Np and N are large, hence the speculator partici-

pation rate can be arbitrarily close to one. This closely mirror the results in the model

without public information.
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3.2 Imperfect public information

In this subsection, I consider a market that is not strong-form efficient. I assume that
just before trading at ¢, the F'T's observe dv;, while the ST's observe dv;_;. The difference

is that now the public does not observe dv;_ but an imprecise signal about it:
dSt_Q = dUt_Q + d’f]t_27 dnt_Q ~ N(O, O'%dt) (IA186>

Denote by w; the public forecast of the fundamental value. Then, the above setup is

equivalent to assuming that before trading at ¢ the public observes dw;_o, which satisfies:

2 4
o Ov 2 : 2 Uv
dw;_y = p +Ugdst_2 ~ N(O,awdt), with o, = p +0%. (IA.187)
Equation (IA.187) implies that:
2 2
~2 Ow Oy
= — = 0, 1]. IA.188
Ow O_g 0_12]_’_0_72] € [ ) } ( )

Note that a more precise public signal leads to a ratio 7, closer to one, while a less
precise signal leads to a ratio o, closer to zero.

I look for an equilibrium with the following properties: (i) the equilibrium is sym-
metric, in the sense that the F'T's have identical trading strategies, and the same for the
STs; and (ii) the equilibrium coeflicients are constant with respect to time.

To solve for the equilibrium, in the first step the speculators’ trading strategies
are taken as given, and I compute the dealer’s pricing functions. In the second step
the dealer’s pricing functions are taken as given, and I solve for the optimal trading

strategies for the FTs and STs.

Dealer’s pricing rules (A, 6, p)

According to the model timeline, before trading at ¢ the dealer observes dw; o (or
equivalently w;_5). Then, she observes the order flow dy, and sets the price p; at which

trading takes place:

Pt = E('Ut | It7 dyt)y with It = {dyt—la dyt—27 N ,dwt_27 dwt_g, .. } (IA189)
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Define:

@“ = Eldua | T, ai“ = Eldue |2, (IA.190)
dvy_y = dvpg — douy_y, dwi—y = dw;—y — dvy_y.

By definition, Z;,1 = Z; U (dy;, dw,_1) = Z, U <dyt,(§ut_1>. But dvy, dy; and (/ﬂ/ut_l are

all orthogonal on Z;, hence the dealer computes:

a;t = E(dvt |It_|_1) = E(dvt \It,dyt,a\{ut_l) = E(dvt | dyt,(i\{l)t_l)
= Oidy, + (92&’:01&717

= Var(

Also, the dealer computes:

(IA.191)

-1

d d
e Cov [ du, | <7 |]. (IA.192)
d'l,Ut_ 1 dwt—l

(T;Ut = E(dwt |It+1) = E(dwt IIt,dyt,Cfiﬂ)H) = E(dwt ‘ dyt;a\&)t—l)

where:

" (IA.193)
= p1dy; + pedw;_1,

~1

d d
PEl = var || 2 Cov [ dw, | <7 |]. (IA.194)
P2 dw;_y dw;_;

The aggregate order flow satisfies:

where:

dyt = '7(11)75 ‘I— dut + ﬂa\{}t_l, (IA195)

where 4 and 1 are the aggregate trading coefficients. One computes:

4 -1

0| [ 72+ oo+ Vi iZi gl
6)2 /_LZ -1 W_1 0 7

-2 L t o - (IA.196)
po| | oLV iZi Vou | _ 2| O

| P2 i [l Wia | | O Y0,
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Define:

2
bo= 2 gy = 22y = HAWT
Oy Oy o2dt
—~ ~ — (IA.197)
W, — E[(dwt)] V. — E[(dvt)} o E[dvtdwt]
LT gt P LT o2t

Using (IA.195), one obtains:

Yo = 3460+ Ve,
E[((1 — 6:7)dv, — 61duy, — Oy fidv,_y — adw, )’

Vv, =
! o2dt
= (1 —09)2 + 60262+ 03>V, + 03W, 1 + 20,0207, 1,
W E[(dwt — prydvy — prduy — Plﬂa;tq — p2a7Ut71)2]
=

o2dt
= (1=2p7)G% + Py + pias + Pl Vier + psWioa + 2p1p2iiZy 1,
Zy = (1= 61%)(62 — p13) + 019152 4 O1p1i* Vi1 + O2pa Wiy + (01p2 + O2p1)[iZ;1.
(IA.198)

I solve this system of recursive equations in V', W, and Z. Define:

?n® 62 20,051 (1—617)*+ 6352
A= pii* 0 2p1 20 , B = | (1-2p7)32 + 17> + pio
Orpri® Oapa (B1p2 + Oap1)fa (1 —617)(62 — p17) + 1pr10,,
(IA.199)

The eigenvalues of I — A are: 1, 1 and 1 — (612 + 6262)?. One needs to impose the

condition that all eigenvalues are between —1 and 1, which is equivalent to:
(011 + 0:52)* < 2. (IA.200)

According to Lemma A.1 in the Appendix in the paper, if the condition in (IA.200) is
satisfied, the numbers V;, W;, and Z; are constant and satisfy [V, W, Z]T = (I — A)~'B,
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which implies:
(1—619)° + 6oy + 0305, (1 — 63) _
1 — (618 + 62622 ’ v
1— (81/1 + 05522 '

vV =

Y = 452+ @*V,

W:

(IA.201)

Using the equations in (IA.196), some algebraic manipulation shows that #; and 6,

satisfy:

;X7 + 060" — 6.7 — 6, —7 — @) +7 = 0,

X (37— 0108 +7°) + 01 (200" —2607° — 0 =7 —2) +7 (15 909
(1-62)(1—63X) 1 |

with X = 62(62 +7° + %) — pi*.

92:

I now compute the price at ¢, which is set by the dealer as p, = E(v,|Z;, dy;). T also
define the quote at t as the dealer’s expectation of the fundamental value just before
trading at ¢:

@ = E(u | Iy). (IA.203)

Then one has p; = E(v|Zy—1, dyy—1, dwy_o, dyy) = E(ve|Zy—1, dyy—1, cﬂ/ut_g, dy;). The vari-
ables v;—q;_1, dy;_1, aZut_g, and dy; are orthogonal to Z;_1, which includes ¢;_1, therefore

the price satisfies:

Dt = Q-1+ E(Ut = Gr—1 | Zior, dy—1, dwy o, dyt)

— (TA.204)
= q1+ >\1dyt71 + Aodwys_o + )\3dyt,
where the constants A\, Ao, and A3 satisfy:
—1
A dyi—1 dy:—1
)\2 - Var dwt,Q COV Vg, dwt72 . (IA205)
A3 dy: dy
One obtains the following formulas relating the price p; and the quote ¢;:
pe = proy + dedwi_s + Aadys, pr = G+ Mdyy. (1A.206)
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Recall the formulas:

dATjt = dv, — 01 dy, — szilf%vvth aZit = dw; — p1dy; — /)2&1/015717 (IA.207)
dyt = ’S/d'Ut + dut + ﬂd’l}t_l.

Define:

Bt = COV(Ut,&TUt) Ct = COV(&TUt,&\TI)tfl). (IA208)

One computes the recursive equations for several covariances involved in (IA.205):

Cov(dys, dw,—2) = aCov(dv, 1, dw;—s) = —6:fiCov(dy;_1, dwy_2) — iV,
Cov(dy;—1, dw,—s) = fiZ, Cov(v;, dy,) = 7+ aCov(v,_1,dv, ),
Cov(dwy, dw;—1) = —piCov(dys, dw,—1) — p2Cov(dw, 1, dwi—1) = —pifiZ — paW,
Cov(v,dv;) = 1— 6,Cov(vy,dy;) — 05Cov(vy, dws_)

= 1-07— ‘91/165\//(%—17 a;t—l) - 9266;(7}15—17&\[015—1)7

Cov(vy, (T[Ut) = 5121) - PlCAOT/@ta dy:) — P2Ea/(vt, aTth)
= G., — p17 — prjiCov(vi—1, dvi1) — p2Cov(vy_1, dw,—1)
= &2 Cov(vy, dvy),

(IA.209)

with the last equality coming from p; = 6260, and py = G2605. To apply Lemma A.1 in

the Appendix in the paper, I impose the condition:
i € (—1,1). (IA.210)

From (IA.209) it follows that all covariances involved are constant and satisfy:

_ N 0o i W __ —
Cov(dy;, dw; o) = 11“(9 7 Cov(dy;—1,dwy_9) = nZz,
1
_ 1— 0.7 — = _  (1-07)

COV(’Ut7 a;t) =

B = COV(Ut,dU)t) =

1+ 61i+ 0262

— 1+ 60,62)5 + [ — ~ ~ _
Cov(vs, dyy) = (1+912PJ %_)22&2'“, C = Cov(dwy,dwi—1) = —p1Z — paW.

1+ 60171+ 0562

(IA.211)
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From (IA.205) one obtains:

A\ X Y iz 0 (14 6:62)7 +

- T 05 W. —0,79)52 1A.212
As 1+ 611+ 0,02 nz GWW 1+617 (1-07)a,, ( )
A3 (v (14 0:62)7 + ja

Speculators’ optimal strategy (v, )
Consider a FT, indexed by ¢ = 1,..., Np. At t = 0 he chooses a trading strategy of the

form:

dz} = ~'du + pidog_q, (IA.213)

where El?}t satisfies:
&t = dvt — Qldyt — QQ&TUt_l, (IA214)

and the coefficients 6, and 6, are fixed.!” The aggregate order flow is of the form:

dy, = Fdw, + adw,_; + du,, with
Yt yawe T pAdwi—1 t (TA.215)

Y=+ n= g4

2

where the superscript “—i” indicates the aggregate quantity from the other speculators.

FT i takes as given the coefficients v~ and p~¢, and assumes the following functional

form for the price:
pt = pr—1+ Aadwi—2 + Asdy, (IA.216)

where the coefficients A1, Ay and A3 are fixed. The normalized expected profit of FT i
att =01is EfOT(Ut — py)dai:

» 1 T —~ . —
Tr = — E/ <Ut — Pi—1 — Aodwy_g — )\3dyt) (’Yld?)t + Mld?)t71>
0

2
Oy

1 T — — . o~
= — E/ <Ut — )\3’7(1?),5 — )\det,Q — Agﬂd'l]t,1> (*yldwt + ,uldwt,1> (
0

2
Oy

TA.217)

= (7' = \7'7)82 + 1 (B — \C) — N’ fiZ.

This is the same problem as in the benchmark model (without public information) where
B is replaced by B — A\2C' and A is replaced by Z. The second order condition for this

ITn equilibrium, @t,l is the component of dv;_1 orthogonal to the information set Z; before trading
at t.
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maximization is:
As > 0, Z > 0. (IA.218)

One has thus a unique symmetric equilibrium, with the following coefficients:

11 (B-\C)/Z 1

1t _ . IA.219
N Np+1 H A3 N, + 1 ( )

’y:

The aggregate coefficients are:

1 Ng (B—XC)/Z Ny

_—— L = . TA .22
A3 Np 41’ K A3 Ny +1 ( 0)

3/:

Figure IA.3: Optimal inventory mean reversion

This figure shows various equilibrium quantities against the precision of public information, &, =
0w/0y. The equilibrium values in the four plots are: (i) a, (ii) b, (iii) p, and (iv) news-to-order-
flow ratio, measured as the variance ratio of the public information compnent Aggut_g to the order
flow component Azdy:. The parameter values are: o, = 1, Ng = 2, and Nr € {3,5,10,20}, and

Ni = Np + Ng.
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Numerical results

Figure TA.3 illustrates the results. When the public precision ,, = cuis close to zero,
the model approaches the benchmark model in the paper (without public information).
At the other end, when the public precision &, is close to one, the model resembles the
model with perfect public information described in Subsection 3.1.

In general, unless the public precision is very high, the equilibrium is closer to the
benchmark model, which does not involve public information. Furthermore, the fourth
plot in Figure IA.3 shows that the price variance caused by public news is much smaller

than (usually less than 1% of) the price variance caused by order flow.
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These results suggest than under plausible conditions (that the public precision is
not very high) the behavior of the “correct” model is much closer to the benchmark
model discussed in the paper. Moreover, under these conditions the effect of public

information on prices is very small and can be ignored.

o4



4 Robust trading strategies

The purpose of this section is twofold. First, I verify that the intuition of the benchmark
model in the paper extends to a setup in which the fundamental value has more than one
component. For simplicity, I focus on extending the model My in which all speculators
trade only on their current signal (with no lags). Thus, if dw, is the current signal about
only one of two orthogonal components of the fundamental value, I verify that trading

strategies of the form:

remain profitable.
Second, when the fundamental value has two components, I study the decision of

speculators to use “smooth” strategies of the Kyle (1985) type:!®

These strategies are not allowed in the paper, because by using the forecast w;, the
speculator would use an infinite number of lags: w;, = dw; + dwy_1 + dw;_9 + - --
(recall that, by notation, X; ; = X;_q;). In this section, I show that using any smooth
strategy as in (IA.222) would produce an expected loss for certain parameter values. In
this sense, smooth strategies are not robust to the alternate model in which the asset

value is multidimensional.

4.1 Motivation

In most trading models with asymmetric information, speculators learn only about one
component of the asset’s fundamental value. For instance, in Kyle (1985), the unique
informed trader (the “insider”) uses private information to generate profits smoothly
over time, using a strategy as in equation (IA.222). Thus, the insider compares his
forecast with the price, and then buys slowly if his forecast is above the price, and
sells otherwise. The implicit assumption in Kyle (1985) is that the price only contains
information about his signal, and thus the insider has no inference problem: he knows
his information to be superior to that of the public’s.

I now introduce a second component of the fundamental value, as in Subrahmanyam

and Titman (1999), and allow a different group of speculators to learn about this sec-

18Tn Kyle (1985) wy is in fact constant. Back and Pedersen (1998), however, show that the same
type of strategies are optimal even if the fundamental value changes over time.
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19T show that in this case the smooth strategy in (IA.222) starts losing

ond component.
money if the parameters related to the other component of the asset value are large
enough. In other words, smooth strategies are not robust. By contrast, quick strate-
gies as in equation (IA.221) are robust. Indeed, Proposition TA.5 below shows that
the expected profit from this strategy is positive, and stays constant under all these
specifications (taking the price impact coefficient A as given).

Intuitively, when the fundamental value has multiple components, a speculator who
specializes in only one component is potentially adversely selected when using the price
to decide his strategy. For instance, suppose the value of IBM has both a domestic
and an international component. Then, suppose that a hedge fund that specializes only
in the IBM’s domestic component uses a smooth strategy as in (IA.222). Then, by
buying and selling at the public price, the hedge fund essentially behaves as a noise
trader with respect to the international component, and can therefore make losses on
average. If instead, the hedge fund uses a quick strategy and buys if its signal about
the domestic component is positive, its average profit is not affected by what happens

in the international component.

4.2 Multidimensional asset value

I now describe formally the model with two components of the fundamental value.
Suppose the liquidation value of the risk asset vy (at T' = 1) can be decomposed as a

sum:
Uvr = wT—i—eT, T = 1. (IA223)

I consider a model similar to Mj from Section 2 in the paper, in which speculators
only use their current signal (see also Proposition 3). There are N, > 1 speculators,
called the “w-speculators,” who learn about wy by observing at each ¢ the increment
dw; of a diffusion process with terminal value wy. Also, there are N, > 1 speculators,

" who learn about ey by observing at each ¢ the increment de,

called the “e-speculators,’
of a diffusion process with terminal value e7.2° Recall that in the benchmark model,

the speculators receive signals of the form ds; = dv; + dn, such that the increment of

19Subrahmanyam and Titman (1999) have a one-period model with information acquisition. They
find that multidimensional asset values generate liquidity complementarity, in the sense that informed
traders in one component of the asset value behave as noise traders in the second component, and thus
encourage information production in that component.

20T do not model the information acquisition explicitly. Subrahmanyam and Titman (1999) solve a
one-period model with endogenous information acquisition, and analyze the liquidity externalities that
result from this choice.
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2 . .
-~ In this section, however, I
osto ! ’

v T

their forecast w; is equal to dw; = ads;, with a =
do not need these explicit formulas, and assume instead that the w-speculators directly

observe dw;. Thus, the fundamental value increment dv; has the following orthogonal

decomposition:
olo?
dv, = dw; +de;, with o7 = 0, —0), = . (TA.224)
o, + oy

Proposition IA.5 describes the equilibrium of the model.

Proposition TA.5. Consider N, + N, speculators, of which N,, speculators learn about
wy, and N, speculators learn about e,. Denote the position in the risky asset of an
w- or e-speculator, respectively, by ., and x.,. Assume that the speculators can only
trade on their most recent signal, dw; or de;, respectively. Then, there exists a unique
linear equilibrium, in which the speculators’ trading strategies, and the dealer’s pricing

functions are of the form:
dzy,: = Ywdwy, dzer = 7edey, dp;, = Ay, (IA.225)

with equilibrium coefficients:

11 11 \ No oy, N o2\
e = XN, 1 T AN A\ (N, +1)202 (N, +1)202 '
(IA.226)

The expected profits at t = 0 of the w- and e-speculators, are, respectively,

o2 o2
= — = — [A.22
Tw )\(Nw + 1)27 Te )\(Ne + 1)2 ( 7)
Proof. See Subsection 4.4 below. [

Proposition TA.5 shows that, taking \ as given, the w-speculators have indeed the
same strategy, and the same expected profits regardless of the structure of the e-
component. That is to say, the strategy and profits of the w speculators do not depend
on N, or o.. The magnitude of the price impact coefficient \, however, does change with

the specification, because of the increase in adverse selection in the other component.

4.3 Smooth trading with multidimensional value

I next analyze the expected profit of a speculator that combines smooth strategies as

in (IA.222) with quick strategies as in (IA.221). Proposition IA.6 provides a formula for
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the expected profit of this type of speculator.

Proposition TA.6. Suppose now that one of the w-speculators, now called the “3-

speculator,”

adds a smooth component to his equilibrium trading strategy:
da? = By(wi—1 — pr_1)dt + yedwy, (TA.228)
while the other traders and the dealer maintain their equilibrium strategies. Define:

£ = oM prar) (IA.229)

Then, the expected profit of the B-speculator at t = 0 equals:

2
m=n"+7"  with 7° = W, and
. T . N (IA.230)
P = o (1—e) ((1+€t)Nw+103"_(1_€t)Ne—;103) dt.
Proof. See Subsection 4.4 below. [ |

An important implication of Proposition IA.6 is that the profit 7® depends on the

specification of the model. Consider the following cases:

e If 0. = 0, the fundamental value has only one component. Then, the S-speculator

increases his profit by [-trading: —e2)dt > 0. Moreover, if as in

ANwt1) Nw+1 fo
Kyle (1985) the [-speculator sets 5; = 1’3— 0, then ¢, = 0, and the profit is

maximized.

e If o, > 0, there is more than one component of the fundamental value. Then, I
show that 8, > 0 produces a loss for certain values of o, (and N,). Indeed, the
condition §; > 0 translates into ; not being identically equal to 1, or equivalently
fOT(l — g;)%dt > 0. Choose a value o, such that:

2 fo (1—e2?)dt
N, +1 +
o2 > Dol WutDE T Nudl o (IA.231)
Ne fO (1 — €t)2dt

Then, one can easily verify that 7% < 0.

In other words, the f-strategy in equation (IA.228) is not robust to the fundamental

value having more than one component.
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Corollary IA.1. The mazimum profit of the B-speculator is Tmax = T + 7, where:
B 1 1 2
T max _ U_w

R R R < g (TA.232)
Nyw+1 Nyl o2 €

Thus, the profit of the S-speculator that comes from the 5 component is at most
equal to the variance ratio 02 /02. In general, one can think of the e-component as

the orthogonal component to the w-component, in which case it is plausible that its

2

instantaneous variance o

is much larger than ¢2. Then, Corollary TA.1 implies that

the profit of the p-speculator that comes from the [-component is very small. This

justifies why I ignore the S-component in the paper.

4.4 Proofs

Proof of Proposition IA.5. 1 first determine the optimal strategies of the specula-
tors, taking the dealer’s pricing rule as given. The expected profit at ¢ = 0 of the i’th

w-speculator is:

T Ne
Two = E/ (wt +er—pi1— N <(%,t + Vo) dwe + Z Veader + dut)) Yo s At
0 .
7j=1
= / 'qu,t“?udt - )‘t%zu,t ('Yqzu,t + %;,Zt) Uidt,
0

(IA.233)

where v;ft denotes the aggregate coefficient of the other N,, — 1 w-speculators. This
I—At'y;ft

TR
this is true for each w-speculator, one obtains that all yfv’t are equal to 7y, =

is a pointwise quadratic optimization problem, with solution )\tfyfuyt = Since

1
At(Nyw+1) "

Similarly, all ygi are equal to v.; = Combining these two equations, one

1
N(Net1)"
obtains:

1 ; 1

J

. P S 1A.234
NNy + 1) Tet = Tet = NN, +1) ( )

i —
7’[1}715 - fywvt -

I now determine the dealer’s pricing rule, taking the behavior of the speculators as

given. The dealer assumes that the aggregate order flow is dy; = N,y dw;+ N.¢de;+duy.
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To set \;, the dealer sets p; such that the market is efficient, which implies:

. Cov(w; + e, dyy) Nw%u 105+ Ne%t02
dp, = \d th A\ = = £,

(TA.235)

This implies (NyAiYw:)?02 + (NeAMiYer)?02 + MN202 = NyMYwio2 + N, )\t’yetc72 But

NuAiVws = w“’l and N \vey = N_EH Hence, \?0?2 = (Ner“l)Qa + (N e o2, which
implies:

N, o? N, o2\ /2

N = N = [——w Zw ., "Te e . IA.236

t <(N 1) 3+(Ne+1)202> (1A.236)

This proves the stated formulas. [ |

Proof of Proposition IA.6. The trading strategy of the S-speculator is of the form:
dry = B(wi—1 — pe—1)dt + v dwy (TA.237)

where 7, is the equilibrium (constant) value. Denote the aggregate coefficients:
Yo = NuwYw, Ye = NeVe- (IA.238)

Define the following (normalized) covariances:

E — )2 E 2
Y, = (( t . Pr) ) : Q, = <6tth)7 63 _ cr; . (TA.239)
Since wy = eg = pg, one obtains:
Yo = p = 0. (TA.240)
The normalized expected profit of the S-speculator at ¢t = 0 is:
1 T
T = o) E/ (wt +é — P11 — /\<Bt<wt—1 — pi1)dt + Fydw; + Fede; + dUt)) X
0
X (/Bt(wt—l — pe—1)dt + W’wdwt>
T
= / (’Yw — MV + Bedi-1 — BtQtfl)dt
0
T
= 70 + / <Bt2tfl - 5tQt71>dt
0
(TA.241)
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where 7° is the normalized profit of the S-speculator when 8 = 0, that is:

_ Yw 1
= Yw — A’Yw/}/w = =

70 :
Ny, +1 ANy + 1)2

(IA.242)

Since dwt - dpt = —)\Bt(wt_l — pt_l)dt + (1 — )@w)dwt - )\ﬁedet — )\dut, Et satisfies:

d>, 1

T o2 di E(2(wt71 — pe—1)(dw, — dpy) + (dwy — dpt)Q)

= 20851 + (1= Mw)* 4+ (V\e)?62 + \262.

This is a first order ODE with solution:
t
Y, = Dye 2B / ePBr dr with
0
t
B, = / B.dr, Dy = (1 —=M)? + (M.)%62 + \?62.
0
Recall a formula derived in the computation of \:
(M) + (Me) 62 + N6, = M + Mo,

Then, one computes:

1 n N. _,
N, +1 Ne+1ge'

Dy = 1— My, + M52 =

By integrating (IA.243) over [0,7] (and using ¥, = 0), one also computes:

T
Dy, — %4
Yiqdt = ———.
\/Oﬁt t—1 2)\

Since dp; = A\Bi(wi—1 — pr—1)dt + My,dwy + Ayede, + Aduy, €2, satisfies:

dQ 1
d_tt = oY E(pt—ldet + e;1dpy + detdpt)

= —ABfh_1 + N5l

This is a first order ODE with solution:

t
Q = Dge / Mrdr,  with
0

Do = Mo, = o:.

(IA.243)

(IA.244)

(IA.245)

(IA.246)

(IA.247)

(IA.248)

(IA.249)



By integrating (IA.248) over [0, 7] (and using Q = 0), one also computes:

T Dq — 9
/ Bidt = (IA.250)
0

One computes:
T T
¥, = Dy / e AB=BY Q= Dg / e ABI=BY gt (IA.251)
0 0

Combining the formulas above, one computes:

T T
=7+ De 1 —/ e BB qp | — Do 1 _/ e AB1I=B1) g4 ) |
2\ 0 A 0

. . N N (TIA.252)
B = /0 frdr, Dy = Nw+1+NejL16z’ Do = Neif‘f‘
If T define:
g = e MBimB) — =M B ¢ (o T, (IA.253)
One computes:
7= 7?0+§ /T(1—st) <DZ — —DQ> t
~ 1 0 ) e 1 e (TA.254)
B /0 (1=2) (Nw+1 TN+ e>dt
This completes the proof. [

Proof of Corollary IA.1. For two constants a,b > 0, define the following function:

F:(0,1) =R, Fe) = (1—-¢%a—(1-¢). (IA.255)
The first order condition for a maximum is F’(e) = —2eca + 2(1 — )b = 0, and the
second order condition is F”(¢) = —2(a + b) < 0, which is satisfied at all e. The

optimum corresponds to:

a a
€ P (7)) = - 7 (IA.256)
Then, if I define:
o2 N.,o?
_ w h = ce IA.2
“T N, 1 N.+1 (1A.257)
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one has ¥ = L fol F(g;)dt. Thus, according to (IA.256), the maximum value of 77 is
2

aa—jb, where a and b are as in (IA.257). Using 7° = W, one computes:
0'4 B 2
1 e 1 1 N, +1
o= L W e L : 1% (1A.258)
max 2\ _o2 Neo?2 7T0 2 1 Ne o¢ 2N€ 02
Nuw+1 Ne+1 Nw+1 ' Ne+l o2 w

Since N, > 1, one gets “ffg" < %, which proves (IA.232).

Note that the maximum profit of the f-speculator is attained when &, is constant
and equal to a/(a + b), with a and b as in (IA.257). But &; depends on §; via equa-
tion (IA.253): &, = e~*i 8797 This implies that the maximum is attained when ftl B.dr

M. This occurs when ; is equal to zero for

is constant for all £, and is equal to
all t+ < 1, and approaches infinity at ¢ = 1.2! Interestingly, at the optimum, (3, is zero

for all values of t < 1. [ |

21This a multiple of the Dirac delta function at ¢ = 1. In fact, there is no actual function for which

B, = | tl B.dT is a positive constant for all ¢, but there are functions which are arbitrarily close to the
Dirac delta function, such that B; is arbitrarily close to the given constant.
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5 Quick inventory management

5.1 Inventory management with one IFT

In this subsection, I discuss the general equilibrium of the model with inventory man-
agement from Section 4 in the paper, and provide the proofs that have been left out
of the paper. Recall that in this model there are Ny FTs (fast traders), N, STs (slow
traders), and one IFT (inventory-averse fast trader) who maximizes his expected profit
subject to a quadratic penalty in his inventory in the risky asset. (More details are given
below.) As in Section 4 in the paper, I assume that the IFT’s trading strategy is in the

“quick regime,” meaning that it has the form:

In Section 6 below, I also discuss the “smooth regime,” in which the IFT’s trading
strategy is of the form dx; = —0z,_1dt + Gdw,, with 6 € (0, 00). This case corresponds
to a strategy of the form (IA.259) for which © = #dt is infinitesimal. However, in the
next section I show numerically that the smooth regime is never optimal for the IFT,
and thus it can be ignored in this section.

More specifically, the agents are:

e One IFT, who chooses a trading strategy of the form (IA.259) to maximize his
expected utility:

U=E </OT(UT —pt)d:ct) — CrE (/OT xfdt) : (IA.260)

where T'= 1, and C7 > 0 is the IFT’s inventory aversion coefficient;
e Ny risk-neutral F'Ts, who choose a trading strategy dz;; = v,dw;, with v; € R;

e Ny risk-neutral STs, who choose a trading strategy dz;; = /uoj&\[ut_l, with p; € R;
the term (/i\llut_l is of the form a\z/ut_l = dwi—1 — z—14, where 21 is the dealer’s

expectation of dw;_; given past order flow;

e A dealer who sets a linear pricing rule dp; = Ady;, such that the dealer’s expected

profit is zero; she also computes z;_1; = E;(dwi—1) = pdys_1;

e Exogenous noise traders, who on aggregate submit at each ¢ a market order du;.
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I introduce the following coefficients:

p

A NF NL
R = D 77 = Vi ’_Y = 77+G7 ﬂ = Mgy
2 2

a =py, a=py, b=

Below I describe the equilibrium of the model, by considering one agent at a time and
taking the behavior of the other agents as given. Then, I put together all the equilibrium
conditions and derive a single system of equations that the coefficients should satisfy.

In doing so, I also prove Theorem 3.

Optimal inventory management

I describe the optimal choice of the IFT, while taking the behavior of the FT's, the ST,
and the dealer as given. Since I want to prove a more general result than Theorem 2
in the paper, I also analyze the case when the slow trading coefficient b is below the
threshold < @. Proposition TA.7 below shows when b is below the threshold, a
sufficiently averse IFT optimally chooses © positive but as small as possible. I denote
this case by:

0 = 0,. (IA.262)

This case is different from © = 0. Indeed, at © = 0, the IFT’s inventory follows a
random walk, while at © > 0, the IFT’s inventory is negligible, as one can see for
instance in equation (69). This shows that inventory management has a discontinuity
at © = 0.

Corollary IA.3 in Section 6 in this Internet Appendix shows that the cases © = 0 and
© = 0, are joined continuously by a smooth regime, in which the IFT has a strategy
of the form dz; = —0x,_;dt + Gdw,, with 6 € [0, 00]. (Continuity here means that the
[FT’s expected utility varies continuously across the regimes.) When 6§ = oo, the IFT

has the same expected utility as in the case © = 0,.

Proposition IA.7. Consider the behavior of the other speculators and the dealer as
gwen, and fix the coefficients v > 0, u >0, A >0, p > 0. Define 7, i, a—, b and R as
in (IA.261). Moreover, suppose that b = pji < 1. Then, if C; and CY as in (IA.293),
the optimal strategy of the IFT is as follows:
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(i) If b < Y=L = 0.3904, and C; < CY, the IFT sets:

1 — Ra~
© =0 G = ———.
’ 2) + C7
Ifb < \/z_l, and C; > CY, the IFT sets:
b(1 —a~
-0, ¢=U-2)

In the latter case, the maximum expected utility of the IFT is:

2

max  (Rb(1—a")) -
o0 A1 4Db)(b+5)

(11) If b > @, and Cr < Cf, the IFT sets:

1— Ra~
O =0 G=—-—"""
’ 20+ C7
If o> Y=L and C; > Oy, the IFT sets:
@:2_17—17’ o_ l-a

v (ROA—a™))?

o0 (1 + V1B Y

Proof. See Subsection 5.2.

Optimal strategies of fast and slow traders

2p (1 + —lL_b)

In the latter case, the maximum expected utility of the IFT is:

(IA.263)

(IA.264)

(IA.265)

(IA.266)

(IA.267)

(IA.268)

I describe the optimal choice of the FTs and STs, while taking the behavior of the IFT

and the dealer as given.

Proposition TA.8. Consider the behavior of the IFT and the dealer as given, and fix
the coefficients G € R, © € (0,2), p > 0, A > 0. Suppose there ezists a solution to the
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following system of equations (¢ =1 —0):

_ Np N G __ E+X0X Ng
T AMNe D) NetrU T TOW N U
2 —
o EEHG-p) G0 -p) ¢*
L+opn L+opn (L4 ¢)(1+opp)’
0G? =2 | 52 = =2
v _ —Trs — 2072+ 77+ (1= 2p7) + 0y, (IA.269)
1— 02ﬂ2 ’
_90’G* 9 20y o AN\2 2~9
p"0Z+(1—-py)" +p°0,
W = 1-2p7+pV = —*¢ e :
- L =My —p7+ pG(1 — N\y) — ApodZ + pAY
1+ pp ’
and that this solution satisfies:
0 < pp < 1, W > 0. (IA.270)
Define the coefficients v and pu:
1-\G E+)0X
- - T TA.271
TN+ T w1 ( )

Then, the optimal trading strategies of the FTs and the STs satisfy v; = v for all
t=1,...,Np, and all ppj = p for 5 =1,...,Np.

Proof. See Subsection 5.2. [ |

For future reference, Corollary TA.2 describes the profit function of the FT's and ST
if their trading strategy is symmetric (the same for the FTs and the same for the STs),

but not necessarily the optimal one.

Corollary TA.2. Consider the behavior of the IFT and the dealer as given, and suppose
the trading strategies of the F'Ts and the STs satisfy, respectively,

d:cf7 = ’ydwt—l—pé@t,l, dxf = ,u&?ut,l, (IA.272)

with dw,_y = dw,_; — pdy,_,. Denote by v~ = Npy, 7=~ + G, i = Npp. Then, the
expected profits of the FTs and STs satisfy, respectively,

7 = (1=, 75 = u(E+ 20X — AWh)o?, (IA.273)
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where E, X, and W are defined as in (1A.269).

Proof. See equation (IA.312) from the proof of Proposition IA.8. [ |

Dealer’s pricing rules with inventory management

I describe the dealer’s pricing functions, while taking the behavior of the IFT and of the
FTs and STs as given.

Proposition TA.9. Consider the behavior of the speculators as given, and fix the co-
efficients G € R, © € (0,2), v > 0, u > 0. Denote by ¢ =1 — 0, and by v~ = Ng~,
¥ =G+, it = Npu. Suppose the following third degree equation in p has a solution
p>0:

G*(1 — ¢pin) — 2pG(1 + ¢)(1 — p7)
(1+¢) (IA.274)
+ (7 + (1 = 207) + 72) (1 + dpp).

V(1= i) (1 + dppp) = ©

Define Z and Y by the formulas:

AG(1 = p7) G?

gl

7 = — , Y = —. [A.275
L+¢pp (L4 ¢)(1+ dppi) p ( )

Then, the dealer sets p equal to the solution of (IA.27}), and sets \ as follows:

i+ (y—G)

\ = ) IA.276
Y +9p—7G - ¢Z ( )
Proof. See Subsection 5.2. [

Equilibrium conditions

I solve for the equilibrium of the inventory management model with one IFT, Np FTs,

and Ny, STs. Define: N N
F L

s — . TA.277

TN+ T N+ ( )

I now collect all the partial equilibrium conditions obtained thus far, and generate the

full equilibrium conditions. Theorem IA.3 generalizes Theorem 3 in the paper, and

provides necessary and sufficient conditions for an equilibrium of the model.

Theorem IA.3. Suppose there is an equilibrium in which the speculators’s strategies
are: dzy = —Ox; + Gdw; (the IFT), daf' = ~ydw; (the FTs), dz? = pdw,_y (the
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STs); and the dealer’s pricing rules are: dp; = Ady;, and a:[ut = dw; — pdy;. Denote the

coefficients R, a=, and b as follows:

A

R = s v~ = N7, i = Npp, a = py, b = pp. (IA.278)
Suppose b > @. Then, the equilibrium coefficients satisfy the following equations:?*
2b(1+b)(2B+1 3bB 4+ 20°B —1—b
(+vEB+y _ Q@ | wB+ PP
nr, B?(a= +b) b
1

B= e q= (B+1)(2(B* = 1) = np(3B% - 2)),

- \/q2 +npB((4— np)B + 22 — np))

a - )
B2((4 —np)B +2(2 — nr))
Q = B*a™)*+2(3B%+3B* - 2B — 1)a” + (B +2B% - 2), (TA.279)
4(B+1)B*(a” +1b) (2B + 1)a~ +1
- 4=
Q 2(B+1)
2B — 1 o2
2= ((a-P)+5—(1-a)) (1—a) =2 -
#=(e-me5gra-a) i-0% = r
1-b 1—a a b
0 =2- , - 7 _ | _ '
b p(2B +1) B H= Ny

Conversely, suppose the equations (IA.279) have a real solution such that % <
b<1,a<1, A>0. Then, the speculators’ strategies and the dealer’s pricing rules with
these coefficients provide an equilibrium of the model.

In equilibrium, the expected profits of the IFT, FTs, and STs are respectively,

Rb (1-a”)® F 2 2 s 2 2
Tips ™ = Mo ™ = M (1 —a)o,. (IA.280
) 1+ vVio0) Y e ( ) ( )

The results in Theorem [A.3 suggest a procedure to search numerically for an equi-

mw =

librium, once the parameters Ng, Ny, o, and o, are given. Indeed, if one substitutes
the formulas for a~, ¢, and B in the first equation of (IA.279), this becomes a non-linear
equation in one variable, b. This equation can be solved numerically very efficiently.
Then, one needs to verify that the conditions @ <b<1,a<1, A> 0 are satisfied.

Then, the equations in (IA.279) provide formulas for all the equilibrium coefficients of

22To be rigorous, I include the case when a~ is negative. Numerically, however, this case never occurs
in equilibrium, because it leads to A < 0, which contradicts the FT’s second order condition (IA.315)
in Section 5 in this Internet Appendix.
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the model.

5.2 Proofs

Proof of Proposition IA.7. 1 follow the proof of Theorem 2 in the paper, with a
few modifications.

When © = 0, the trading strategy of the IFT is dz; = G dw;. As in the proof of
Theorem 2, the normalized expected utility of the IFT is U,_, = G(1 — A\3) — %GQ.
Since 5 = v~ +G, one has U,_, = G(1—\y") —AG*— L G2, Since \y~ = %pv’ = Ra™,

one obtains:

- C
U,, = G(1-Ra™) -G (A + 71) : (IA.281)
The function U,_, attains its maximum at:
1— Ra~
G = ——" [A.282
DO ( )
as stated in Proposition IA.7. The maximum value is:
2
~ max 1— Ra~
_ (—Ra) (IA.283)

o=0 22X+ Cp)

When © > 0, the trading strategy of the IFT is dz; = —© 2,1 + G dw,;. As in the
proof of Theorem 2, the IFT’s inventory costs are zero, hence the IFT’s expected utility
is the same as his expected profit. Then, equation (74) shows that the IFT’s normalized
expected utility /profit is:

- Rb(1 —a™) 9 )‘(b+$¢>
= _ _ [A.284
Voro = 67750 1+ b (14.284)

Fix ¢. Then, the first order condition with respect to G implies that the optimum G

satisfies:
_ Rb(1—a™) _ b(l—a") (IA.285)
20(b+ 15) 20(b+ 125)

as stated in Proposition IA.7. For this G, the normalized expected utility (profit) of the

IFT is: ( )2
- _ Rb(1 —a™)
Ugep = N1+ ob) (b n ﬁ) ) (TA.286)
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Counsider the function:

B 1 by P+ +b—1
f0) = aron (b)) = e - L (1A.287)
The polynomial in the numerator of f’(¢) has two roots:
¢ = —1+ L0 Py = —1— vi=b (IA.288)

b b

Note that b = pii > 0, and since one has assumed that b < 1, the two roots are real and
distinct. Clearly, ¢o < —1 and ¢; > —1. Since the numerator of f'(¢) is a quadratic
function of ¢, it follows that f'(¢) < 0 for ¢ € (¢, 1), and positive everywhere else.

As the ¢ must belong to the interval (—1, 1], there are two cases:

(i) If o1 > 1, f is strictly decreasing on (—1, 1], hence it attains its minimum at ¢ = 1.
Thus, the maximum normalized expected utility U,_, from (IA.286) attains its
maximum at ¢ = 1, or equivalently at © = 0, (recall that there is a discontinuity

at © = 0). This maximum value is:

2

~omax Rb ]_ - -
e (£6(1 — a ))1 . (IA.289)
=0t ANL14b)(b+ 3)
To determine the cutoff value for C;, set Ugj; = U;j; One obtains:
_ 1— Ra™)>(1+0b)(b+3)
9 = 2\ ( 22— 1). IA.2
Cr ( R —a ) (1A.290)

(i) If ¢ € (—1,1), f is strictly decreasing on (—1,¢;) and strictly increasing on
(¢1, 1), hence it attains its minimum at ¢ = ¢;. Thus, the maximum normalized

expected utility U, _, from (TA.286) attains its maximum at ¢ = ¢, or equivalently

©>0
at © =2 — —Vlb_b € (0,2). This maximum value is:

— (Rb(1 —a™))?

= . TA.291
>0 = (1 + VI D)2 (14.291)
To determine the cutoff value for C;, I set N;“:Z = U;:Z One obtains:
] (1= Ra~)2(1 + VI = D)
= 2\ —-1]. T1A.292
Cr ( R?b(1 — a~)? (1A.292)
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But ¢; > 1 is equivalent to b < @, hence the two cases (i) and (ii) described here
are the same as the cases described in the statement of Proposition [A.7.

Finally, I collect the equations for C; and CY:

_ (1—Ra™)*(1+ 1 —10)?
PPIE TeIES =

(1-
~0 (1 — Ra~ )2(1+b)( +3)
¢ = QA( R2p2(1 —a—)? _1)’

For future reference, I also compute the normalized expected utility at © = 0,. By

(IA.293)

using ¥ = v~ + G, some algebraic manipulation of (IA.284) shows that:

~ i 1 — o~ by 2
b, = 22— 27) “ (IA.294)
1+ ¢pfi (14 ¢)(1+ dpp)
Taking the limit when © — 0 (or equivalently when ¢ — 1), one obtains:
~ MG (1 — py \G?
g = MGU=p) . (IA.295)
* 1+ ppt 2(1+ pp)
|

Proof of Proposition IA.8. As in Theorem 2, I define some normalized covariances

that are used throughout this proof. If x; is the IFT’s inventory in the risky asset,

denote:
o _ E(@F) o _ Elwew) ., E(wm) . E(ze(we—py))
2 o2dt’ = o2dt ' = o2dt ’ o = o2 dt ’
B — E (wt—pt)dwt) . E(l‘tC/lZUt) v, — E((dyt)2) 7 — E(xt—ldyt)
i o2dt e 2 | A A R
_E((dwy)?) ~ E((we—pody) ., E(wdy) o E(pedys)
We = o2dt B = o2 dt - = o2dt He = o2dt -
(IA.296)

Recall that in Theorem 2 the following formulas were proved:

G2

00" = ,
L+¢

O™ = G, OO = \GF+ \bZ,

B+ G(1L - p7)
00 = G(1—\9) — \pZ, X = *¢ -
(1—=M) 15 o7

pG(1—p3) G
L+opn  (1+¢)(1+ ¢pi)

(IA.297)

Y

Z = -0 + iX =
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The formula for W, is (recall that (,tht = dw; — pdy,):

E((duwy)? i
W, = % = 1-2p7+p’Y;. (IA.298)

The formula for Y; is (recall that o, = Z+):

E((dyt)z)
o2 dt

= 20" + 7% + i* (1 = 2p7 + p*Yi1) — 200X, 1 + 52,

Y, = = O + 72 + @*Wyy — 200X, + 67

u

(IA.299)

Because pu € [0,1), I apply Lemma A.1 in the Appendix in the paper to deduce that

Y; is constant, and equal to:

Q20 4 ,72 4 /]2(1 —2p7y) — 20X + 63

Y =
1_p2ﬂ2

(IA.300)

From (TA.297), one computes ©%Q™ —20uX = —02Q** —20(—00" + 1 X) = —(ff; -
207 hence:

9C _ 207 + 42 + i2(1 — 2p7) + 62

y — _1+¢ IA.301
as desired. Therefore, W, is constant and equal to:
_ ©p%G? — 2027 )2 2~2
p Z+ (1 —py)° +po,
W = 1-2py+p%Y = — ¢ 2(2 ) , (IA.302)
L =pp
as desired. Since H}" = E(ﬁift) and ©Q"" = G, one computes:
w E((wt_l + dwt)(—@:vt_l + ’?dwt + /ja\[ut_l)>
HY = 2
o,dt
_ E(wtfl(_@%&fl + ydw, + ﬁ&\&)tfl))
= 7+ o2l (TA.303)
— 500" 4 aEy,
= 7-G+pEL,.
One obtains the following recursive equation for E*:
Ew - E(wtC/l\l/Ut> o E(wt(dwt — pdyt)) o 1 - Hw
t o2 dt o2 dt P (IA.304)

= 1-p(y=G) = puE,.
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As long as b = pii < 1 (and b > 0), I apply Lemma A.1 in the Appendix in the paper

to deduce that E}’ is constant, and equal to:

pe - L= =G) (IA.305)
1+ pp

Equation (IA.304) implies H" = %, from which one computes:

o~ P66 (IA.306)
L+ pp

Since OO = AG¥ + A\¢Z and HF = E(pidy:) _ E((pe—1+Adye)dy:) _ E(pe_1dy:) LAY, one

o2,dt o2, dt o2,dt

computes:

E(pt—l(—@fﬂt—l + ydw; + ﬂ&z}t—ﬂ)

Hf = )\Y
! * o2 dt
_ Y — 00 4 AEP (IA.307)
= MY — Gy —¢Z) + pE},.
One obtains the following recursive equation for EP:
p E(pta\{vt) E(Pt(dwt - pdyt)) _ »
Et = 2 = B = )\r)/ - th
o2dt o2dt (TA.308)

= MY = pY + pGY + ppZ) — ppiEy,.

As long as b = pii < 1 (and b > 0), I apply Lemma A.1 in the Appendix in the paper

to deduce that E}’ is constant, and equal to:

v — pY + pG% Z
pr o= A 1= EPCTHp9Z (1A.309)
L+ pp
Equation (IA.308) implies HP = ’W_pEp, from which one computes:
Y +Y — 3G — o7
g = NPTV G =07 (IA.310)
L+ pp
Putting together (IA.305) and (IA.309), one obtains:
1—p(y—G)— A7y —pY GH A
g - pgo_pr - 1=PO—G) = AT = pY +pGT + p¢ )7 (TA 311)

L+ ppi

which is equivalent to the desired equation for E.
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To simplify presentation, I combine the FTs and STs by considering a speculator
with trading strategy of the form dwz;; = v,dw; + uia\[ut_l. If the speculator is a FT, I
set u; = 0; and if the speculator is a ST, I sety; = 0. The normalized expected profit of

this speculator is:

1 r —~
T = po) E/ Wy — pt) (’Yidwt + Mz‘dwtq)

w 0
1 T —~ —~

) E/ (wt—l — pi—1 +dw; — >\(—9$t—1 + ydw; + ﬂdwt—l)) (%‘dwt + Mz‘dwt—1)
w 0
1 r — —

= 0_—2 E/ <wt,1 — Pt—1 + dwt(l - )\’7) + )\6513'1/,1 - Aﬂdwt,1)> (%dwt + uidwt,l)
w 0

= (1 =XM) + (E + \OX — )\MW)

(IA.312)

Recall that by assumption (see equation (13)) the covariances F, X, and W do not
depend on speculators’ strategies. That is, the speculator regards them as constant and
not as functions of ~;, ;.
I compute the optimal weight of a FT indexed by i = 1, ..., Np. From (IA.312) with
1; = 0, his normalized expected profit is:
where v_; is the aggregate weight on dw; of the other F'Ts. The first order condition
with respect to 7; implies:
1= AG = A2y +7-i), (IA.314)

and the second order condition for a maximum is:
A > 0. (IA.315)

Note that this second order condition is satisfied by assumption. The first order condi-

tion is true for all F'T's, hence all v; are equal to ~, where:

1 -G

iyt (IA.316)

’}/:

From this, one computes v~ = Npy = (— — G)

Np
NNp+ D) T Np +1

I compute the optimal weight of a ST indexed by i = 1,..., Ny. From (IA.312) with

NprT” which implies ¥ = v~ + G =

This proves the desired formula for 4.
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~; = 0, his normalized expected profit is:
7 = (B +X0X) — pipi + pi) AW, (IA.317)

where p_; is the aggregate weight on C/I?Ut_l of the other STs. The first order condition

with respect to yu; implies:
E+ 20X — (2u + p_i) \W = 0, (IA.318)
and the second order condition for a maximum is:
AW > 0. (IA.319)

From (IA.315), this condition is equivalent to W > 0, which is assumed true. The first

order condition is true for all STs, hence all y; are equal to u, where:

E+)0X
S S IA.320
B= WV, + 1) ( )
From this, i = Ny = EJ;’I\/I?X NJZ L. This proves the desired formula for f. [ |

Proof of Proposition IA.9. 1 compute the pricing functions set by the dealer. As in

the proof of Theorem 1, the definition &Ejt = dw;—E;41(dw;) implies p = % = —?;
r t
Hence, one obtains: -
p = % — Y =7 (IA.321)

Note that this is equivalent to the second equation in (IA.275).
To compute A, I impose the zero expected profit condition for the dealer. Recall the

notations from equation (IA.296):

Oz — E<xt(wt_pt)) Y, — E(<dyt>2) 7 _ E(xtfldyt)
b ondt ’ i o2dt ' £ o2dt
(1A.322)
v o E(widy:) oo E (pedy:)
L O'%Udt ’ L O-%Udt ’

In the proof of Proposition TA.8, all these numbers are constant. Equations (IA.306)
and (IA.310) imply that:
Y+ yu—-7G - 9Z

pt+(-6) jG), P — ) - . (IA.323)
L+ pp L+ pp

HY =
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The dealer’s normalized expected profit at t = 0 is:

_ 1 g
Td = 0_2E (pt—wt)dyt = H?" - H"
wou o (IA.324)
_ Y Htm-3G-9Z p+ (-G
L+ pfi L+pp

Setting the dealer’s expected profit to zero is then equivalent to:

p+(-G)
A = , TA.325
Y+ —AG - ¢Z (14.325)

which proves equation (IA.276).
I now compute Y. From Proposition IA.8, one obtains:

G = pd) ez . —99 — 207 + 7 + p*(1 — 2p7) + 62

L+opp (1+0)(1+¢pi)’ B 1 — p?p?

(IA.326)
Note that the equation for Z is identical to the first equation in (IA.275). By substituting

Z in the equation for Y, one obtains:

G2(1—¢pp) —2uG(1+¢)(1—py) | =2 | -2 ~ ~9
y = 2 (19 (1) +77 (L= 2p7) + 0y
1 _ p2ﬂ2

(IA.327)

Multiply this equation by p(1 — p??)(1 + ¢pji). Because (IA.321) implies pY = 7, one

obtains:
(1 —¢ppi) — 20G(1+ ¢)(1 — py)

(1+9) (IA.328)
+ (7 + 22(1 = 2p7) 4+ 72) (1 + ¢pfi).

—(1 _ 22 =\ G
Y1 = p°7)(1+ ¢pp) = ©

This is the third degree equation in p stated in (IA.274). [ |

Proof of Theorem IA.3 (Theorem 3). To find necessary conditions, suppose there

is an equilibrium. Since the IFT is sufficiently averse and b > @, according to
Proposition TA.7, he chooses optimally ©® > 0. Then, one can put together all the
equations from Propositions IA.7-1A.9. To simplify the equations, note that (see equa-
tion (IA.321)):

pY = 7. (IA.329)
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Then, equation (IA.298) becomes:
W =1-py =1-a. (IA.330)

I now assume that the IFT is sufficiently inventory averse, so that his inventory mean
reversion is strictly positive (© > 0). The relevant equations from Propositions IA.7-
[A.9 are:

N Sp R\, N, Etrex N
T AT T Ny T T TR W N 1
1—a" 1-b
G = al, 0=2-Y——¢c (0l ¢=1-6
) ity-G
W o=1- Y = =
. i (IA.331)
v B+ G(1 - py) . —%5 =207 + 3 + i*(1 - 2p7) + &,
a L+ ¢pp a 1— p2ji2 ’
_ BG(1 - p7) G?

L+opp (1 +¢)(1+ ¢ppr)’

g LopteG A pY +pGY+peZ  1—py | pGY A pdZ

L+ pp L+ pp L+ pp L+ pp

The goal is to express all the equations in (IA.331) as functions of a~ and b, and then

use the first two equations to solve numerically for ¢~ and b. Denote:

A 1
R=2  B=—0— o =p, a=p b= (1A.332)
p —

Rewrite the equations in (IA.331), except for the first two, as functions of a™, b (or B),
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1—a" 1 1
= — 92— .
“ =5y © s YT b
2B+1
—l-a=(l—a
W a = BT
_ l+a (2B+1)
2Y: prm— =
P @ =a 4ol 2B+1)
a”+b a”+b
h= p2Y +ab—apG — ¢p?Z  a+ab— apG — ¢p?Z’ (TA.333)
(1-a")’B 2 (1—a7)® o
x - L—e)Z _U-a ) g
P iB+1y " sBrie
2\ 2 2 Op°G* 2 2 | 12 22
(1—b)pY:(1—b)a:—1+¢ —20p°Z 4+ a” + b*(1 — 2a) + po;,
o l—a 2(l—a")—(1—a")’B
1+0b 4B+ 1)(1+b)

From the corresponding equation for R in (IA.333), one computes (after some algebraic

manipulation):
4B+1)B*(a” +b
R = (B+1)B (0" +b) . (IA.334)
B3(a=)?+2(3B*+3B*—-2B —1)a~ + (B*+2B%? - 2)
By setting:
Q = B*a")*+2(3B*+3B*>-2B —1)a” + (B*+2B* - 2), (TA.335)

I have proved the equation for R in (IA.279).
Now (IA.331) implies a = %, which proves the corresponding equation
in (IA.279). Recall that:

Np Np
= — = . [A.336
T Npr1 P T N+ ( )
Equation v~ = 53¢ N]Zil from (IA.331) can be written as Ra~ = (1 — RpG)np, or

equivalently R(a™ + pGnp) = np. Using the formula for R from (IA.334), (after some

algebraic manipulation) one obtains the following second degree equation in a™:

B2<4(B+1)—nF(B+2)>(a_)2+2(B+1)(2(32—1)—nF(3B2—2)>a_—B3nF = 0.
(IA.337)
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This second degree polynomial has two real roots:

—qj:\/q2+nFB5((4—nF)B+2(2—nF)) .
— , 't
B((4—np)B+ 22— np)) s (IA.338)
¢ = (B+ 1)(2(32 — 1) —np(3B* — 2)).
This proves the equation for a~ in (IA.279).

From (IA.333), one computes:

g1 S 2-(-a)B pX  (1-a™)B
l—a 145 4B+1)(1+b) 1—a  4B+1)"

(IA.339)

which implies

E+ROpX 1 (O(1+b)+1)(1—a")B—2
R(1—a™) R(1+0b) 4B+1)(1+0b)
Q (O(1+b)+1)(1—a")B-2
4(B+1)(1+b)B*(a~ + ) 4(B+1)(1+b) ’

(IA.340)

where the last equation comes from (IA.334).

Now, multiply equation i = W % from (IA.331) by p to obtain:

 E+ ROpX 2(B+1)
 R(l—a") 2B+1

Multiplying this equation by 2B apg using (IA.340), one obtains:

nr

20(1 +0)2B+1) Q
nr © B2(a= +b)

+(O©1+b)+1)(1—a")B-2. (1A.342)

Since O(1+0b)+1 = %M, I have proved the first equation in (IA.279).

It remains just to prove the equation for p. The penultimate equation in (IA.333)
implies p?62 = (1 — a)(a — b?) + %52 + 20bp*Z, hence:

(1—a)(a—0*) + %ﬁg +20p%*Z

o
—a—)2
(1—a)(a— ) + 125 e (142082 (1+¢))

52
Oy

(IA.343)
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Using 1 —a = (1 — a*)f(gﬁ), one computes (after some algebraic manipulation):

© (1—a)? 2bB — 1

o ap i L TAEA+e) = ST -a) (TA.344)

which proves the corresponding formula for p in (IA.279).

I have just finished the proof that the equations in (IA.279) are necessary for the
existence of an equilibrium. I now show that they are sufficient if I assume that the
solution to (IA.279) also satisfies @ <b<1l,a<1, A>0.Inow follow the proofs
of Propositions IA.7-TA.9 to show that the strategies defined by using these coefficients
provide an equilibrium. The condition b < 1 is used to perform the computations in
Proposition IA.7. The condition b > @ is used in showing that the IFT chooses
© > 0. The condition A\ > 0 is used as the second order condition for maximization for
all three types of speculators (see in particular the second order condition (IA.315) for
the F'T). The condition a < 1 or equivalently W =1 —a > 0 is used as a second order
condition for the ST (see equation (IA.319)).

Finally, I compute the equilibrium expected profits of the [FT, FT's and ST, denoted
respectively by m, w7, From equation (IA.291), the normalized profit of the IFT is:

Rb(1 —a™)?

7 o= P+ V=T (IA.345)

as stated in the Thorem. From (IA.273), the normalized expected profits of the FTs

and STs are respectively:
=41 =AG—Ny"), 7 = p(E+X0X —AWp). (TA.346)

From (IA.271), one obtains:

1-)MG E+)\0X

- S IA.347
T ANAr) M T WL 1 ( )

One computes Ay~ = NpA\y = NJZ £:(1=AG). Therefore, 7 = ~ le;/ﬁ = \y2. Similarly,

75 = AW 2 But in equilibrium W = 1 — a, hence 7 = A\p?(1 — a). One obtains:
7= N2 7 = M1 —a), (IA.348)

as stated in Theorem IA.3. The proof is now complete. [
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Proof of Proposition 7. The asymptotic notation in this proof is:

X
X r X <= lim — = 1. (IA.349)

NF,NLHOO o)

(Note that N — oo is also included as part of the definition.) Denote:

-1 1
V5 B = 14b, = V24 o = 1. (TA.350)

boo: ) ) 00
2 2

First, I prove that:

1+ boo 9
b ~ by, R o, l—a =~ , l—a = . IA.351
a a a No 1 a N1 ( )

Define the function of two variables f:

~g 4+ (1= )B((3+)B +2(1+2))
f(B.e) = B2((3+e)B+2(1+¢)) ’ (I1A.352)
with ¢ = (B+1)(—B*+¢(3B*>-2)).

Also, define the function of two variables g by:

2b(1 +b)(2B + 1) Q 3bB +2b°B —1—b ~
Bye) = — l—a)—2
g( 75) nr +BQ(a—+b) + b ( a ) ’
: 1 _
with np = 1, b = l_ﬁ’ a” = f(B,e),
and Q = B*(a”)*+2(3B*+3B*>—-2B —1)a” + (B> +2B* - 2).

(IA.353)

[ now use the formulas B,, = 1+ by and b (1 + bs) = 1 to compute the values of
f and g and of their partial derivatives at B = B, and ¢ = 0. After some algebraic

manipulation, one computes:

0
9(Ba0) = 0, [(Bui0) = 1, X (B0) = 2 (1A35)
Denote by B(e) the solution of g(B,¢) = 0:

B(s) <= g(B,e) = 0. (IA.355)
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From (IA.354), g(By,0) = 0, therefore:
B(0) = B. (IA.356)
Denote by a~(¢) the function:
a (g) = f(B(e),e). (IA.357)

Using (IA.354), one computes the derivative of a~ at € = 0:

C0) = LB OB + 9 (B0
— 0x B'(e) + (-2 (IA.358)
= 2.

Fix Np > 0. Let a, and B, be, respectively, the equilibrium values of a~ and
B = \/% when Ny approaches infinity:
a, = lim a7, B, = lim B. (IA.359)
NL—>OO NL—N)O
Theorem 3 shows that the equations (IA.279) are necessary conditions for an equilibrium,
hence o~ and B satisfy (IA.279). Taking the limit when N, — oo (n — 1), it follows
that a, and B, satisfy equations (IA.279) with n;, = 1. But, by definition, the numbers

a~(e) and B(e) satisfy the same equations when ¢ is:

e = . (IA.360)

Therefore, one obtains:
a, = a (g), B. = B(e). (TA.361)

From (IA.354) and (IA.358), one has B(0) = By, a=(0) = 1 and %~(0) = —2. There-
fore, B(e) & B, a”(¢) ® 1, and 1 — a™ (¢) = 2e. From (IA.361), this translates into
B, =~ By, a, =~ 1,and 1 —a, = NF2+1'

therefore one obtains the following asymptotic formulas:

But B, and a, are limits when N — oo,

B =~ B, a” ~ 1, l—a =~ 2. (IA.362)

From (IA.279), one has a = a~ + %, which implies 1 —a = (1 — a‘)ﬁgi}). But
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2Bo+1  __ 14bs

S T Therefore, one obtains:

a ~ 1, l—a =~ (1+by)e. (IA.363)

One hasa = a~+pG, hence pG = a—a~ = (1—a")—(1—a) = 2e—(14+bx)e = (1 —bu )e.
One obtains:

pG =~ (1 —by)e. (IA.364)

1-0AG Npg
A Np+1?

p becomes a~ = (§ — pG)(1 —€). From this, 5 = &= + pG, which implies 1 — & =

[ now analyze R = %. From (TA.331), one has v~ = which multiplying by

l—a” —¢
1—¢

—pG. Using 1 —a~ =~ 2¢ and pG = (1 — b )e, one gets 1 — % & boe. From this,

one gets R~ 1 and £ ~ bye, hence:
R~1  R—-1= bee (IA.365)

One computes 1 — Ra™ &~ 1 — (1 + boee)(1 — 26) = (2 — byo)e. Similarly, 1 — Ra =~
1— (14 bse)(1 = (14 beo)e) = £. One obtains:

1 —Ra™ =~ (2—by)s, 1— Ra ~ . (IA.366)
Since b =1 — %, boo =1 — ﬁ, 0=2-— —Vlb_b, one obtains:
1 — by
b =~ b, 0 ~ 2—b— =1, o ~ 0. (IA.367)

From (IA.279), one has p*G; = (1 — a)(a — 0*) + 135 H (1+2bB*(1 + ¢)), which

implies % N o — b2, Using 1 —a ~ }V*;—bfl one gets p?62 ~ %, hence:
1 o 1
2~2 w
0o: N —, or N — IA.368
Since R ~ 1, one has A =~ p. Therefore, one obtains:
w 1
AN p e (IA.369)

0w VNp +1

I now compare the asymptotic results with the corresponding results in the bench-
mark model. Denote by 7o, 1o, Ao, po, @o, by the equilibrium coefficients from Theorem 1,

and by Yoo, fhoos Aoos Poos Goos Doo, Tespectively, their asymptotic limits. I have already
V51

shownthat)\zpz/\oo:poo:Z—l:\/ﬁ;alsoazaoozl,andbzbm:T. More-
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i 1 111 1 e __ — a_ % 1 %
T, 1n th IHVGHtOI‘y managerr ent equlhbrlum, one has Y Ny = oN o (Ve D)
40 — 0 = : and 0 = B b be o b0 _ o T} ~
po(NF+1) Np+1 o; Ny, ~ ~ ~ Np Ho- us, v =% and

i~ . I have just proved that:

7 R Y, 1R o, AR A, p X po, a =~ ao, b ~ by. (TA.370)

I also report the asymptotic results for 1—ag, 1—ay, 1 —Rpag, 1 —Rpa, . From Theorem 1

(with Np + 1 fast traders), ag %—1DJ:){)’ hence 1 — ag = ﬁ ~ (14 by )e. Also,
a; = wEga0 = (1 — €)ag, hence 1 — a5 ~ 1 — (1 - 5)(1 — (14 b)) & (24 buo)e.
From Corollary 1, Aoy = %ﬁi;, hence 1 — Rpag = 1 — A\gYo = m ~ ¢e. Also,

Roay, = RO%GO = %)\0% NN+2, hence 1 — Rya, = ﬁ ~ 2¢. Putting together

these formulas, it follows that in the benchmark model:

l—ag = (14+bs)e, 1—a; = (24bx)e, 1—Roag =~ ¢, 1—Rpa, ~ 2. (IA.371)
By contrast, in the inventory management model:

l—a ~ (14+4bx)e, 1—a =~ 2, 1—Ra = e 1—Ra =~ (2—by)e. (IA.372)

The difference comes from the fact that the IFT’s equilibrium weight G is not equal
asymptotically to the FT’s weight v &~ 7y in either the inventory management model
or the benchmark model. To see this, note that in the inventory management model
one has 1 —a =1 —a~ — pG, while in the benchmark model 1 —ay =1 — a; — po7o-
But pG =~ (1 — by )e (from equation (IA 364)), while poyo & A\oYo = &, where the last

~ ¢. I record this

approximation follows from A\g7yy = which implies \gyo =

Np 1
Np +2’ Np+2
result for future reference:

)\0’}/0 ~ €. (IA373)
If T now use pG = (1 — by )e and pyyo = €, by taking their ratio one obtains:

G G
— =~ — =~ 1—-b, = 0.3820. (TA.374)
7 Yo

From Corollary IA.2, the normalized expected profit of a F'T in the inventory man-
agement model is 7" = v(1 — Ay) = (1 — Ra). From (IA.372), 1 — Ra =~ ¢. Since
v & 7o, one obtains:

7 = ype. (TA.375)

From Proposition 1, the normalized expected profit of a F'T in the benchmark model is
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~F

— 0
7T0—

o o
i which implies:

7 o~ ye. (IA.376)

Therefore, the F'Ts in the inventory management model make asymptotically the same
profits as the FTs in the benchmark model:

|
B!

-~ L (IA.377)
0

N

For the IFT, equation (IA.291) implies that the normalized expected utility (or profit)

N2
ism= %. Since R~ 1and 1 —a~ =~ 2¢, one has 7 =~ Ao(bf.#i.g? From (IA.373),
/\io = 7p, which implies 7 ~ (1&%)2 Yo €, OT:

T~ (26 —1)yoe. (IA.378)

Asymptotically, the ratio of the IFT’s profit to the F'T’s profit is given by:

s
ﬁ-F

~ 2bo —1 = 0.2361. (IA.379)

Denote by 7¢,—o the IFT’s maximum normalized expected profit when C; = 0. Equa-
tion (78) implies that:

(1 — Rcf)2
To—g = —— 2. IA.
Toy—0 75 (TA.380)
Since 21 — Ra”™ = (2= bx)e and A = Ao & = (equation (IA.373)), one gets 7¢,—o =~
—(2_3"") Yo€, Or:
5
Top=0 = 1(1 —bso) YoE = 0.4775 7 €. (IA.381)
Asymptotically, the ratio of 7 to 7o, —o is f(bl"j;l) = %boo, hence:
4 o0
T 4
- ~ = by = 0.4944. (IA.382)
TCr=0 5)

Thus, inventory management generates a profit loss of about 50% for the IFT.
Equation (IA.293) implies that the threshold inventory aversion for the IFT is given
by 1+ % = (=R POAVIZD® e has R~ 1,1—Ra™ = (2—bx)e, 1 —a~ = 2¢, hence

~ R2b(1—a—)2 ~
1+$ ~ —(2_6001?;2%00)2 = 2(1 + bs), which implies §& ~ 2= Since \ ~ e %N;H’
one obtains: ) ; )
_ + 5bs Ow
C; ~ A~ 20451 — ——. TA.383
! 2 0w VNp + 1 ( )
[ |
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Proof of Proposition 8. As in Subsection 3.2 in the paper, I equate trading volume

with (instantaneous) order flow variance. From (68), ©Q* = %, where ¢ =1 — 0.

Since dx; = —Ozy_1 + Gdwy, the IFT’s normalized order flow variance (or normalized
trading volume) satisfies:
2G?

Var(dz;) TV, 9 2 I—9¢ , 2
o2dt o2 * 1+¢ - 1+¢ ( )

Since x; = ¢xy_1+Gdwy, the IFT’s order low autocovariance satisfies Cov (dxt, dIL‘t_H) =

Cov(—@$t_1 + Gdw;, —O¢x;_1 — OGdw; + det+1)> hence:

Cov (dxt, dxt+1)
o2 dt

OG?
- . (TA.385
1+¢ ( )

_ 2 T 2 _ o ¢ 2 2 —
= ©%90 oG @( —1+¢G+G)

Therefore, the IF'T’s order flow autocorrelation is:

Cov (dxt, dxtH) ©
» = Corr(day, d = = ——, TA.386
P orr( Ty $t+1) Var(dxt) 9 ( )
which proves the corresponding formula in (44). Asymptotically, since © ~ 1, p, =~ —%.
The individual and the aggregate trading volume of FT's satisfies, respectively:
TV ¢ TV 3¢ _
=7 - = (V)% (IA.387)
O—'LU O—’LU
From (IA.384) and (IA.387), one gets TTVV; =1 lii;yg, which proves the corresponding

formula in (44). Asymptotically, Proposition 7 shows that % ~ 1—0by and ¢ =~ 0,

hence TT‘}/Z ~ 2(boo — 1)% = 2(2 — 3bs) = 0.2918. The aggregate trading volume of STs

satisfies:

TV, Var(du
Sra [RM — BW = ?(1-a), (IA.388)

o2 o2dt
where I use the equilibrium formula W = 1—a in (IA.333). From (IA.387) and (IA.388),

one compute:
_ i2(1 — 2(1 —
TVas _ R (1—a) _ b (1 a)7 (IA.389)
TV e (v7)? (a7)?

as stated in Proposition 8. Asymptotically, from (IA.372) one has 1 — a ~ 1= and I

Netl?
use b~ by, a1, b2 (1 + by) = by to get ggzi ~ Nl;oip as stated.

Recall that X = S/@were ypq ppy = Verldwe) gy (IA.333) and 1 —a = (1 —

o2dt o2 dt

87



a—) 2B+1

3(B+1) One computes (B = ——):

B(B +1)

pX = (1—a)? CEESIE

(IA.390)
The regression coefficient of the IFT’s strategy (dz;) on the slow trading component

(dz7) satisfies:

7S —Oji Cov (1, dw;_ - -
Brgs = Cov(dxt’_ixt) _ ZOnCov{rpdwiy) OX _ —0kY) (IA.391)
Var(dzy) [1% Var (dw;_1) pw b(1 —a)

Using (IA.390) and W = 1 — a, one computes:

©B(B+1) B OB

s = — 1— = — (1 —a"). IA.392
Pazs 2B 1z LY weBn L) ( )
Asymptotically, b ~ by, B ~ é, © ~ 1, and from (IA.372) 1 —a™ = NF2+1‘ Hence:
1 1 3+ by 0.7236
e~ _ _— , TA.393
faas boo(1 + 2b0) Np + 1 5(Np + 1) Np+1 ( )

which proves the stated formula.
Since the trading strategy of a FT is ydw,, the order flow autocorrelation of the FT's
is pzr = 0. For the STs, since a\vjut = dw; —pdy; and dy, = —Ox; +"ydwt+ﬁazvut,1 +duy,

one computes the normalized order flow autocoviance:

Cov(dzf,,dzf)  ,Cov(dw, 1, dy)
O'Zjdt - O'gudt

— —pi?(~OX +AW).  (1A.394)

From (IA.388) and (IA.394), one computes the autocorrelation of slow trading dz?, as

follows:
Cov(dz; ;,dz}) —pi?(—0X + (1 — a)) - OpX
Pzs = - = - = — —_—
Var(dz?) (1 —a) (I—a)  (IA.395)
= —b— bﬁx,iﬁ?

where for the last equality I use (IA.392). Asymptotically, the term b+ bf, zs = b, since

1
Np+l-

By.zs is of the order of Hence, pzs &~ —b. [ |
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5.3 One IFT, general strategy

In this subsection, I assume that the IFT has a more general strategy which includes

trading on the lagged signal:
dz, = —Oz_; + Gdw, + Mdw,_;. (IA.396)

I introduce some useful notation. If z; is the IFT’s inventory in the risky asset, denote
by:

e _EGD) L E@dw) o EGod) o E(dw?)
O R | A Y | LT g2t
(TA.397)
Define the following aggregate trading coefficients:
¥y =~ +G, p=pu +M (TA.398)

Since dz; = —Ox;_1 + Gdw, + M &Zut_l, the aggregate order flow satisfies:
dy, = —Oxy_1 + ydw, + fdw,_; + duy. (IA.399)
Hence, the lagged signal &Zut satisfies:
df;jut = dw, — pdy; = pOxi_1 + (1 — py)dw;, — pﬁa;jut_l — pduy. (TA.400)

I now compute the IFT’s expected utility. As in Proposition 6 in the paper, the
IF'T holds all his profits in cash, and his expected utility is the same as the expected
profit. Also, from equation (35) in the paper, the IFT’s normalized profit is 7,_, =
E fOT xi_1dps = AE fOT x;_1dy;. Using the notation in (IA.397), one obtains:?3

©>0

T
Foso = A / Z,dt. (IA.401)
0

Equations (IA.399) and (IA.397) imply that:

E Sthldyt P _
7, = % = —O0, 4+ X, . (IA.402)

23Below I show that Z; is constant, which implies that 7 = MZ. (Recall that T =1.)

©>0
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To compute Q7" and Xy, I follow the strategy described in the proof of Proposition 6 in
the paper, and analyze the recursive equations that these variables satisfy. To that end,

I begin by noticing that the IFT’s inventory itself follows a recursive equation:
2y = ¢y + Gdw, + Mdw,_y, (IA.403)

where ¢ = 1 -0 € (—1,1). (Recall that by assumption © € (0,2).) The recursive

formula for Q7" is then:

E((z)?)  E((¢ze1 + Gdw, + Mdw,_y)?)
oudt ogdt (IA.404)
= QT + G+ MWy +20M X, 1.

Tr
Q=

Using equation (IA.400), the recursive formula for X; is:

E(ZEtC/lTUt) . E((¢$t_1 + det + M(fl\[ut_l)(p@mt_l + (1 — pﬁ)dwt — Pﬂ&\[ﬂt—l))
ozdt o2 dt

= ¢pON*, + G(1 — py) — MpW, 1 + p(MO — oj1) X, 1.

Xt:

(IA.405)

Oy

Using again equation (IA.400), the recursive formula for W, is (recall that &, = 2*):

E((a?vﬂt)Q) _ E((pOzq 4+ (1 — py)dw, — pidw;_; — pduy)?)
o2dt o2dt (IA.406)
= PO + (1= p3)* + PP Wiy — 20°OnX, 1 + P75,

Wt:

Assume now that the following conditions are satisfied:
—1 < ¢*, p(MO — o), p*i* < 1. (IA.407)

I apply Lemma A.1 in the Appendix in the paper to the recursive formulas for Q7% X,

and W;. Then, these numbers are constant and satisfy:

(1— )™ = G?+ M*W +20M X,
(L= pMO + pop) X = G(1— py) + ¢ppOQ*™ — MpuW, (1A.408)
(1= p* @)W = (1= p3)* + p*G. + p*O°Q™ — 2p°OuX.

Equation (IA.408) provides a 3 x 3-system of equations with three unknown constants:
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Q™ X, and W. Thus, I can solve explicitly for these numbers, given the model param-
eters and the choice variables G, M, and O.

Equation (IA.402) now implies that Z; is constant, hence the IFT’s expected profit
can be explicitly computed as a function of the constants 2** and X:

Foo = AN = A(—OQ™ + 1X). (IA.409)

©>0

Numerical results

Numerically, for all the parameters verified, the optimal coefficients occur when ¢ = 1,

or equivalently © = 0. In that case, ©Q2*" has a finite limit, and one computes:

5 A pG?*
Moy = S0+ (— 5 +b (1—a)G—

M (2bb™ + pM)
2(1 — b2)

(1-ap + %)
(IA.410)
With the constraints imposed by (IA.407), I find that the optimal G is positive, and the

optimal M is negative. Specifically, one computes:

(143" —(1+207)A)(1—a")(1—b)
2(b-)2A ’
oo A= (1—;);)(1+2b—)’ (IA.411)

with A = /(1 —0b)(1+3b").

To understand why the optimal M is negative, consider again equation (35), which

translates into: -
7'%(_)>0 = A E/ xtdyt+1. (IA412)
0

This implies that in the quick regime the IFT only makes profit from his correlation
between his inventory this period (z;) and the aggregate order flow next period (dy;y1).

But equations (IA.399) and (IA.400) imply that the order flow next period satisfies:

dyir1 = —Ox + ydw, 1 + p(dw, — pdy,) + dugy
= —Ox; +ydwg1 + [L(—p@xt_l + (1 — p¥y)dw; — pﬁ(/hvut_l — pdut) + dugyq
(IA.413)

Note that in the above formula the coefficient of dwy, is i(1—p7) > 0, while the coefficient
of C/I\I/Ut_l is —pji® < 0. This observation corresponds to the fact that the optimal G is
positive and the optimal M is negative. To explain why M < 0, note that the other
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traders (the FTs and STs) trade on signals with lag at most one. If they also traded
on signals with lag larger than one, the aggregate order flow (dy;.1) would then have a
positive correlation with the signal with lag two (dw;_1), and therefore in that case the
optimal M would be positive. Another way to understand why M < 0 is to note that
this component replaces partially the mean-reverting component —©x;_; when M = 0.
Indeed, in that case the IFT’s strategy is of the form dz; = Gdw; — ©x;_1, and thus
the mean-reverting component —Ox;_; contains the term —OGdw;_; which is similar

to the term M &Tut,l when M is negative.

5.4 One IFT, predictable order flow

In this subsection, I assume that the dealer knows that the order flow is predictable and
sets the price to account for this predictability. As before, I assume that the IFT has a
strategy of the form:

dr; = —Oz,; + Gdw,. (IA.414)

The aggregate order flow dy, then satisfies:
dyt = —@l't_l + det + [L&;/Ut_l ‘I— dut, (IA415)
where:
¥y =7 +G, o= | . (TA.416)
Define:

dy, = Et(dyt)a a\?;t = dy; — dy,,

Ty = Et+1(xt)7 Ty = Ty — Ty,

(IA.417)

where as before Z; is the dealer’s information set before trading at ¢, and E; is the
expectation operator conditional on Z;. Note that E;;; is the expectation operator
conditional on Z; and (fi};t. Because part of the aggregate order flow is predictable to
the dealer, one has the following modified equations: By taking expectation at t in

equation (IA.415), one gets @t = —0O2;_;. One computes:

a\i&t = _G)jt—l + 7dwt + /jL(/ﬂ/Ut_l + dut. (IA418)
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This equation implies that E;; (dw,) = pa;t for an appropriate constant p. One obtains

the following equations:

dw, = dw, — B (dw,) = duw, — pdy,,

— (IA.419)
dp: = Ady,.
One also computes:
dw; = POz, 1 + (1 — p¥y)dw, — pﬁa\l/ut_l — pduy. (TA.420)
After taking expectations at ¢ + 1 of equation (IA.414), one obtains:
di; = 021 + GEp(dwy) = —Of_1 + pGdy,. (IA.421)

Subtracting (IA.421) from (IA.414), one gets dZ; = —Oz;—1 + G(dw; — p@t), which

implies:
A7, = —(1— pG)OF,_1 + (1 — p7)Gdw, — pGidw,_1 — pGdus. (IA.422)
This in turn implies the recursive formula for z, = 7, 1 + dZ;:
# o= (04 pGO)iy + (1 — p7)Gdw, — pGidw, , — pGdu,. (IA.423)

I now compute the IFT’s expected utility. Define:

E(.’L’t.fft) X, — E(.Ttdwt) o E(xt_la;t)
o2dt ’ T g2de B o2dt

QFF = (IA.424)
As in Proposition 6 in the paper, the IFT holds all his profits in cash, and his expected
utility is the same as the expected profit. Also, from equation (35) in the paper, the
IFT’s normalized profit is 7, , = EfOT i dp, = )\EfOT xt,lazt. Using the notation
in (TA.424), one obtains:

T
Ao / Zudt. (TA.425)
0

Equations (IA.424) and (IA.418) imply that:

E('Tt—la\f;t)

7 —
! o2dt

= -0 + X, 1. (TA.426)

93



To compute Q2% and X3, I follow the strategy in the proof of Proposition 6 in the paper,
and analyze the recursive equations that these variables satisfy. Equation (IA.423) says
that Z; = (¢ + pGO)Ty—1 + (1 — py)Gdw, — pGﬂazvut,l — pGduy, hence:
o _ E(z:Z;) _ E((¢pz-1 + Gdwy)((¢ + pGO)Ty—1 + (1 — py)Gdw, — pGﬁ&zvvt_l))
¢ o2 dt o?dt
= G*(1—p7) + 6(¢ + pGOYNT — ppGiX, 1.

(IA.427)
Equation (IA.420) says that a:c/ut = pOT;, 1 + (1 — py)dw, — pﬁa\z/ut_l — pduy, hence:

E(xta\z/ut) B E((¢zi—1 + Gdwy)(pOFi—1 + (1 — py)dw, — pﬂ&\@/ut_l))
o2dt oZdt (IA.428)

= G(1—p7) + ¢pOQ", — PpppiX 1.

Xt:

Assume now that the following conditions are satisfied:

—1 < ¢(o+ pGO), dpp < 1. (TA.429)

I apply Lemma A.1 in the Appendix in the paper to the recursive formulas for Q%% and

X;. Then, these numbers are constant and satisfy:

(1= ¢* — ppGOYY™ + ppGuX = G*(1— py),

’ (IA.430)
—ppOQ™ + (1 + dppp) X = G(1—p7).

Equation (IA.430) provides a 2 x 2-system of equations in 2*® and X. This can be
solved explicitly, and from (TA.426) it follows that Z; = —©Q* + X is constant and

equal to:

_ -G+ (1+9)i
Z = G(1— : IA.431
U7 e ar o+ o+ dom (14.431)
Hence the IFT’s expected profit 7,_, = AZ can be explicitly computed:
. _ —G+(1+¢)a
= \G(1 — : IA.432
Moo =) e+ 6 + ol + Dom e
Denote:
g = pG, (IA.433)
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The first order condition in ¢ for a maximum in (IA.432) yields a cubic equation:

P(g) = —20¢° + (3(1+¢) + ¢(1 —a”) +46(1 + ¢)b) g°
— 214 )14 ¢b)(1 —a™ + (1 + @)b)g + (1 + ¢)*(1 — a™)b(1 + ¢b) = 0,
(IA.434)

where a~ = py~ and b = pfi. Since 7,_, = 0 for ¢ = 0 and g = (1 + ¢)b, the first order
condition is satisfied for the unique root of P in the interval (O, (14 gzﬁ)b)
The first condition in ¢ yields the equation:

(b1+¢)—g)*—g = 0. (IA.435)

This equation has two real solutions:

224+z-b

¢ = =1/ (IA.436)

Substituting (IA.436) in (IA.434), one obtains the following quartic equation in z:
Qi) = 2'+32 42221 —b)—z2(1—a )= (1—a”)(1—b) = 0. (IA.437)

Since b < 1, the second derivative of ()(z) is positive, hence @) is convex. But Q(0) < 0
and Q(—o0) > 0, Q(oco) > 0, hence @ has only two real roots z; > 0 and 2z, < 0. Note
that equation (IA.435) implies that (1 + ¢)b = 2% + 2. But as shown above, g must
belong to the interval (0, (14 ¢)b) = (0, 2% + 2). Since g = 22, it follows that z must be

positive. Hence, define:

z = unique positive root of Q. (TA.438)
Then, the corresponding solution (¢, G), or equivalently (0, G), is given by:
22420 2b — (22 + 2) 22

e = G == (IA.439)

¢ = b ) b ) P

This finishes the proof.
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5.5 Multiple IFTs

Suppose beside the Ng > 0 FTs there are also I > 2 IFTs with trading strategy:
d.Z'i’t = Gldwt — @ixi,t, with @z S (O, 2), 1 = 1, ce ,I. (IA440)

If x;, is the inventory of IFT 7, denote:

Qrr, = E(«Tiétxj,t)’ Qe — E(Z’i,t(wt_pt))’ X, — E(x,,t@)t)
‘ o2 dt b o2dt ’ o2dt
3 S w (1A.441)
Qrw — M 0 — E(wiepe) 7. _ E(xi—1dy)
wto ozdt ’ bt o2dt ’ CL o2dt

Denote by ¢, =1 —©; € (—1,1). Note that z;, satisfies the recursive equation z;; =
¢iiy—1 + Gidw;. One computes Qff, = E(a;gg,t) — E((d’ifci,t—1+Gid1§g§fﬂi,t—1+%dwt))

¢i; Q2 + GiGj. Since ¢;¢; € (—=1,1), T apply Lemma A.1 in the Appendix in the

paper to the recursive formula 7 = ¢;0;Q7", | + G;G;. Then, Q) is constant and

equal to: oo
Qo= (IA.442)
1 — ¢i);
The aggregate order flow at ¢ is:
I . I
dyt = _Zijj’t_l +7ydwt+ﬂdwt_1—|—dut, with :}/ = ")/_—i-ZGj, ")/_ = NF’}/
j=1 J=1
(TA.443)
I express Z;; as a function of X;;_1:
E(zi—1dy:) ! - _ (1—-9¢,)G:G;
Zip = ~2a Z ;51 + X1 = — Z s + X1
w j=1 L)
(TIA.444)
One has the recursive formula X, = E(if;j;”t) — E@ie 1+i2d tht)(dwt pdyt)) —ipZiy +

Gi—Gipy = —¢ipiXi—1+ dip Zjl-zl %WLG Gipy = ¢z‘in,t—1+Gi( —a”)—

Z]I':1 %ﬁ;ﬂ By assumption, 0 < b < 1, hence ¢;b € (—1,1). Lemma A.1 in the

Appendix in the paper implies that X, is constant and equal to:

Gi(1—a™) =", pGlG—<1—¢>
X, = I=t 176id5 TA 445
1+ éb ( )
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From (IA.444), Z;, is also constant and satisfies:

1—a" ! b+ 11;5(1);)
Sy JZIGGJ 1+ b (1A.446)

I now consider the optimization problem of IFT i, and describe a numerical procedure
to solve it. In a symmetric equilibrium, IFT ¢ assumes that the coefficients of the other
[FTs are equal. To simplify notation, I eliminate the subscript ¢ for IFT ¢ and denote
the coefficients of the other IFTs by G, ©’, and ¢/ =1 — ©'. IFT i then maximizes:

) - 1y 1
il —a) e o v
J = G———2 — (I -1 — . TA .44
i G S P iy (1A.447)

The first order condition for G implies that at the optimum:

a(l—a”) = (I -G (b+ %) , (ﬂ(l —a) = (I =D& b+ f‘ﬁ;/)f

G:

—

2(b+ 113) ’ 40+ 135) (1 + ¢b)
(IA.448)
But in a symmetric equilibrium one has G = G’ and ¢ = ¢’, therefore in equilibrium G

should be related to ¢ via the function:

p(l —a”)

Glo) = T+ 1)+ )

(IA.449)

Now for each value of ¢ in a discrete grid in (—1,1) denote by ¢’ = ¢, G' = G(¢)
and consider the argument ¢ for which the function Z(¢, ¢',G’) in (IA.448) attains its
maximum. Denote this value by ®(¢). The equilibrium then corresponds to a fixed
point of the function ®(-), which can be obtained numerically by minimizing |®(¢) — ¢|.
Denote this value by ¢*. The above analysis then shows that © = 1—¢* and G = G(¢*)
approximate the corresponding values in a symmetric equilibrium.

I compare two cases: (a) I IFTs, Ngp FTs, and Ny, lag traders, and (b) one IFT,
Np + 1 —1 FTs, and Ny, lag traders. Numerically, one sees that for the parameters
considered the mean reversion coefficient © is larger in case (a) than in case (b), and
the aggregate IF'T coefficient on the current signal, which is /G, is larger in case (a) than
the aggregate IFT coefficient in case (b), which is G. Thus, the intuition that works
for the Cournot equilibrium is true for both coefficients © and G: when there is more
than one IFTs, on aggregate they trade more aggressively on their signal (aggregate G

is higher), and they mean revert more (O is higher).
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5.6 Omne IFT and one IMT

Consider the benchmark model with m = 2 in Section 2 in this Internet Appendix, in
which there are Nrp FTs, Ny, MTs, and Ng STs. These traders have, respectively, the

following trading strategies:

—

dxf = ydwt + u&?vt_l + VCflzl/Jt_%

day’ = M&/Ut—l + ValvUtJ, (1A.450)

—~

dz? = v/dw,_s,

where I consider the coefficients v, i, v and v/ computed in equilibrium. The aggregate
coefficients in the benchmark model are therefore:
v = NF% o= NLM? v = NDV+NS(U/_V>7 with
N = Np + Ng, Np = Ny + Ns.

(IA.451)

Suppose that I now define “pure FT” as a trader with strategy of the form dx; = ydwy,
and “pure MT” as a trader with strategy of the form dz; = ,u(fhvut,l. Then, by inspecting
the first order conditions for these traders’ maximization problem, one can see that the
optimal coefficients of these traders are equal to the equilibrium coefficients v and p,
respectively.

Thus, to simplify analysis, in this subsection I analyze several departures from the
benchmark model in which one pure FT or one pure MT becomes concerned about
inventory and has utility with a quadratic inventory penalty, as in equation (31) in the
paper. I call this trader IFT or IMT, respectively (“I” stands for “inventory”). Denote
by x; the inventory of the IFT, and by z; the inventory of the IMT. Suppose the IFT

and IMT have, respectively, trading strategies of the form:?*
dz;, = —Oxy_y + Gdwy,  dz = —Qz_1 + Hdw,. (IA.452)

I consider three departures from the benchmark model:

(a) One pure FT becomes IFT, with strategy dzy = —©x;_; + Gdw;. The aggregate
coefficients are: 7y = (Np — 1)y + G, i = Npp, v = Npv + Ng(v' —v).

(b) One pure MT becomes IMT, with strategy dz; = —Qz_1 + H&Et. The aggregate

24Tn Subsection 5.3 in this Internet Appendix, I discuss trading strategies for the IFT that involve
lagged coefficients, e.g., dzy = —Ox;_1 + Gdw; + Mdw;_1. There one sees that the qualitative results
remain unchanged. I thus conjecture that it is the case here as well.
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coefficients are: ¥ = Ngvy, i = (N, — \)u+ H, v = Npv + Ng(V' —v).
(c) One IFT and one IMT with strategies as above. The aggregate coefficients are:

¥y=(Np—1)y+G,p=(Np—1)u+ H, v=Npv+ Ng(v' —v).

One IFT, no IMT

Consider one IFT with trading strategy of the form dz; = —Ox;_1+Gdw,;. The aggregate

order flow dy; satisfies:

—

dyy = —Ozi_1 + ydw, + adw;_; + pdw,_s + duy, (TA.453)

where the only aggregate coefficient that depends on the IFT’s strategy is:

¥ = +G. (TA.454)
I introduce the following notation:
e E[(dw,)?] e E[dw;dw, ] E[(dw;—y)?]
n = —afudt ) 12 = —qudt ) 22 —afudt )
X, — E(l’ta\’l-l}t) E(.Tt(/ﬂ/l)tfl) o (fﬂ%) V — E(th,ldyt)
! o2dt 2 o2dt ~ o2dt’ B o2dt '
(IA.455)

where for simplicity I omit the subscript ¢ on the left-hand side. The variables cT{ut =

dw; — pdyy, dTut_l = d/zvut_l — p'dy; and xy = x4_1 + da; satisfy the following recursive

equations:
a\zlut = —pdu; + (1 — a)dw; — b&?ut_l — ca\t/ut_g + pOx; 1,
C/i\’l_l/Jt,1 = —p’dut — a'dwt + (1 - b/)(/].—\'l_l/)t,1 — C/C/i\’l_l/Jt72 + ,0/@27,5,1, <IA456>

v, = Gdwy + ¢xy_y,
where:
a = p7y, b = pji, c = pv, r = p’ p = 1—-0. (TA.457)

I now compute the IF'T’s expected utility. Asin Proposition 6 in the paper, the IF'T holds
all his profits in cash, and his expected utility is the same as the expected profit. Also,
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from equation (35) in the paper, the IFT’s normalized profit is 7,_, = EfOT ri_1dp; =
\E fOT x;_1dy;. Using the notation in (IA.455), one gets:?®

T
Fo— A /0 Ydt. (TA.458)

Equations (IA.453) and (IA.455) imply that:

E(xtfldyt)

Y, =
! o2 dt

== /TI’Xl,tfl + ﬁXQ,tfl - ®thl- (IA459)

To compute X, and X, I analyze the recursive equations that these variables satisfy.

The recursive formula for X; is:

E((z,)? E((Gdw; + ¢ay_1)?
Xy = (O_(fé)t) = ( w;dext ) = G+ ¢* X1 (IA.460)

Using Lemma A.1 in the Appendix in the paper, it follows that X, is constant and equal

to: o
X = 5 (TA.461)
Using (IA.456), one also computes:
E[(det + gb:):t_l) ((1 — a)dw; — b(?lzut_l — CC/l\l/Ut_Q + p@xt_l)}
X1y = 5
o2dt
= G(l—a)—bpXi4-1 — coXoy1 + Pﬁb@ft—b _ (IA.462)
¥ E[(Gdw, + ¢z (—radw, + (1 = V)dw,—y — ddwi_s + p'Oxy_1) ]
2t =

o2dt
= —Gra + (1 - b/)¢X1,t_1 - C/¢X27t_1 + plgb@Xt_l.

From (IA.461) one gets OX = % Substituting this in (IA.462), one obtains:

G2
1 —l—pz - b¢X1,t71 - C¢X2,t717
(IA.463)

G*p'¢
1—=MoX 1 — 0 Xo, 1.
1+¢+( V0 X141 — P Xapq

Z5Below I show that Y; is constant, which implies that 7,

Xl,t = G(l — a) +

Xoy = —Gra+

= \Y. (Recall that T =1.)

>0
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Denote:

o(1 =) —d¢

1+¢

_ G*p'¢
Gra + Wi

(IA.464)

G(l—a)—l—G—Z@]

Then, if the eigenvalues of A, are all in (—1,1), Lemma A.1 in the Appendix in the

paper implies that X;; is constant for ¢ = 0, 1,2 and satisfies:

1

[X1 X, } — (I-A)'B, (IA.465)

Equation (IA.459) implies that Y; is constant and equal to:

G2
Y = p Xy +0vXy — . A4
X1+ Ay — 5 o (IA.466)
The IFT’s normalized expected profit is:
Mooy = AY. (TA.467)

This finishes the proof.

One IMT, no IFT

Consider one IMT with trading strategy of the form dz, = —Qz 1 + H &Zut,l. The

aggregate order flow dy; satisfies:

dyt = —QZt_l + ’det + ,l_lza\[Ut—l + D(fi\lJUt_Q + dut, (IA468)

where the only aggregate coefficient that depends on the IMT’s strategy is:

o= p +H. (TA.469)
I introduce the following notation:
e E[(dw;)?] e E[dw;dw, ] E[(dwi1)?]
n = 5 12 = 5 2 = T 5
aft _ o2dt o2dt (IA.470)
7 E(ztdwt) 7. _ E(thwt_l) 7 _ E(zf) v — E(zt_ldyt)
P F T R ~ o2dt’ - o2dt
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where for simplicity I omit the subscript ¢ on the left-hand side. The variables a:a/ut =

dw; — pdy, c/lzvut_l = Elzvut_l — p'dy; and z; = 21 + dz; satisfy the following recursive

equations:
(/1\1/0,5 = —pdu; + (1 — a)dw;, — b(/iZUt_l — c&?ut_g + pQz_q,
C/l_jl_/l)t,1 = —p'dut — a'dwt + (1 - b/)(/i—\'l-l/)t,1 — Clajl/Ut72 + /)/ta,l, <IA471>

S Ha\&)t—l"i‘wzt—la

where:

/
p’ (IA.472)
1—

a = ra, b = rb, d =/, ) = Q.

I now compute the IMT’s expected utility. As in Proposition 6 in the paper, the IMT
holds all his profits in cash, and therefore his expected utility is the same as the expected
profit. Also, from equation (35) in the paper, the IMT’s normalized profit is 7, , =
E fOT z_1dp, = NE fOT z_1dy;. Using equations (IA.468) and (IA.470), one obtains:

E(Zt—1dyt)

o2 dt = 12141 +VZpp 1 — Q2. (IAAT3)

T
7 :)\/ Y,dt, with Y, =
0

To compute A;j;, Z;+, and Z;, I consider the recursive equations these variables satisfy.

For simplicity, I omit the subscript ¢ on the left-hand side, and the subscript ¢t — 1 on

102



the right-hand side of these equations:

—~

E[(—pdut + (1 —a)dw; — bcflz/vt_l - C(/i;l/}t_g + szt_l)Q}

A =
H o2 dt
= 62+ (1 —a)®> + b2 Ay + 2bcAjy + P Ay — 20pQ7, — 2cpQZ5 + p* VP Z,
A . E [(7pdut+(1fa)dwt7b&;jvt,1fcgfut,2+pﬂzt,1) (fp’dutfa’dwﬂr(lfb’)&?ut,lfc’éfut,frp’ﬂzt,l)]
12 —

o2,dt
pp' 52 —d (1 —a) —b(1—b)Ay —c(1 —20)Ag + e’ Agg + (1 — 26" pQZy — 26 pQZo + pp'Q*Z,
E[(—p’dut —addw;+ (1 — b’)(i/ut_l — c’a\l/ut_g + p/ta_1)2]
o?dt
P22 +a”?+ (1 =V)2 A0 —2¢ (1 —6) A + ?Agy +2(1 = 0)p'QZy — 2d Q75 + 0227,

A22 =

E [(H&\{Utfl + wzt—l) (_b(/ﬂ/ﬂtfl — C(T[Utd =+ pQthl)]

Z pu—
! o2 dt

= —HbAll — HCA12 + (HpQ — @/Jb)Zl — ’QZ)CZQ + i/JpQZ,

g E[(H&?ut_l + wzt_l) ((1 - b/)CT{Ut_l — C,(fi\[l)t_z + p'ta_l)]
2 o2dt
= H(l — b/>A11 — HC/A12 + (leQ + w<1 — b/>)Zl — wCIZQ + ?ﬂp/QZ,
E((Hdw, Nk
y - EHdwo tvma)) s QHZ, + 7.
o2dt
(IA.474)
Denote:
[ b? 2bc c? —2bp$2 —2cpQ)  p*Q)? ]
—b(1=b) —c(1-=20) o (1 —20)pQ —2dpQ)  pp'Q¥?
4 (1-0)> —=2J(1-¥) ? 2(1 =0)p'Q —2dp'Q  p?0?
“ —Hb —He 0 HpQ — by —cp ppQ |’
H(1-1V) —Hd 0 HYyQ+ 1=V —dv pyvQ
H? 0 0 2Hy 0 ?
- /
B, = | p?’62+(1—a)® pp'ci—d(1—a) p?62+a? 0 0 0 ] :
(TA.475)
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Then, if the eigenvalues of A, are all in (—1,1), Lemma A.l in the Appendix in the

paper implies that all the variables involved are constant and satisfy:
Ay Ap Aw 20 7y 2 } — (I-4,)"'B,. (IA.476)
Equation (IA.473) implies that Y; is constant and equal to:
Y = nZ,+vZy, - QZ. (IA.477)
The IMT’s normalized expected profit is:

Fo, = AY. (IA.478)

Q>0

This finishes the proof.

One IMT, one IFT

Consider one IFT with trading strategy dz; = —©x;,_1 + G(sz)t,l and one IMT with
trading strategy dz; = —Qz,_ 1+ H &:ut_l. The aggregate order flow dy,; satisfies:

dyt = —@ZEt_l — QZt_l + ﬁdwt + ﬁa\l—/l)t_l + ECT;,Ut_Q + dut, (IA479)
where the aggregate coefficient that depend on the strategies of IFT and IMT are:

5=~ 4G, = +H (IA.480)

I introduce the following notation:

—~ —~

E[(dw;)?] E [dw;dw, ] E[(dw;_1)?]
A = W, Ay = T7 A o2 dt )
X, = E(I'tC/ﬁ/Ut) X, — E(.ﬂft(;]}/Ut_l) X — E(l'tz)
o E(Zta\’l_l}t) o E(Zt(/i—jl/,l)tfl) . E(ZtQ)
2 = o2dt ’ Z = o2dt Z = o2dt’
. E($t—12t—1) z E(l’t—ldyt) s E(Zt—1dyt)
W= o2dt = o2dt = o2dt
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The variables &Zut = dw; — pdy;, &EH = &Tut,l — p/dy; and z; = z;_1 + dz satisfy the

following recursive equations:

—

(T[Ut = —pdut + (]. — a)dwt — ba\{l)t_l — C&:(_/Ut_Q + p@l’t_l + szt_l,

dw, , = —p'duy — a'dw; + (1 — b')azvut_l — ddw,_y + POz + p'Qz_q, (1A.482)
vy = Gdw; + ¢xy_y, Zy = H(/i\l/Ut—l + Yz,

where:

/
p’ (IA.483)
1 —

a = ra, b = rb, d = re, ¢ = O, P = 1-0Q.

I now compute the expected utility of the IFT and IMT. As in Proposition 6 in the
paper, the IFT and IMT hold all their profits in cash, and thus their expected utility
is the same as the expected profit. Also, from equation (35) in the paper, the TFT’s
normalized profit is 7, , = EfOT ry_1dp, = )\EfoT xy_1dy;, and the IMT’s normalized
profit is 7, , = EfOT 21dp; = )\EfOT z_1dy;. Using the notation in (IA.481), one
obtains (recall that 7" = 1):

©>0

T T
Fory = A / YFdt, A, = A / Y/7dt. (IA.484)
0 0

Equations (IA.479) and (IA.481) imply that:

E(x;_1dy
b (IA.485)
» E(thldyt) _ _
Yi = o2dt fiZyp1 + 021 — OWiy — Q7.

To compute A;ji, Xiy, Ziy, Xi, Zy, and Wy 1 consider the recursive equations these

variables satisfy. For simplicity, | omit the subscript ¢ on the left-hand side, and the
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subscript t — 1 on the right-hand side of these equations:

An

To simplify formulas, I use the recursive formulas for X; together with the restriction

¢ € (—1,1). Applying Lemma A.1 in the Appendix in the paper, it follows that X; is

P22 4+ (1 — a)® + b?Aqy + 2bcAyy + 2 Agy — 20pO X, — 2cpO X, + p* O X
— 200027, — 2cp0) 7y + p* Q2 Z + 2p*00W,

pp'52 —d' (1 —a) —b(1l —V)A1 —c(1 —2V)A1g + ed Ay + (1 — 26)pO X,
—2dpOX, + pp'O°X + (1 = 2V)pQZy — 2 pQ 7o + pp' Q2 Z + 2pp' OQW,
P62 +a” + (1= V)2A0 —2¢ (1 = 0) Ay 4 Ay +2(1 = 1) 00X,

— 200X, + pPO2X +2(1 = V)02, — 2d Q7 + p* VP Z + 2p200W,
G(1—a)—bpX, — copXo + ppOX + ppQW,

—Gd' 4+ (1 = V)pX, — CdXo + poOX + ppQW,

G? + ¢* X,

—HbAy — HeAyy + HpO X, + (HpQ — bip) Zy — cp Zy + phQZ + ppOW,
H(1—V)An — Hd Ay + HY'OX, + (HYQ+ (1 -0 )) Z,

— dYZy + p'YQZ + plpOW,

H?*Ay +2HYZ, + 47

Hop X, + opW.

(IA.486)

constant and equal to:

G2

X = —
1— ¢?
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From this, I obtain the formula ©X =

G2

and substitute it in (IA.486). Denote by:

T4
[ 2be 2 20O  —2cpO —2bpQ 20 202 2p%0Q
b1 =V) —c(1-=20) cd (1-2V)p© —2cpO (1—20")p$2 —2dpQ  pp'Q? 2pp'OQ
(1-0)2 —=2J(1=V) ? 21-b0)p0 —2Jp0 21 =0)p'Q2 —2d0'Q p20% 29”600
0 0 0 —bo —cd 0 0 0 poQ
A = 0 0 0 (1-W)  —dé 0 0 0 PoQ
—Hb —Hc¢ 0 HpO 0 HpO — by —c pY<) YO
H(1-V) —Hd 0 Hp'© 0 HoQ+ (1 =) —dv pyvQ  pyo
H? 0 0 0 0 2H 1) 0 P2 0
0 0 0 Ho 0 0 0 0 o0
P52+ (1 - a)? + 59
pp'52 —a(1—a) + 249
P62 +a? + %
G(1—a)+ 2%
B = —-Gad' + p;ﬁ(;f
0
0
0
L O .
(IA.488)

Then, if the eigenvalues of A are all in (—1,1), Lemma A.1 in the Appendix in the

paper implies that all the variables involved are constant and satisfy:

4 f—
AH A12 A22 X1 X2 Zl ZQ Z Wi| = ([—A) lB. (IA489)

Equation (IA.485) implies that Y,* and Y;* are constant and equal, respectively, to:

Y* = gX; +0Xo — OX — QW,
Y* = [z + 02y — Q7 — OW.

(IA.490)

The normalized expected profits of the IFT and IMT are equal, respectively, to:

Fooo= YT, F

o = AY”. (IA.491)

This finishes the proof.
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Numerical results

I consider the three cases examined thus far: (a) one IFT and no IMT, (b) one IMT and
no IFT, and (c) one IFT and one IMT. I solve numerically for the optimum in all three
cases.?® I am interested in the coefficients of the IFT’s strategy dz; = Gdw, — Ox;_;
and the IMT’s strategy dz; = Hdw;, — Q2.

First, I compare the optimal coefficients of the IFT in cases (a) and (c). For all
parameter values considered, the coefficient G becomes lower when the IMT is present
(in case (c)), while the coefficient © remains in both cases equal to 0,.2" Intuitively,
when one goes from case (a) to case (c) a MT is replaced by an IMT who therefore
trades less intensely on his signal (see Theorem 2 in the paper, which shows that the
optimal G is smaller than the FTs’ coefficient ). As there is now less trading coming
from slower traders, the benefit of trading on his signal decreases, and as a result the
IF'T’s optimal G decreases.

I now compare the optimal coefficients of the IMT in cases (b) and (c). For all
parameter values considered, one sees that the coefficient H is higher when the IFT is
present (in case (c)), while Q is lower when the IFT is present. The intuition in both
cases comes from understanding the effect of the IFT. Recall that at t —1 the IFT trades
on dw;_1, and at time ¢ he reduces his inventory by ©x;_;, thus providing liquidity to
the slower traders (including to the IMT) who trade on dw,_;. But at t — 1 the IMT
also reduces his inventory by €2z;,_;. Therefore, in case (c¢) the IMT faces at t — 1 a
lower effective price impact for the component H &zut_l compared to the component
—Qz;1. This implies that compared to case (b), in case (c) the IMT trades with a
higher coefficient H but with a lower coefficient (2.

26To avoid the matrix A being singular, I pick a relatively small total of traders, e.g., Np+Ny;+Ng <
15.

2TRecall that © = 0, is the lowest value of the mean reversion coefficient © in the quick regime.
Note that © = 0 should not to be confused ©® = 0 (the neutral regime), because there is a discontinuity
at zero.
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6 Smooth inventory management

In this section, I examine in more detail the “smooth regime” from the model with
inventory management from Section 4 in the paper, in which the IFT has a trading
strategy of the form: dx; = —60 x,dt + G dw;, with € [0,00). In Subsection 6.1, T prove
that the IFT’s expected utility changes continuously from the smooth regime to the
quick regime (see Section 5 in this Internet Appendix), and then show that the smooth
regime is never optimal. The proofs are given in Subsection 6.2. In Subsection 6.3, I
show that the same results hold if the IFT has a more general strategy, of the form:
dz; = —0 x,dt + Gdw; + Mazvut_l.

6.1 Equilibrium with smooth inventory management

In this subsection, I solve for a partial equilibrium of the model with inventory man-
agement from Section 4 in the paper, in which the IFT chooses the smooth regime, i.e.,

has a trading strategy of the form:

dey = =0z dt + Gdw,, with 6 € [0,00). (IA.492)
Recall that in the quick regime, the IFT has a trading strategy of the form:

dzy = —Oz1 + Gdw,, with © € [0,2). (IA.493)

[ call strategies of type (IA.492) “smooth strategies,” and strategies of type (IA.493)
“quick strategies.” A smooth strategy can be considered a particular case of a quick
strategy if the coefficient © is infinitesimal: © = 0d¢.®

A result that I prove below is that the IFT’s expected utility changes continuously
from the smooth regime to the quick regime. The connection is made by the right limit
of 0 € [0,00), which coincides with the left limit of © € (0,2), which I write as © = 0.

Therefore, I make the equivalence:
0 = +oo = © = 04. (IA.494)

The agents in the model are:

e One IFT, who chooses a smooth strategy of the form (IA.492) with 6 € [0, c0) and

28In calculus, dt is considered positive but smaller than any positive real number (and with dt? = 0).
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G € R. The IFT maximizes the expected utility U given by (31):

U=E </OT(UT —pt)da:t) — C/E (/OT xfdt> , (IA.495)

where T'= 1, and C7 > 0 is the IFT’s inventory aversion coefficient;

N FTs, with trading strategy dz!” = ydw;, with v > 0;

Ny, STs, with trading strategy dz? = pu(dw,_; — pdy,_1), with u > 0;

A dealer who sets a linear pricing rule dp; = Adyy;

Exogenous noise traders, whose order flow is du;.

I introduce the following coefficients:

A
-, v~ = Ngv, ¥y =7 +G, f= Nppu,

p (IA.496)
p

The coefficients satisfy v~ >0, u >0, p >0, A > 0.
As usual, tilde notation denotes normalization by ¢, or ¢2. For instance, the nor-

malized expected utility of the IFT is denoted by:

g-Y (TA.497)

g.
IFT’s expected utility

For any smooth strategy of the IFT (not necessarily optimal), I compute the TFT’s
expected utility, while taking the behavior of the others as given. First, define the
following function of 6 € (0, 00):

1 1— 670
Fy = / (1—edt = 1- T (IA.498)
0

This function is strictly increasing in 6 and has well defined limits at the interval end-
points: limy_,o Fy = 0 and limg_., Fy = 1. Therefore, by abuse of notation I define Fj

for the whole interval 6 € [0, co].
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Proposition TA.10. In the model described above, suppose b = pu < 1. Then, the
normalized expected utility of the IF'T with a trading strategy as in (IA.492) is:
AG(1 — py) \G? CG?

Fp.  (TA.499)

Proposition TA.10 shows that the normalized maximum utility of the IFT in the
smooth regime (U,) varies continuously from # = 0 to § = co. The next result shows

0
that:

e The limit when 6 — 0 of Ue coincides with U .

o_o, the normalized maximum utility
of the IFT in the neutral regime (© = 0).

e The limit when 6 — oo of 09 coincides with [7®:0+, the left limit when © — 0 of

the normalized maximum utility of the IFT in the quick regime (© > 0).

Corollary TA.3. The normalized expected utility of the IFT in the smooth regime var-

tous continuously from 6 =0 to 0 = oo. It has the following limits at the endpoints:

mﬁe =U,, =U,, = G(1-)\y),

.- - CAG(1 = p7) AG? (IA.500)
lim U, = Uy, = [i 1 — T 5 —.

000 + pit (1+ pp)

Also, when 0 — oo, the IFT’s (normalized) inventory costs converge to zero:

T
lim LOIE (/ xfdt) = 0. (IA.501)
0

6—o00 0-1211

Optimal smooth inventory management

I now take a partial equilibrium approach, and solve for the optimal behavior of the
IF'T in the smooth regime, while taking the behavior of other agents as given. I show
that this problem translates into an optimization problem in one variable, which can
be solved numerically. The main conclusion is that the optimal trading strategy of the
[F'T in the smooth regime occurs either at ¢ = 0 or at § = oco. This result is obtained
in two steps.

In the first step, I fix 6 € [0, 00| and compute the maximum expected utility of the
IF'T when the coefficient G varies. Denote this utility by Ugmax. In the second step, I
numerically search for the 6 € [0, oo] that maximizes U, and find that the optimum
6 is either 0 or oco.

max

Proposition TA.11 provides a formula for U ™.
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Proposition IA.11. For a fized 0 € [0,00) denote by U~ = U:lax(C’I) the mazimum
normalized expected utility of the IFT in the smooth regime when G varies. One com-

putes:

(1= Ra) - F (1- Ra;;b))Q

S max ].
= = [A.502)
7 TR (
ST R B R (5 D)
where Fy is defined as in equation (1A.498).
Corollary TA.4 provides formulas for U;nax when § = 0 and 6 = co.
Corollary I1A.4. One has the following formulas:
e 1 (1= Ra™)? (Rb(1 —a™))”
U = -—" u = : (IA.503)
° 2 20+C; = AN1+b)(b+ 3)
The value of C; that makes Uomax = U:ax 18:
(1—Ra )?2(1+b)(b+1)
;o= 2\ 22 1. IA.504
¢ ( R2b2(1 — a~)? (TA.504)
Moreover, when C; =0 and 8 = 0, the mazimum expected of the IFT is:
i ~omax (1 - R(I—)2
U() - UO,CI:O = T (IA505)

In the second step, I show numerically that the maximum U:ax occurs either at
6 =0 or at 6 = 0o, but not at an interior point in (0, 00). This results holds for all the

parameter values considered.

Result TA.1. Suppose the model coefficients arise from the inventory management equi-
librium of Theorem 3. Then, the expression U;mx in (IA.502) never attains its mazimum

value at an interior point 6 € (0,00).

To understand this numerical result, I consider a particular example, with Ny =5
fast traders, and Ng = 5 slow traders. In this case, equation (IA.504) implies that the
value of the cutoff is C7 = 1.2038. This means that when C; = C7, the expected utility
difference at the two endpoints (U, — U_ ) switches sign. Figure IA.4 shows the IFT’s
maximum expected utility as a function of 6, given several values of C; around the
cutoff. The maximum expected utility U is computed according to equation (IA.502),

and reported in the graph as a ratio U%, where Uy is the expected utility in (IA.505)
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Figure IA.4: Optimal IFT smooth trading strategies

This figure shows U:lax(Cj), the maximum expected utility of the IFT in the smooth regime

as a function of @, for various values of the inventory aversion C;. Each graph corresponds to

an inventory aversion coefficient Cy, which in certain cases is reported relative to the cutoff

value C} = 1.2038. In each graph, the expected utility U is normalized by the value Uy that
W,

coresponds to 8§ = 0 and C7 = 0. In each graph, the maximum utility is marked with an “x”.
The parameter values are Np =5, N, =5, 0y, = 1, and o, = 1.
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that corresponds to # = 0 and C; = 0 (no inventory management, and zero inventory
costs).
As shown in Figure TA.4, there are two sharply distinctly regimes, depending on

whether the inventory aversion coefficient C is above the threshold value Cfy:
o If U7 < (Y, the IFT optimally chooses 6 = 0;
o If C; > (Y, the IFT optimally chooses § = oo.

Thus, the smooth regime is never optimal, and I can just study what happens at the

extremities, # = 0 and 0 = oo.
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6.2 Proofs

Proof of Proposition IA.10. Denote:

Oz E(x?) 0z — E(:Ct(wt _pt)) B = E((wt _pt)a;;jt)
t - 2 9 t - 2 9 t 2 9
i i 7 dt (IA.506)
wa E(xtwt)) pr E(Itpt)
t - 0_121) ) t 0_121)
Note first that:
P = QY — Q. (IA.507)
From the definition of *", one obtains:
day 1
= E d:L‘twt_l + th_ldwt + dxtdwt
dt ogdt ( ) (IA.508)

As there is no initial inventory, Q2§ = 0. Thus, the solution for the differential equa-

tion (IA.508) is:

1— e—9t

7

In order to compute Q¥ and Q¥¢, one needs to define additional covariances.?® Denote:

Qv o= G (IA.509)

E(%ta\ij}t> W, — E(wt&;)t)

. ’ P, = E<pta\7jut) B, = E(<wt_pt)a;}t>.
o2 dt

o2dt ’ o2dt ’ o2 dt
(IA.510)

To compute these covariances, I derive recursive formulas for them. Note that the

Xt:

aggregate order flow at ¢ is of the form:
dyt = —Q.Z‘t_ldt + ﬁdwt + ﬂ&TUt_l + dut. (IA511)

To simplify notation, denote:

1—a
1+0b

a = py, b = pp, A=1-—a, B = (IA.512)

29The inventory management term is of the order of dt, and thus it does not affect any instantaneous

. R E((dwy)? : .

covariances with infinitesimal terms, such as (02 R ) = A. However, covariances with aggregate

measures such as z;, wy, and p; are affected by the slow accumulation of the d¢ term. For instance, as
E(wt(jl‘;ut)

the formula (TA.517) for W; shows, the equation = B is no longer true here.

o2,dt
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Then, write (,tht = dw; — pdy, as follows:
&Ejt = pOz;_1dt + dwy(l —a) — bcfifut,l — pduy. (IA.513)

The recursive formula for X; is:

1 —~
X, = oy E((It—l + day) (pbz—1dt + dw(1 — a) — bdw,—q — pdut))
_ peE((xt,1)2) B bE(itha\{th) - a>E(dxtdwt) B bE(dxta\z/ut,l) (TA.514)

o2dt o?dt
= p0Q”", — X1+ (1 —a)G.

o2 dt o2 dt

Thus, X; + bX;—1 = pfQ*, + (1 — a)G. Since by assumption b < 1 (and b > 0), I use

Lemma A.1 in the Appendix in the paper to obtain the following formula:3°

pOSUT + (1 —a)G  pOQ”

X, = = BG. IA.51
t 110 T+p B¢ (1A.515)
Similarly, the recursive formula for W; is:
1 —
Wiy = — E<(wt_1 + dwt) (p@xt_ldt + dwy(1 — a) — bdw;_4 — pdut)>
o2dt
_ HE(wt_lxt_l) B bE(wt_ldwt_l) L (—a) E(dwtdwt) (IA.516)
o2 dt o2 dt o2 dt

= pf0Q — bW + (1 —a).

Thus, W, + bWy = pQF™, + (1 — a). As above, I use Lemma A.1 in the Appendix in

the paper to get:
P + (1 —a) pOQTY
W, = = B. IA.517
! 1+b T+b ( )

The recursive formula for P, is:

1 —
P = — E((pt_l + /\dyt) (p@xt_ldt + dw, (1 — a) — bdw;_1 — pdut)>
o2dt
E(ptflxtfl) E(ptflaz)tfl) E(dytdwt) E(dyta\{l}tfl)
= p —b 1—a)A —bA — \po?
P o2 dt o2 dt +(1-a) o2 dt o2dt P
= pOUP, — P,y + (1 — a)\y — bARA — A\p&2.
(IA.518)

30The difference between Q¥* and #%, is infinitesimal, hence it can be ignored. In other words, one
can use Lemma A.1 either for a; or for a;_1, and obtain the same result.
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Define:
M = (1 —a)\y — bA\aA — \p52. (IA.519)

One can check that M = 0 when a and b have the equilibrium values from Theorem 1.
This simply reflects the fact that &E}t is orthogonal to p; in the absence of inventory
management, i.e., P, = 0 when 6 = 0.3! As in the case of X}, I use Lemma A.1 in the

Appendix in the paper to obtain:

_ pOSUT + M pf(Q7Y — Q) + M

= TA.520
' 140 14+b ( )
From (IA.517) and (IA.520) one also obtains:
poe — M
E, =W,—-P, = —+B. [A.521
t t— 1+ b + ( )
I now compute Q7*. From its definition, one obtains:
dQy® 1
d; = Ogvdt E(2.§L’t,1dxt -+ (dxt)Q)
1 —~
= m E(2l’t,1 (—th,ldt + ’Yd'wt + ,udwt,l) + (dl’t)2) . (IA522)
= 2007, + G*.
This is a first order ODE with solution:
1— e—29t
O = P —. [A.52

Finally, one computes Q7¢. Since dw; — dp; = Nz 1dt + (1 — A\y)dw,; — )\ﬂ(/iZUt_l — Aduy,

from the definition of (27¢, one obtains:

dQye 1
= E((wi—1 — pe1)day + z¢—1 (dwy — dpy) + (dw, — dpy)day
dt opdi ( ) (IA.524)

From (IA.515), one has X;_; = PR, + B@G. one obtains:

1+b
sy _ (1 )0 4 00(1 - ﬂ)ma ~ AiBG + (1 - \9)G
dt 1+0/) " L+b/ " (IA.525)
xe 1 xrxr — -~ .
= _th—l + )\01—4—19 Qt—l — )\IMBG + 7TO,

3ndeed, using p?62 = (1 — a)(a — b?), one computes %((1 —a)a—(1—a)b®>— (1—a)(a—0b%)) =0.
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where 7, is the IFT’s normalized expected profit when 6 = 0:

7, = (1—\9)G. (IA.526)

From (IA.523), )\91%,, e = 1’\—& G? 1_62;2(% = 26\1?;) (1—e~2%). The differential equation

for (2 becomes:

sze
5 = 0L+ Di(1- e ") + D,, with
\G2 . . (IA.527)
D = D = 7 — )\_B .
1 2(1 + b)’ 2 ™ M
This is a first order ODE with solution:
1 — 0t —0t _ ,—20t
¢ = (D1 + Dy)—5—+ Dy ————. (1A.528)
Next, one computes the IFT’s expected profit in the smooth regime:
1 T
T, = _QE/ (wy — pe)day
0w 0
1 T
= B [ (wer = po+ duw — Mdy) (G, — 0t (TA.529)
o Jo
T
- / (—lefl +G - AG@) dt.
0
Therefore: -
T, = T, — / 0Q7edt. (IA.530)
0
From (IA.528):
pope = G (1 - e*%t) + (7, — AzBG) (1 - e*9t> (IA.531)
t 2(1 + b) 0 I .

with Dy and D, as in (IA.527). One computes:

AG?
2(1+b)

T T T
7, = 7?0/0 e dt+)\,uBG/0 (1—e)dt — /0 (1—e")dt. (IA.532)

This is the first line in equation (IA.499). Since the normalized expected utility of the
IFT satisfies:

1 T
U = #,——C/E (/0 xfdt> : (IA.533)

2
Ow
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to prove the second part of equation (IA.499), one only has to show that:

1 2 TT CIG2 ’ —20t
— C,E xt dt CI Q dt = (1—e?")dt. (IA.534)
Ow 0 20 0

—20t

But equation (IA.523) implies that Qf* = G? :=5,—
Proposition TA.10. [

This completes the proof of

Proof of Corollary IA.3. Note that for ¢ > 0 one has:

1 20t 1 /7 T
im——— =t = lim— [ (1-e)dt = [ tdt =
0—0 26 0—0 20 0 0

Equation (IA.499) implies that when 8 — 0, U, converges to G(1 — \y) — 9G2. But
by summing (75) and (76) from the proof of Theorem 2, one obtains that U, , =
G(1—\y) — $G?. Therefore, U,_, = U,_,

Equation (IA.499) also implies that when 6 — oo, U converges to i

(IA.535)

AG(1-py) _ _NG?
1+pp 2(1+pp)
_ AG(1-py)
1+pp

But equatlon (IA.295) from the proof of Proposition TA.7 computes U@:O
(1 +p . Therefore, U = U oo
To show that the mventory costs approach zero when  — oo, note that in equa-

tion (IA.499), e™% converges uninformly to zero (for ¢ € [0,77). |

Proof of Proposition IA.11. In Proposition TA.10, I have already computed the
normalized expected utility of the IFT:

5 ) AG(1— ) pres CrG?
U =G1l-W(1—-F)+p———="F)— ————Fy — Fy, (TA.536
0 ( ( o) + It T on T T g T ( )
where as in equation (IA.498) Fy = fo (1—e™)dt = 1- %. One verifies that %
is a well-defined analytical function, and it satisfies:
. By 1

I rewrite equation (IA.536) as U, = G(1—\y)(1—Fp)+ 20 gy A& pr ) 52 Fag.

140 2(1+b)
Since ¥ = v~ + (G, one computes:

~ a” +b G? Fy A Cr
U, = G((l Ra™)—Fy (1—R1+b)>—7<2)\(1—1+b>+F29(1—+b+7
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Fix 6 € [0, 00|. Then, the first order condition in G implies:

G = o (IA.539)

22 (1= 1) + P (25 +F)

(1= Ra") = By (1= Re32)

The second order condition for a maximum is also clearly satisfied. Hence, for a given

0, the maximum normalized expected utility of the IFT when G varies is:

e 1 (=R =R (1= Ralﬁb))
T2 D) R (St F)

(IA.540)

This proves equation (IA.502). |

Proof of Corollary IA.4. T use the formula for U™ from Proposition IA.11. When

¢ = 0, one has hm?;’ = 3, hence one obtains the first equation in (IA.503). When
0 — oo, one has Ghm Fy =1, hence:
—00
N (Rb(1 —a™))’
= - /\ = — (IA.541)
2205+ A+ (b+ 1)

which proves the second equation in (IA.503). One can now solve directly for the Cf
that makes U m=UTr
Finally, equation (IA 505) follows from the formula for U

max

in (IA.503) by setting
Cr=0. |

6.3 General smooth strategies

In this subsection, I solve for a partial equilibrium of the model with inventory manage-
ment in which the IFT trades in the smooth regime, but with a more general trading

strategy:

dz; = —Oxdt + Gdw, + Mdw,_;, with 6 € [0,00). (IA.542)
Define the following coefficients:
; v~ = Ngv, ¥y =7 +G, = Npu,

A
p (IA.543)
p
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The coefficients satisfy v~ >0, u >0, p >0, A > 0.
As usual, tilde notation denotes normalization by ¢, or ¢2. For instance, the nor-

malized expected utility of the IFT is:

- (TA.544)

2
Ow

For any smooth strategy of the IFT (not necessarily optimal), one computes the

IFT’s expected utility, while taking the behavior of the others as given. First, define
the following function of 6 € (0, c0):

1 1— e—9
Fy = / (1—e™)dt = 1- 7 (IA.545)
0

This function is strictly increasing in # and has well defined limits at the interval end-
points: limg_.o Fy = 0 and limg_,o, Fy = 1. Therefore, by abuse of notation, I define Fj

for the whole interval 6 € [0, oc]. T introduce further notation:

(1 —a)?+ p*s2 l—a
A = u B = ——
1 —b? ’ 140
G/ — G + MB G//2 — G/2 + M2 p26121,
| (1+0) (TA.546)
AG™ , L a\pME? '

2(1+07)

(1+40)2’
ApMG2 — A\aM A
1+0 '

Proposition 1A.12. Suppose b = pii < 1. Then, the normalized expected utility of the
IFT with a trading strategy as in (IA.542) is:

Fopr
= —DyFyy — DyFy + Dy — C;G" 22 (IA.547)

u 20"

0

Proof. Recall that:

dr, = —0x,_1dt + Gdw, + Mcfl\{ut_l, with 6 € [0,00),
dy, = —0x; 1dt +~ydw; + ﬂatvut,l + duy, with

y=G+y, p=M+pu, (IA.548)
d/:ut = plz;_1dt + dwy(1l — a) — b(?l\fut_l — pduy, with

a = py = a +pG, b = pp = b+ pM.
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Denote:

Qfﬂc — E($?> wa — E(Itwt> thp E<$tpt)

0_3} Y 0_121} Y 0_1211 Y
—~2 —~
E(d E(x:d
o = oo, 4, = By Elndm)
W, — E(wtdwt) p - E(ptdwt) B - E((wt—pt)dwt)
Te2dt Toe2dt L o2 dt 7
1—a pM 140"
B = 0 =0(1———) =10 G = G+ MB.
1+0b < 1+b> 1+0’ *

The IFT’s expected profit in the smooth regime is:

1 T

T, = — E/ (wy — pe)day
0

T —~
= — E/ (wt_l — pi_q + dwy — /\dyt) (—Hmt_ldt + Gdw; + det_1> (TA.550)

0

T
- / (—eﬂffl +G - A\Gy+ ME,_, — AMﬂAt,l)dt.
0

One computes the covariances involved in the formula above. The recursive formula for

At 1S:

T E<(p9:ct_1dt + dw (1 —a) — b&Zut_l — pdut)2>

2
w

= (1 — a)2 + bzAt_l + an_Z

(IA.551)

Lemma A.1 in the Appendix in the paper implies that A; is constant and equal to:

(1—a)*+ p?o,

4 = IA 552
" (1A.552)
The recursive formula for W, is:
W, = 21 E<<wt_1 + dwt) (p@l‘t_ldt + dwt(l — a) — b(/i\[ut—l _ pdut)>
Zudt (IA.553)

= pfQ — bW + (1 —a).

Thus, W, +bW;_1 = pfQ7*, + (1 —a). Lemma A.1 in the Appendix in the paper implies
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that:32
PO + (1 —a)  pHQY

W, = = B. IA.554
t 110 1o (14.554)
From the definition of 2**, one obtains:
dQre 1
d; = o'idt E(wt,ldxt + a:t,ldwt + dxtdwt)
M
= 0T - MW+ G = —00, (1 . f—M) +G+mB  (1A55)

— 0O+ G

The initial inventory is zero, which implies 2§ = 0. Thus, the solution for the differ-
ential equation (IA.555) is:
1—e

Qt{E’U) — G/ 0/

(IA.556)

The recursive formula for X, is:

1 —~
X, = quudt E((zt—l + dl’t> (pefﬁt—ldt + dwt(l - CL) - bdwt_l — pdut)>
_ pQE((xt_1)2) B bE(xt—lcfl\{Ut—l) (- a)E(dxtdwt) _ bE(dxtcfl\zJut_l) (IA.557)

o2 o2 dt

= pthxfl — bXt,1 + (1 — CL)G — bMAtfl.

o2 dt o2 dt

Thus, X; + bX;—1 = pfQ7*, + (1 — a)G — bMA. Lemma A.1 in the Appendix in the

paper implies:

PO + (1 - a)G —bMA _ poQ . bMA

X, = = - TA.558
! 140 140 1+b ( )
From the definition of (2§, one obtains:
dQF= 1
d-; = O—?ﬂdt E(2.Tt_1d$t + (dl’t)Q)
= 200" +2M X, 1 + G* + M?A,_,
= 200 (1 - ﬂ) +G* +2M BG + M2A1—_b (IA.559)
N =1 1+5b 1+b '
T pM 2 2 p25g
— 260 (1 . —> MB)Y? + M
- 95p) F (G MB) + M

= 200, + G,

32The difference between W, and W,_; is infinitesimal, hence it can be ignored. In other words, one
can use Lemma A.1 either for a; or for a;_1, and obtain the same result.
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where:

112 12 2 p2&2
G"* =G M 4, IA.560
+ (1+0)? ( )
This is a first order ODE with solution:
1 — efQH’t
T 2
o = G oY (IA.561)
The recursive formula for P, is:
1 —
Pt = m E((pt—l + Adyt) (pgl't_ldt + dwt(l - CL) — bdwt_l — pdut)>
T E(dytdwt) E(dytaTUtfl) ~9 IA.562
= PO — Py + (1 — a)A =i bA T ai2 )

= pOSUP, —bP_y + (1 — a) Ny — bARA — \p52.

Recall the recursive formula W; = pfQ7*, —bW,;_; 4+ (1 —a). The difference between the

recursive formulas for W; and P, is:
E, = pfQe, —bE;_1 + (1 —a)(1 — \y) + bALA + \pG2. (IA.563)

Thus, E;+bE;_1 = pfQ¥¢, +(1—a)(1—Ny)+bA\iA+A\piZ. Lemma A.1 in the Appendix
in the paper implies that:

P07 + (1 —a)(1 — A\y) + DAGA + A\pG?

B =
¢ 1+0b

(IA.564)

Note that dw; — dp; = MNxy_1dt + (1 — Ay)dw, — )\ﬁazvut,l — Adu;. By the definition of
27, one obtains:
a1

dt o2 dt
= =00, + ME;_1 + XN0Q", — A\n X1+ (1 — A\)G — AaM A4
(1—a)(1 —My) + bARA + \p5?

E((wt—l — pr—1)day + 241 (dwy — dpy) + (dwy — dpt)dﬁft)

o PM N e
= 01— {) 1+b (TA-565)
Pl _ _bMA _ _
1— LR Vo= — AaB I § —A\AM A
+)\9< 1+b> Py = NiBG + i + (1= M)C = A
A0 ApM &2
— _ngxe _Qacx / 1_)\7 —)\7_8 / u.
t—1+1+b t—l—l—G( 7) 1% G+(1+b)2
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From (IA.561), 24 057, = 2% G 14 = 7 (1 ) Denoe

AG" ApM &2

= — D, = G'(1 - \M) — \aBG’

ApMG2 — ANaM A
1+b

The differential equation for 27¢ can be written as follows:

e

- = 05+ Di(1-e7") + Dy,

This is a first order ODE with solution:

e 1— 8720’7& 1— efO’t
Q= Dy 0 + Dy 0

(IA.566)

(IA.567)

(IA.568)

I now compute the normalized expected profit of IFT, using formula (IA.564) for E:

T
7 o= / (—mffl +G—\Gy+ ME,_, — AM/]A) dt
0

ApM&2 — \iMA
pMé& — A\ >dt

T
= —0'Q7° + G'(1— M) +
/0 ( =1 ( ) 1+5b

T
_ / (=Di (1= ") = Dy(1— ") 4 Dy ).
0

When 6 = 0, one obtains:

ApMG2 — A\aM A
1+0 '

0

When 0 = oo, one gets 7. = D3 — Dy — Dy, from which one computes:

This coincides with the formula in (IA.410).
The normalized expected utility of the IFT satisfies:

5 1 T T
Ug = ﬁ9—0—20[E</0 l‘?dt) = 7?0—0]/0 thzdt

T ’ ’ 1-— 8729/)&
_ / (=Di(1 =) = Dy(1— ) 4+ Dy — C1GP— )t
0

20"
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Recall from (IA.545) that the function Fy = fol (1—e)dt=1- 1_2_9 is well defined

for 0 € [0, 00], and also that the ratio % is also well defined for # € [0, 00]. one obtains:

Fop
- —D1F29/ - DQF@/ —|— D3 — CIG//ZLQ (IA573)

u 20"’

0

which proves Proposition 1A.12. [ |

Numerical results

Numerically, when the IFT can choose among trading strategies of the type dx; =
—Ox,_1 + Gdw, + M (i/ut_l, the results are qualitatively the same as when the IFT can
choose only strategies with M = 0. The latter case is examined in detail in Subsec-
tion 6.1, and therefore I do not report the results for unconstrained M. In conclusion,
even when the IFT can choose more general smooth strategies, it is never optimal to

choose an interior point 6 € (0, 00).
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7 Fast and slow traders in discrete time

In this section, I analyze a discrete-time version of the benchmark model with FTs and
STs in the paper. I denote this discrete-time version by Dj, just as in continuous time
I denote its counterpart by M;j. It is useful to analyze how the discrete-time model
D; compares in the limit to the continuous-time model M. I show that although the
model D; does not converge to its continuous-time counterpart M, the difference is
quite small.

I attribute this difference to the assumption that in M; the speculators’s choice
of weights has no effect on the covariance structure of the dealer’s signals (see equa-
tion (13)). By contrast, I conjecture that in the continuous-time limit of D; the spec-
ulators take this effect into account.®® If this conjecture is correct, the results of this
section allow us to analyze the equilibrium effect of changing this assumption. This

effect turns out to be quite small: see Figure [A.5.

7.1 Model

I first describe the model D;. Trading occurs at intervals of length At apart, at times
t1 = At, t = 2At, ..., ty = TAt. To simplify notation, I refer to these times as
1,2,...,T. The liquidation value of the asset is:

T
vp = Z Avy, with Av = vy —vy = 0,ABY, (IA.574)
t=1
where By is a standard Brownian motion. The risk-free rate is assumed to be zero.
There are three types of market participants: (a) N > 1 risk-neutral speculators,
who observe the flow of information at different speeds, as described below; (b) noise
traders; and (c) one competitive risk-neutral dealer, who sets the price at which trading

takes place.

33Some evidence that this conjecture is correct is the speculator’s behavior in the continuous version
of Kyle (1985). Indeed, in that model the speculator chooses his optimal weight by taking into account
his effect on the covariance matrix 3; = Var(v — p;). In this model, signals are used only for a finite
number of lags, and therefore I conjecture that the this effect is much weaker than in Kyle (1985).
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7.1.1 Information

At t = 0, there is no information asymmetry between the speculators and the dealer.

Subsequently, each speculator receives the following flow of signals:
ASt = A'Ut —+ ATH, Wlth A?]t = O'ndB?, (IA575)

where t = 1,...,T and B} is a standard Brownian motion independent from all other

variables. Define the speculators’ forecast by:
wy = E(vr | {s:}r<t). (IA.576)

Its increment is Aw; = % As;. Also, wy = 0.

Speculators obtain their signal with a lag £ = 0,1. A 0-speculator, also called a F'T,
is a trader who at t = 1,...,T observes the signal As;. A 1-speculator, also called a ST,
is a trader who at ¢t = 2,...,T observes the signal As; ;. Denote by Ng the number of

FTs, and by Ng the number of STs. Denote the total number of traders by Ny:

N, = Ng+ Ns. (IA.577)

9

This is also the number of “lag traders,” i.e., the number of traders that use their lagged

signals.

7.1.2 Trading

At each t € (0,T], denote by Ax! the market order submitted by speculatori =1,..., N
at t, and by Au; the market order submitted by the noise traders, which is of the form
Au; = 0,AB}', where B} is a standard Brownian motion independent from all other

variables. Then, the aggregate order flow executed by the dealer at ¢ is:
N
Ay, = ) Axj+ Au,. (IA.578)
i=1

Because the dealer is risk-neutral and competitive, she executes the order flow at a price
equal to her expectation of the liquidation value conditional on her information. Let
7y = {yr}r<+ be the dealer’s information set just before trading at t. Thus, the order

flow at date t, Ay, executes at:

pe = E(vr | U Ay,). (IA.579)
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7.1.3 Equilibrium Definition

A trading strategy for an /-speculator is a process for his position in the risky asset, x;,
measurable with respect to his information set Jt(g) = {yr }r<tU{Ss }r<t—¢. Denote by Ef
the expectation of an /-speculator, conditional on jt(z); and denote by E; the expectation

of the dealer, conditional on the public information:
E(-) =E(-17Y), E()=E|T). (IA.580)

For a given trading strategy, the speculator’s expected profit 7., from date 7 onwards,
is:
T
T, = Ef <Z(’UT —pt)Axt> ) (IA.581)
t=1

The unpredictable part of the lagged signal Aw;_; at t is defined by:
/A\U/)t,1 = A’wt,1 — Et (Awt,l). (IA582)

As in continuous time, I consider only the trading strategies of the F'T's and STs which
are linear in the current and lagged signals, that is, only the trading strategies of the
form:

Ax; = vAw + utz\@t_l, (IA.583)

where y; must be zero for the STs.

As in Kyle (1985), one can show that the dealer sets linear pricing rules of the form:
Apt = AtAyta Et (A'th_l) == ,OtAyt—lu (IA584)

where Ay, is the total order flow at t.

A linear equilibrium is such that: (i) at every date ¢, each speculator’s trading
strategy (11) maximizes his expected trading profit (IA.581) given the dealer’s pricing
policy, and (ii) the dealer’s pricing policy given by (IA.579) and (IA.584) is consistent
with the equilibrium speculators’ trading strategies.

As in continuous time, I simplify notation and normalize covariances and variances

using the tilde notation. For instance:

__ Cov(Awy, A
Cov(Awy, Aw;) = OV(U& w) g, (IA.585)
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7.2 Equilibrium

The main result of this section, Theorem IA.4, reduces solving for the equilibrium of D,
to the solution of a discrete system of equations. First, I prove a lemma that computes

the speculators’ expected profit.

Lemma TA.2. In the context of Theorem IA.4, the F'T computes:

E(wt — Pt—1 It, Awt, /A\'I/Utfl) = Awt + C’t/A\/’wt,l; (IA586)
the coefficient Cy is given by: 5
t
= — IA.
C, R (IA.587)

where By, Dy, A; satisfy the following recursive formulas:

Biy1 = 1= NeAvi — Nepoyi — po(Nepg + Nsvy ) By + Mipe Dy,
Diyy = (NF'Y:H)Q + (Nppy . + NSV:+1)2At+1 + 42, (TA.588)
A1 = 1= 2Nppyy, + p; Dy,

and v*, p*, and v* are the equilibrium values of the corresponding coefficients.

The ST computes:
E<wt — Pt-1 ’ 1y, Kl;t—l) = CiAw,_y, (IA.589)

with C; as above.

Proof. Since all the variables involved are jointly multivariate normal, the conditional

expectation in (IA.586) is of the form:
E (wt —Pi—1 | It, Awt, Kl;t_1> = cqut +027t1\1;t—1 + Co,t, with Cit € It. (IA590)

Because wy — p;_1, Awy and Aw,;_; are orthogonal to Z;, one obtains:

COV<wt — Pt—1, Awt) A COV(wt — DPt—1, Zl;t—l)
Var(Awt) o Var(&z/ut,l)

(IA.591)

Cot — 0, Cit =

Since p;_1 € 7, one has ¢;;, = 1. Denote:

Bt = Cov(wt—pt,l,/A\u/)t,l), Dt = \Er(Ayt), At = \7a/r(/A\u/)t,1). (IA592)
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I now give a recursive formula for:

Ci = ¢y = a (IA.593)
The aggregate order flow has the form:
Ay, = NpyiAw, + (Nppl + Nsv)Aw_y + Auy. (IA.594)

gqmlng

Therefore, one computes (62 =

E

Ay = Var(Awt - ptAyt) = 1—2Npprye + p; Dy
Dy = <NF7:+1)2 + (Nppiq + NSVt*+1)2At+1 + 53,

S~ (IA.595)
By = Cov(wt — pr-1 — MAY, Awg — ptAyt)

= 1—p:Npyi — po(Nepy + Nsvf) By — M Npvy; + Aepe Dy

These are the desired formulas. Finally, for the ST one has the same computation as
for the FT. ]

I now state the main result of this section.

Theorem 1A.4. Consider the discrete model with Ng fast traders and Ng slow traders,
and let N, = N + Ng. Then, the equilibrium reduces to the following system of equa-

tions:
Ay
a; = Nppy, by = Nrpijis, Ry = Ea
a = I —2ap4 b, = Ci
fo_;rlRt_Qatpt, Nﬁ;—let—204tPt7
B
Co= = @B ) + A (1A.596)
— Qg1
b:B
R, =1+ tata Biyw = 1—a;— 0By = 1— Ray,
t

R, 2
L= (1—— ) .
- t(NfPtJr NLat>

Proof. 1 start by computing the speculators’ optimal strategies, taking the dealer’s
pricing rules as given. Then, I derive the dealer’s pricing rules taking the specula-
tor’s optimal strategies as given. Finally, I put together the equilibrium conditions to

determine the system of equations satisfied by the equilibrium coefficients.
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Speculators’ optimal strategies

I now proceed with computing the FT’s value function. Denote:
EF(X) = E(X|T, Awy, Awy_,), (IA.597)

the expectation from the point of view of the FT at t. Then, the FT’s value function

at t satisfies the Bellman equation:

vE = I%%X(Ef((vT—pt)Ax) + V,frl) (IA.598)

As in the general case, I conjecture a value function for the FT that is quadratic in the

current signals:
‘/;F = O[?_l + ayq (Kl;t_l)2 + 20[2_1 (K’l;t_l) (Awt) + Olgl_l (Awt)2. (IA599)
Then, the Bellman equation becomes:

‘/;F — n’ia,X EtF ((wt — Pt—1 — )\tAyt)Al'

+a? + at(Awt — ptAyt)Q + QQQ(Awt — ptAyt) (Ath) +of (Ath)Q),

(IA.600)

where Ay, is assumed by the FT to be of the form:
Ay, = Az + (Np — 1)y Awy + ((Np — 1)p; + Nsuf)z\':ut,l + Auy. (IA.601)

From equation (IA.586), one computes Ef (wt — pt,l) = Aw; + CtKu/)t,l, with O satis-

fying certain equations described in Lemma IA.2 above. Therefore:

‘/tF — HiaX Ef ((Awt -+ Ct/Av'wt,1 — )\tAyt)A:L'—i—

(IA.602)
oy + oy (Awy — ptAyt)Q + oc;/oqut),
The terms can be rearranged:
VtF = Hiax(wl - )\tAx) + at(Wg — pAx)* + Z, (IA.603)

131



where:

Wy = WinAw, + WiAw,_1, with
Wi = 1— (Np— 1)\, Wis = Cy — M((Np — 1)y + Nsvy),
Wy = WaAw, + WaAw,_y, with
Wy = 1—(Np—1)pry, Woy = —pi((Np — 1)y + Nsvy),
7 = o) + ool At + a0l At

The first order condition with respect to Ax is:
Wy =20 Az — 2ap(Wo — pAz) = 0.

Denote:

S\t = )\t — Oétpg.
Then, the first order condition implies

Wy —2 % Wi —2 W
1 fYtPt 2 _ 11 Qi Py 21Awt—|—

Waor — 200 Woo —
2)\15 2)\15 2)\15

Ar = Awy_;.

The second order condition for a maximum is:
A > 0.

By identifying the coefficients of V', one obtains:

) = 7,
2
Wis — 204 W-
Q. — ( 12 45\tpt 22) —i—athzQ,
t
o, = (Wn _204tptW21)5§W12 —QOétPth) 4 0, Wy Way,
t
2
Wi — 204 W-
o, = ( 11 tht 21) _'_Oéthgl'
4N

(IA.604)

(IA.605)

(IA.606)

(IA.607)

(IA.608)

(IA.609)

Note that only «; is involved in a recursive equation, while all the other coefficients can

be computed using «; (and the equilibrium coefficients). I write the equation for o
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more explicitly:

(o= (h — 200 (N — 1) + Nswr) )

* * 2
+ aep; (Np — D)py + Novyf)™
4N

(IA.610)
From (IA.607), one obtains the equations for the coefficients ~; and p; for the FT:

Q1 =

1 —204p; — ()\t — Qatpf) (Np — 1)7;

7t = 25\ )
o (IA.611)
Cy — (M — 2047) (Np — 1)pt + Ngv)
fe = 2 '
t

I now proceed in a similar way to compute the ST’s value function. Denote by
E7(X) = E(X|T,, K@/Ut,l), the expectation from the point of view of the ST at ¢. Then,

the ST’s value function at ¢ satisfies the Bellman equation:
VS = nﬁx(Ef((vT — p)Az) + Vti1> (IA.612)
I conjecture a value function for the ST that is quadratic in the current signal:
VE = B2+ B (Bw)™. (IA.613)
With a similar computation as for the FT, 3; satisfies the recursive equation:

2
Cy — (M — 2Bp?) (Npp; + (Ng — 1)1}
Bi-1 = ( ( )( - ’ )> + 5tP?(NFM: + (Ns — 1)”:)27

I3V
(IA.614)

where X, = A\, — B;p?. One also obtains:

— (M —26up}) (Nppj + (Ns — 1)y
Y — Cy ()\t Btpt)(”\f,ut-i-( s )Vt)‘ (IA.615)

Note that, if y; = 14, then oy and f; satisfy the same equation. Thus, I search for an
equilibrium in which:

e = Vg, oy = ﬁt- (IA616)

In that equilibrium, v = v}, e = v¢ = py = v/, and oy = ;. One obtains the following

133



equations:

1 —2ap4
(Np + 1)\; — 2Npayp?’

1y = Ci (IA.617)

(NL + 1))\t — 2]\[LO{,§p?7

T =

ay = (At +(NE — QNL)O%/)?)

Dealer’s pricing rules

The dealer takes the speculator’s strategies as given, which means that she assumes the

aggreate order flow to be of the form:
Ayt = NF%Awt + NL[LtKI;t_l + dut. (IA618)

Therefore, she sets A\; and p; according to the usual formulas:

Covi(vp, Ayy) EB-\//(wt — Pt—1, Ayt) Npvye + N Cy

)\t = - — =
Var, (A D
HAy)  Var(Ay) ! (IA.619)
oy = Covi(Avy, Ayy) Cov(Awt,Ayt) _ Npvy
' Var,(Ay;) Var(Ay,) Dy

I now rewrite the equations from Lemma [A.2 above, using the equation I derived above:

peDy = Npy:

Biy1 = 1= Nppeyi — Nppep By,
A1 = 1— Nppiys,

Diy1 = (Npys1)® + (Nppes1)*(1 = Nepew) + 6,

B, B,
Ct - = = .
Ay 1= Nppi—17i-1

(IA.620)

Equilibrium conditions
To mirror the continuous-time version of the model, I define the following variables:
At

[A.621
Pt ( )

a; = Npp e, be = Nppee, R, =
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From pD; = N, one obtains Nepyy, = pi Dy = (Nppiye)*+(Nppepie)*(1=Nrepe1ve-1)+

p*52. With the new notation, this equation becomes:
a; = a? + b?(l — at_l) + pg&i

Also, one computes:

A b,B b, B b:B
_t_at‘i‘tt_at‘i‘tt:l_'_tt'

R, = — —
' Pt p*D, Qy az

I put together the equations that determine the equilibrium:

a; = Nppi, by = Nppipu, Ry, = %7

a; = NFJFll;%Qtht , b = w7 G ;
S Ry — 2a4p; R = 2aupy

C, = 1_L;t_l, a; = al +0 (1 —a,_,) + p?o2,

R, = 1+b’ft, By = 1—a,—bB, = 1- R,

This proves (IA.596).

7.3 Numerical results

(TA.622)

(IA.623)

(IA.624)

Theorem IA.4 show that finding the equilibrium reduces to solving a discrete system of

equations:
A
a; = Nppiye, by = Nrpipis, Ry = p_’
t

a = I —2a4p4 b, = Cy

—Njf,;rl R, — QOztpt7 —Nﬁ,jl Ry — QCVthzt7

B

C, = ———, ap = af +0;(1 — a1) + pjoe,

I —a;

b B
R, = 1+ tat, Biyn = 1—a;—b0B; = 1— Ray,
t

R, 2
o= (1—— ) .
e ! (prt * Np, o )
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This system can be solved numerically. For all the parameter values considered, the
solutions are numerically very close to a constant, except when t is either close to 0,
or close to T'. This suggests that it is a good idea to analyze the behavior of these
coefficients when the number of trading rounds becomes large. In this continuous-time
limit, using Lemma IA.1 in the Appendix in the paper, one expects that all these
coefficients become constant.

Therefore, I consider a constant solution of (IA.625) with all coefficients constant.

1—a
1+b°

the value of B from the continuous-time version. One obtains the following equations:

For instance, from the recursive equation for B, one has B = which coincides with

l—a 1 a+b 99 9

1+b7 C 1+ ) R a(1+b)7 pau ((I )( CL),

PR, (i 2 ) 1 - 2ap C (IA.626)
o = — - a, a = 9 = °

N2p N;, N]f,—:l R —2ap N]{,—ZFIR — 2ap

Solving the equation for «, and multiplying by 2p, one obtains:
20°R 1
2ap = (IA.627)

1-p2(1-2) N2

Note that the first four equations in (IA.626) coincide with the corresponding ones in

the continuous-time case. However, the last two equations (for a and b) differ from the

1

continuous-time value by the term 2ap. But all the terms in (IA.627), other than =,
L

are of order one, hence the term 2ap is of the order of %:
L
2ap = Oy, (NLE). (IA.628)

I now describe a numerical procedure that computes with high accuracy a solu-
tion (a,b) of the system above. Denote by a’ and &° the corresponding equilibrium

values from Theorem 1, in which the choice of weights does not affect the covari-

ance structure. Then, starting with (a° °), one computes R° = %, and then
2090 = _ 2OPRY ~z using (IA.627). Using (IA.626), one recomputes the values of
17(b0)2(17NLL) L

(a,b). Denote them by (a',b'). Tterate the procedure until it converges. Then, define
(a,b) = lim,, o (a",0™). Then, (a,b) satisfy the system of equations in (IA.626). Fig-
ure TA.5 shows the solution for the case when there are only FTs, and their number is
N € {1,...,10}. (The introduction of STs makes the approximation even better, since
Ny = Np + Ng increases.) From the figure, one sees that the approximation is good

even for low N.
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Figure IA.5: Comparison of equilibrium weights The figure compares the equilib-
rium modified weights a and b, which are a solution of the system of equations (IA.626), with
the modified weights a” and b° from the benchmark model, in which the choice of weights does
not affect the covariance structure (see Theorem 1 in the paper). In each model, there are
N =1,2,...,10 identical speculators.

avs. a bOvs. b

0.2f 1 0.2r

o1r 1 01f

0 0

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
N N
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