RATIONAL S!-EQUIVARIANT ELLIPTIC COHOMOLOGY.
J.P.C.GREENLEES, M.J. HOPKINS, AND I.LROSU

ABSTRACT. We give a functorial construction of a rational S!-equivariant cohomology the-
ory from an elliptic curve equipped with suitable coordinate data. The elliptic curve may be
recovered from the cohomology theory; indeed, the value of the cohomology theory on the
compactification of an S'-representation is given by the sheaf cohomology of a suitable line
bundle on the curve. The construction is easy: by considering functions on the elliptic curve
with specified poles one may write down the representing S!-spectrum in the first author’s
algebraic model of rational S'-spectra [6].
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1. INTRODUCTION.

Two of the most important cohomology theories are associated to one dimensional group
schemes in a way which is clearest in the equivariant context. Ordinary cohomology of the
Borel construction is associated to the additive group and equivariant K theory is associated
to the multiplicative group. It is therefore natural to hope for an equivariant cohomology
theory associated to an elliptic curve A, and it is the purpose of the present note to construct
such a theory over the rationals which is equivariant for the circle group. A programme
to extend this work to higher dimensional abelian varieties and higher dimensional tori is
underway [7, 8, 9].

Let T denote the circle group, and 2z denote its natural representation on the complex
numbers. The main purpose of this paper is to construct a rational T-equivariant cohomology
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theory EA%() associated to any elliptic curve A over a Q-algebra. We write A[n| for the
points of order dividing n in A. The properties of the cohomology theory when we work over
a field may be summarized as follows; we give full details in Section 8 below.

Theorem 1.1. For any elliptic curve A over a field k of characteristic 0, there is a 2-
periodic multiplicative rational T-equivariant cohomology theory EA%(+). The coefficient ring
in degrees 0 and 1 is related to cohomology of the structure sheaf O by

EAT = H'(4;0),

and, more generally, the value on the one point compactification SV of the representation
W = > a,2" gives the sheaf cohomology of an associated line bundle O(—D(W)), where
D(W) =32, anAln]:

EA(S") = H*(A;0(~D(W))
and in homology we have
EA, (S") = H*(4; 0(D(W)).

The construction and the isomorphisms in the statement are natural for isomorphisms of the
elliptic curve.

The first version of T-equivariant elliptic cohomology was constructed by Grojnowksi in
1994 [10]. He was interested in implications for the representation theory of certain elliptic
algebras: these implications are the subject of the work of Ginzburg-Kapranov-Vasserot [5]
and the context is explained further in [4]. For this purpose it was sufficient to construct a
theory on finite complexes taking values in sheaves over the elliptic curve. Later Rosu [13]
used this sheaf-valued theory to give a proof of Witten’s rigidity theorem for the equivariant
elliptic genus of a spin manifold with non-trivial T-action. Ando [1] has related the sheaf
valued theory to the representation theory of loop groups.

However, to exploit the theory fully, it is essential to have a theory defined on general
T-spaces and T-spectra, and to have a conventional group-valued theory represented by a
T-spectrum. This allows one to use the full apparatus of equivariant stable homotopy theory.
For example, twisted pushforward maps are immediate consequences of Atiyah duality; in
more concrete terms, it allows one to calculate the theory on free loop spaces, and to describe
algebras of operations. It is also likely to be useful in constructing an integral version of
the theory, and we hope it may also prove useful in the continuing search for a geometric
definition of elliptic cohomology.

The theory we construct has these desirable properties, whilst retaining a very close con-
nection with the geometry of the underlying elliptic curve. Our construction directly models
the representing spectrum E'A in the first author’s algebraic model A; of rational T-spectra
[6]. Any object (such as that modelling T-equivariant elliptic cohomology) in the algebraic
model A of [6] can be viewed as a sheaf over the space of closed subgroups of T [7]. More-
over, the way a sheaf over the closed subgroups of T models a T-equivariant cohomology
theory gives a precise means by which the sheaf-valued cohomology can be recovered from a
conventional theory with values in graded vector spaces. The construction of the Grojnowski
sheaf on the elliptic curve from the sheaf on the space of closed subgroups of T helps put the
earlier construction in a topological context. It is intended to give a full treatment elsewhere,
giving an equivalence between a category of modules over the structure sheaf of A and a
category of modules over the representing spectrum for the cohomology theory.
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Returning to the geometry, a very appealing feature is that although our theory is group
valued, the original curve can still be recovered from the cohomology theory. It is also
notable that the earlier sheaf theoretic constructions work over larger rings and certainly
require the coefficients to contain roots of unity: the loss of information can be illustrated
by comparing the rationalized representation ring R(C,) = Q[z]/(z™ — 1) (with components
corresponding to subgroups of Cy,) to the complexified representation ring, isomorphic to the
character ring map(C,,, C) (with components corresponding to the elements of C,,).

Finally, the ingredients of the model are very natural invariants of the curve given by
sheaves of functions with specified poles at points of finite order: Definition 8.4 simply writes
down the representing object in terms of these,! and readers already familiar with elliptic
curves and the model of [6] need read nothing else. In fact the algebraic model of [6] gives a
generic de Rham model for all T-equivariant theories, and the models of elliptic cohomology
theories highlight this geometric structure. These higher de Rham models should allow
applications in the same spirit as those made for de Rham models of ordinary cohomology
and K-theory [11].

By way of motivation, we will discuss the way that a T-equivariant cohomology theory
is associated to several other geometric objects. Perhaps most familiar is the complete case
discussed in Section 2, where the Borel theory for a complex oriented cohomology theory is
associated to a formal group. Amongst global groups, the additive and multiplicative ones
are the simplest, and in Section 4 we describe how they give rise to ordinary Borel cohomol-
ogy and equivariant K-theory. This construction is notable in that it gives a construction of
equivariant cohomology theories from oriented 1-dimensional group schemes which is func-
torial for isomorphisms. It is also functorial for certain isogenies as explained in 4.3.

2. FORMAL GROUPS FROM COMPLEX ORIENTED THEORIES.

The purpose of this section is to recall that any complex orientable cohomology theory
E*(-) determines a one dimensional, commutative formal group G and to explain how the
cohomology of various spaces can be described in terms of the geometry of G. This is well
known but it introduces the geometric language, and motivates our main construction, which
uses this geometric data to construct the cohomology theory. Indeed, we will show that the
machinery of [6] permits a functorial construction of a 2-periodic rational T-equivariant
cohomology theory EGZ(-) from a one dimensional group scheme G over a Q-algebra. Fur-
thermore, the construction is reversible in the sense that G can be recovered from EG(-).
The most interesting case of this is when G is an elliptic curve.

Before introducing the cohomology theory into the picture, we introduce the geometric
language. Whilst all schemes are affine, the geometric language is equivalent to the ring
theoretic language, and all geometric statements can be given meaning by translating them
to algebraic ones. This excuses us from setting up the geometric foundations of formal groups,
and for the present the geometric language is purely suggestive: all notions are defined in
terms of the algebra. The geometric language becomes essential later, since elliptic curves
are not affine.

A one dimensional commutative formal group law over a ring k£ is a commutative and
associative coproduct on the complete topological k-algebra k[[y]]. Equivalently, it is a
complete topological Hopf k-algebra O together with an element y € O so that O = k[[y]].

IThis 3rd version of the paper is the first to make the model completely explicit.
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A topological Hopf k-algebra O for which such a y exists is the ring of functions on a one
dimensional commutative for/r\nal group G. The counit @ —s k, is viewed as evaluation of
functions at the identity e € G, and the augmentation ideal I consists of functions vanishing
at e. The element y generates the ideal I, and is known as a coordinate (at e).

We also need to discuss locally free sheaves F over @, and in the present affine context
these are specified by the O-module M = I'F of global sections. In particular, line bundles L
over G correspond to modules M which are submodules of the ring of rational functions and
free of rank 1. Line bundles can also be described in terms of the zeros and poles of their
generating section: we only need this in special cases made explicit below. The generator f
of the O-module M is a section of L, and as such it defines a divisor D = D, —D_, where D
is the subscheme of G where f vanishes (with multiplicities), and D_ is the subscheme of G
where f has poles (with multiplicites). This divisor determines L, and we write L = O(—D).
For example, M = I = (y) corresponds to O(—e), and M = I* = (y“) corresponds to
O(—ae). Next we may consider the [n]-series map [n] : O — O, which corresponds to the
n-fold sum map n : G — G. We write G[n] for the kernel of n, and its ring of functions is
O/([n](y)). Hence, since n*y = [n](y) by definition, M = ([n](y)) corresponds to O(—@[n]),
and M = ( ([n](y))* ) corresponds to O(—aG[n]). Finally, if M corresponds to O(—D)
and M’ corresponds to O(—D') then MY := Hom(M, O) corresponds to O(D) and M @ M’
corresponds to O(—D — D’). This gives sense to enough line bundles for our purposes.

Now suppose that E is a 2-periodic ring valued theory with coefficients E* concentrated in
even degrees. The collapse of the Atiyah-Hirzebruch spectral sequence for CP* shows that
E is complex orientable. We may define the T-equivariant Borel cohomology by Ej(X) =
E*(ET xt X). We work over the ring k = E%(T) = E° and view EY = E°(CP>) as the
ring of functions on a formal group G over k. The tensor product and duality of line bundles
makes CP> into a group object, so E°(CP*) is a Hopf algebra and Gisa group. From this
point of view, the augmentation ideal I = ker(EY — E°) consists of functions vanishing at
the identity e € G.

Now, if V' is a complex representation of the circle group T, we also let V' denote the
associated bundle over CP* and the Thom isomorphism shows E°((CP>)") = E%(SY) is

a rank 1 free module over E2, and hence corresponds to a line bundle I(V') over G, whose
global sections are naturally isomorphic to the module

TL(V) = E2(SY).

From the fact that Thom isomorphisms are transitive we see that L(V @&W) = L(V ) @L(WW).
The values of all these line bundles can be deduced from those of powers of z.

Lemma 2.1. (1) L(0) = O is the trivial bundle.
(2) L(z) = O(—e) is the sheaf of functions vanishing at e, and its module of sections I
18 generated by the coordinate y.
(3) L(z") = O(=GIn]) is the sheaf of functions vanishing on Gn], and its module of
sections is generated by the multiple [n|(y) of the coordinate y.
(4) L(az™) = O(—a@[n]) is the sheaf of functions vanishing on @[n] with multiplicity a,
and its module of sections is generated ([n](y))®.

Proof: The first statement is clear since E%(S®) = E2. For the second we use the equivalence
(CP*>®)# ~ (CP*)%/(CP%)°. The third statement follows from the Gysin sequence since z*
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is the pullback of z along the kth power map CP* — CP*°. The final statement follows
from the tensor product property. O

This gives the fundamental connection between the equivariant cohomology of a sphere
and sections of a line bundle.

Corollary 2.2. For any a € Z, n # 0 we have
EY(S%") = O(=aG[n]). O

We want to finish this section by pointing out that if the formal group G (which is affine)
is replaced by a group G with higher cohomology, we cannot expect a cohomology theory
entirely in even degrees. Whenever the group is not affine, we write O for the structure sheaf
of G. This is reconciled by the above usage since in the affine case the structure sheaf is
determined by its ring of global sections. In the non-affine case, the cofibre sequence

S AT, — §% — SlatD:

forces there to be odd cohomology. Indeed, there is a corresponding short exact sequence of
sheaves
O(—ae)/O(—(a + 1)e) «— O(—ae) +— O(—(a + 1)e).

Any satisfactory cohomology theory will be functorial, and applying E%(-) will give sections
of the associated sheaves. However the global sections functor on sheaves is not usually right
exact, and the sequence of sections continues with the sheaf cohomology groups H'(G;-).
It is natural to hope that the long exact cohomology sequence induced by the sequence of
spaces should be the long exact cohomology sequence induced by the sequence of sheaves.
This gives a natural candidate for the odd cohomology:

EL(5%) = H(G; O(—ae)) for i =0,1.

This explains why it is possible for complex orientable cohomology theories to have coefficient
rings in even degrees (formal groups are affine), and indeed how their values on all complex
spheres can be the same. It also explains why we cannot expect either property for a theory
associated to an elliptic curve.

3. THE MODEL FOR RATIONAL T-SPECTRA.

For most of the paper we work with the representing objects of these cohomology theories,
namely T-spectra [3]. Thus we prove results about the representing spectra, and deduce
consequences about the cohomology theories. More precisely, any suitable T-equivariant
cohomology theory E7(-) is represented by a T-spectrum FE in the sense that

EX(X) = [X, B}
This enables us to define the associated homology theory
EY(X) =[S, EAX]]

in the usual way. We shall make use of the elementary fact that the Spanier-Whitehead dual
of the sphere SV is S~V as one sees by embedding SV as the equator of SV®!. Hence, for
example

EY(SY) =[SV, BT = [$°, 5~V AE]" = wi(sV A E) = EJ(S ).
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We say that a cohomology theory is rational if its values are graded rational vector spaces.
A spectrum is rational if the cohomology theory it represents is rational. It suffices to check
the values on the homogeneous spaces T/H for closed subgroups T, since all spaces are built
from these.

Convention 3.1. Henceforth all spaces, groups and spectra are rationalized whether or not
this is indicated in the notation.

Our results are made possible because there is a complete algebraic model of the category
of rational T-spectra, and hence of rational T-equivariant cohomology theories [6]. There
are two models for rational T-spectra, as derived categories of abelian categories:

T-Spectra ~ D(A,) ~ D(Ay).

The standard abelian category A, has injective dimension 1, and the torsion abelian category
Ay is of injective dimension 2. It is usually easiest to identify the model for a T-spectrum
in D(A;), at least providing its model has homology of injective dimension 1. This is then
transported to the standard category, where calculations are sometimes easier. To describe
the categories, we need to use the discrete set F of finite subgroups of T. On this we
consider the constant sheaf R of rings with stalks Q[c] where ¢ has degree —2. We need to
consider the ring R = map(F, Q[c]) of global sections. For each subgroup H, we let ey € R
denote the idempotent with support H. If w : I — Z>( is a function, we write ¢ for the
element of R with ¢*(H) = ¢*). Now consider the multiplicative set € generated by the
universal Euler classes e(V) for the representations V of T with VT = 0. These are defined
by e(V) = ¢, where v(H) = dimc (V). In particular for V = 2" we have e(z") = 5"
where sub(n)(H) =1 if H C T[n] and 0 otherwise. Equivalently,

E={c"|w:TF — Zs of finite support}.

We let t7 = E7'R: as a graded vector space this is @@ Q in positive degrees and [, Q in
degrees zero and below.

The objects of the standard model A are triples (N, 5, V) where N is an R-module (called
the nub), V is a graded rational vector space (called the verter) and 3 : N — t7 @ V is
a morphism of R-modules (called the basing map) which becomes an isomorphism when &
is inverted. When no confusion is possible we simply say that N — 7 ® V is an object
of the standard abelian category. An object of A, should be viewed as the module N with
the additional structure of a trivialization of E'N. A morphism (N, 3,V) — (N, 3, V")
of objects is given by an R-map 6 : N — N’ and a Q-map ¢ : V — V' compatible under
the basing maps.

Since the standard abelian category has injective dimension 1, homotopy types of objects
of the derived category D(A;) are classified by their homology in A, so that homotopy types
correspond to isomorphism classes of objects of the abelian category A,. In the sheaf theo-
retic approach, NV is the space of global sections of a sheaf on the space of closed subgroups
T, the vertex V is the value of the sheaf at the subgroup T and the fact that the basing
map : N — t7 ® V is an isomorphism away from € is the manifestation of the patching
condition for sheaves.

The objects of the torsion abelian category A, are triples (V, ¢, T) where V is a graded
rational vector space T is an E-torsion R-module and ¢ : t7 ® V — T is a morphism of R-
modules. The condition on 7 is equivalent to requiring (i) that 7" is the sum of its idempotent
factors T(H) = ey T in the sense that T = @, T(H) and (ii) that each T(H) is a torsion
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Q[c]-module. When no confusion is possible we simply say that t7 ® V' — T is an object
of the torsion abelian category. In the sheaf theoretic approach, the module T(H) is the
cohomology of the structure sheaf with support at H. By contrast with the standard abelian
category, the torsion abelian category has injective dimension 2. Thus not every object X
of the derived category D(A;) is determined up to equivalence by its homology H,(X) in
the abelian category A;. We say that X is (intrinsically) formal if it is determined up to
isomorphism by its homology. Evidently, X is formal if its homology has injective dimension
0 or 1 in A;. In general, if H,(X) = (t ® V — T), the object X is equivalent to the fibre
ofamap (t7 @ V — 0) — (t7 ® 0 — XT) (in the derived category) between objects in
A; of injective dimension 1. This map is classified by an element of Ext(t @ V, XT), so that
X is formal if the Ext group is zero in even degrees. Thus X is formal if both V' and T are
in even degrees or if T is injective in the sense that each T'(H) is an injective Q[c]-module.

Definition 3.2. [6, 5.8.2] Suppose given a function w : F — Z with finite support. The
algebraic w-sphere is the object of A, defined by
SY = (R(c™) — )

where R(c™ ) is the R-submodule of #7 generated by the Euler class ¢~ .

Now for an object X of A, there is an exact sequence
0 — Exty, (S', M) — [S™, M] — Homy, (S¥, M) — 0,

so we shall need to calculate these Hom and Ext groups. For the present we restrict ourselves
to the Hom groups.

Lemma 3.3. For an object M = (N BN t7 @ V) of the abelian category Ay we have
Homy (S, (N — 2 ®@V))=N(c™):={neN|B(n)cc @V} O

We may now describe how to construct the counterparts M,(E) = (N — t2 ® V) (in the
standard abelian category A;) and My(E) = (t7 @V — T) (in the torsion abelian category
A;) of a rational T-spectrum E. From the above discussion, the model M,(FE) determines F
itself, but M;(E) only determines E if M;(E) is formal. First, we may define the vertex V/,
the nub N and torsion module T" by formulae and then turn to practical computations in
terms of data easily accessible to us. To describe the answer, we need the universal F-space
E3F, and the basic cofibre sequence

EF, — S — EF

where EF is the join S° * EF .. We also use functional duality on T-spectra defined by
DX = F(X,S". The nub vertex and torsion modules associated to a T-spectrum E are
given by

e N=1"«(EANDET,)

o V=1"x(EAET)

o T =71"x(EAXET,)

The vertex is straightforward to calculate in terms of available data:
V =7"%(EANEF) = lim % (E A SY).

An approach to the nub via limits is possible but not very illuminating.
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The associated torsion sheaf T' may be described by saying that its sections over the set
[C H] of subgroups of H is n'*(XE[C H]; A E). Using idempotents from the Burnside ring
of H this may be split up into stalks 7'+(XE(K) A E) one for each subgroup K C H (it
turns out that these are in independent of H, as is required for consistency). Now if H has
order n, the infinite sphere S(0c0z™) is a model for E[C H], and hence there is a long exact
sequence

oo TR(E) — 7 (S ANE) — 7 *(E[C H|y, AE) — -+ .

Since 77%(S%*" A E) = lim 77%(S5%" A E) we may conclude there is a short exact sequence
—a

0 — SE T e(2")® — 7Tx(B[C H]; A E) —> e(2")-power torsion(E5 ) — 0

where E}V(H) is the ring graded by multiples of 2" with az"-th component 770(S%" A E)
and e(z") is the degree —z" Euler class.

In this account we have described the calculation of V' and T in terms of available data. If
this is to determine E we must show in addition that M;(FE) is formal. In our case this will
hold because V' and T are in even degrees. It is convenient for calculation to deduce M (E).

Lemma 3.4. If My(E) = (t7@V - T) has surjective structure map, then My(F) is formal
and

M,E)=(N —t7@V)
where
N =ker(t] @ V. — T),

and the basing map s the inclusion. Furthermore we have the explicit injective resolution

N 7@V T
0 — M(E) = { — { — | L | —0
TV 7@V 0
mn As.
Proof: To see that M;(F) is formal, it is only necessary to remark that T is the quotient of
an E-divisible group and therefore injective [6, 5.3.1]. O

Finally, we should record that spheres and suspensions in the algebraic and topological
contexts correspond.

Lemma 3.5. [6, 5.8.3] Suppose W is a virtual representation with W' = 0 and let w =
dimc(W). The object modelling the sphere SV with VT = 0 in A, is the algebraic sphere
SY:

M,(S") = 8" = (R(c™") — t])
where R(c™") is the R-submodule of t7 generated by ¢ = e(—W).

Convention 3.6. In the present paper we are interested in cohomology theories with a
periodicity element u of degree 2. We may therefore shift even degree elements into degree
zero. For example uc is the degree 0 counterpart of ¢. For the rest of the paper we use ¢ to
denote the degree 0 version.
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4. THE AFFINE CASE: T-EQUIVARIANT COHOMOLOGY THEORIES FROM ADDITIVE AND
MULTIPLICATIVE GROUPS.

The algebraic models of equivariant K-theory and Borel cohomology are easily described
[6]. In this section we show they are special cases of a general functorial construction of
a cohomology theory EG(-) associated to a one dimensional affine group scheme G. This
will serve to illustrate the algebraic categories described in Section 3 and also complete the
motivation of our construction for elliptic curves.

The additive group scheme G, and the multiplicative group scheme G, are affine, and
therefore the construction of associated cohomology theories is considerably simpler than
that for elliptic curves. Nonetheless the general features are the same, and it is useful to
have seen the phenomena first in a familiar setting. It turns out that the associated 2-periodic
T-equivariant theories are concentrated in even degrees and

(EGa)p(X) = H*(ET x1 X)

and
(EGp )1 (X) = K7(X),
and models for these theories were given in [6]. We will repeat the answer here in our present
language.
We start by summarizing the properties we want of such a construction, and then observe
that the algebraic categories of Section 3 immediately gives a unique construction.

e The subgroup T[n| of order n corresponds to the subgroup G[n] of elements of order
dividing n

e The family JF of finite subgroups corresponds to the set G[tors] of elements of torsion
points.

e The suspension S%" A EG corresponds to the sheaf O(aG[n]) and more generally,
suspension by 2" corresponds to tensoring with O(Gn]).

e The inclusion S® — S*" which induces multiplication by the Euler class (in the
presence of a Thom isomorphism) corresponds to O — O(GJ[n]).

e We extend the notation to allow

5§ = lim §%*"
—a

to correspond to the sheaf
O(0oG[n]) :=lim O(aG[n])
— a

and
EF :=lim S
- a,n
to correspond to
O(coGltors]) = liin O(aGln]).
(This description of EF requires us to be working rationally; more generally one only
has EF =lim SV
= VT=0
We need to say more about Euler classes. Consider the subgroup T[n| of order n. The

natural geometric construction is the Euler class induced by S° — S*". Pulling back a
Thom class for S*" gives the function e(2") in R, which vanishes at all subgroups of T[n].
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Evidently, if we take ¢4 to be the function vanishing to the first order on the group of order
d and taking the value 1 elsewhere, we have

e(z") = H Cd,
din

so that we may view ¢y as a universal cyclotomic function.

We have already motivated the idea that S — S*" should correspond to O — O(G[n)).
The Thom class for S*" corresponds to a generating section of O(G[n]) and hence e(z")
should correspond to a function x(2") defining G[n] in G.

Now choose a coordinate y =: x(2) at e € G. We may then take

x(2") := [n](y) = n"(y).
so that x(z") is a function vanishing to first order on G[n].
Next, we may a decompose the divisor G[n]:

Gln] =) _G(d)
din

where G(d) is the divisor of points of exact order d. Now we define a function ¢(d) := ¢G(d)
vanishing to the first order on G(d) recursively by the condition

x(z") =] ¢ :
din

the formula defines ¢(n) directly for n = 1, and for larger values of n, it is defined by dividing
X(2") by the previously defined ¢(d).
Definition 4.1. Given a virtual complex representation V' = )" a,2", we define a divisor
by D(V) =", a,G[n]. We say that a 2-periodic T-equivariant cohomology theory EJ(:) is
of type G if
Ey(SY) = H'(G; O(=D(V))

whenever V or —V is a complex representation.

We also make a naturality requirement. For this it will be clearer if we insist V' is an
actual representation, and reformulate the other case as the isomorphism

E}(SY) = H'(G; 0(D(V)).
Now we require these isomorphisms to be natural for inclusions j : V' — V' of represen-
tations. First note that such a map induces a map S¥ — SV’ of T-spaces and hence
maps
7" Ep(SY) — Bq(S")
and N N
jot BT(SY) — Ei(s").
On the other hand we have inclusion of divisors D(V)) — D(V’), inducing maps
O(=D(V")) — O(=D(V))
and
O(D(V)) — O(D(V')).

The induced maps in sheaf cohomology are required to j* and j,.
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Theorem 4.2. Given a commutative 1-dimensional affine group scheme G over a ring con-
taining Q, and a coordinate y at e € G there is a 2-periodic cohomology theory EG}(-) of
type G. Furthermore, EG% is in even degrees and G = spec(EGY). The construction is
natural for isomorphisms.

Remark 4.3. The construction is also natural for quotient maps p : G — G/G[n| in the
sense that there is a map p* : E(G/G[n]) — inﬂ%/TMEG of T-spectra, where EG is viewed
as a T/T[n]-spectrum and inflated to a T-spectrum.

More precisely, if y is a coordinate on G then its norm Il,cqToy is a coordinate on
G/G[n| (where T, denotes translation by a). Using these coordinates, we obtain equivariant
spectra EG/G[n] and EG. As a first step to maps between them, note that we have maps
i V(G/G[n]) — VG and p} : T(G/G[n]) — T'G corresponding to pullback of functions.
However p}, and p} do not give a map of T-spectra E(G/G[n]) — EG; for example the
non-equivariant part of E(G/G[n]) corresponds to functions on G/G[n| with support at the
identity, and these pull back to functions on G supported on G[n|, which correspond to the
part of EG with isotropy contained in T[n]. The answer is to view the circle of equivariance
of EG as T/T|[n], and then to use the inflation functor studied in Chapters 10 and 24 of [6]
to obtain a T-spectrum.

Proof: The construction was motivated in Section 2. We take
VG = O(occtors),
TG = O(octors) /0,

and use the map
qG : t7 ® O(ootors) — O(octors)/O
given by

s/e(W)® f s f/x(W).

We must explain how 7'G is a module over R, and why [ is a map of R-modules. We
make T'G into a module over R by letting ¢, act as ¢4. Since any function only has finitely
many poles, all but finitely many ¢, act as the identity on any element of T'G, and since
poles are of finite order, TG is a E-torsion module. The definition of the map ¢G shows it is
an R-map.

Finally, we must show that the homotopy groups of the resulting object are as required in
4.1. By 3.4 we have M (EG) = (3G : NG — t? @V G), where NG = ker(t VG — TG),
and we need to calculate

SV, EG]! = [SY, M,(EG)],.

Since ¢G is epimorphic, G is monomorphic, and T'G is injective. Thus by 3.4 we have the
explicit injective resolution

NG 7@ VG TG
0 — M,(EG) = { — { — { — 0.
T eVG T RVG 0

Now, applying 3.3 we see Ext(S™, M,(FG)) = 0 since any torsion element ¢t € TG lifts to
f € VG and hence to 1/e(W) @ x(W)f. It is immediate from the definition that

Hom(SY, M,(EG)) = {c “® f | f/x(W) regular }.
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By construction the divisor associated to the function x (V') is D(V'), so f/x(V') is regular if
and only if f € O(—D(V)) as required. O

Remark 4.4. In the above proof we made use of the fact that the Euler class x (1) exists as
a function in VG. The point of this comment will become apparent when we treat the elliptic
case which behaves rather differently: there the Euler class is given by different functions
at different points, corresponding to the fact that the cohomology theory is not complex
orientable, so that the bundle specified by W is not trivializable.

We make the construction explicit in a few cases.

The ring of functions on G, is Q[z], and the group structure is defined by the coproduct
r+——1®x+x®1. We choose z as a coordinate about the identity, zero. The group G,[n]
of points of order dividing n is defined by the vanishing of x(2™) = nz, so the identity is the
only element of finite order over (-algebras. This case becomes rather degenerate in that it
only detects isotropy 1 and T.

Proposition 4.5. The model of 2-periodic Borel cohomology in the torsion model is formal,
concentrated in even degrees and in each even degree is the map

t7 ® O(ootors) =17 @ Qz, 27" — Q[z,27']/Qlx] = O(cctors)/O
sfe(V)® f—s- f/x(V).
Here O = Q|z] and x(z") = nx. The ring O(octors) = Q[z, x| of functions with poles only
at points of finite order is obtained by inverting the Fuler class of z. Accordingly, 2-periodic
Borel cohomology s the theory associated to the additive group in the sense of 4.2. O

The ring of functions on G,, is O = R(T) = Q[z, 27'], and the group structure is defined
by the coproduct z — 2z ® 2. We choose y = 1 — 2z as a coordinate about the identity
element, 1. The coproduct then takes the more familiar form y — 1Qy+y® 1 -y R y.
The group G, [n] of points of order dividing n is defined by the vanishing of x(2") =1 — 2™.
Proposition 4.6. [6, 13.4.4] The model of equivariant K-theory in the torsion model is
formal, concentrated in even degrees and in each even degree is the map

t7 ® O(ootors) — O(octors)/O
sfe(V) @ f—s- f/x(V).
Here O = Q[z,27 '] and x(2") =1 — z". The ring O(octors) of functions with poles only at
points of finite order is obtained by inverting all Euler classes. Accordingly, equivariant K
theory is the theory associated to the multiplicative group in the sense of 4.2. O

By way of completeness we also record the analogue for formal groups. This completes
the circle by establishing the universality of the motivation described in Section 2. However,
since we must work over QQ, there is little difference from the additive group above. Suppose
given a commutative one dimensional formal group G over a ring k containing QQ, with a
coordinate y. We may identify the ring of functions on G with E[[x]], and the group structure
is the coproduct z — F(z®1,1®x). The group @[n] of points of order dividing n is defined
by the vanishing of x(2™) = [n](x) so the identity is the only element of finite order over
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Q-algebras. We may now make the direct analogue of the construction in 4.2. This case
becomes rather degenerate in that it only detects isotropy 1 and T.

Proposition 4.7. The model of the 2-periodic Borel cohomology associated to a complex
orientable theory E*(-) in the torsion model is formal, concentrated in even degrees and in
each even degree is the map

t7 ® O(octors) =t @ E°((x)) — E°((z))/E°[[z]] = O(cctors)/O

sfe(V) & f—s- f/x(V).
Here O = E°[z]] and x(z") = [n](z). The ring O(octors) = E°[[z]][1/z] = E°((z)) of
functions with poles only at points of finite order is obtained by inverting the Fuler class of

z. Accordingly, 2-periodic E-Borel cohomology is the theory associated to the formal group
of E in the sense of 4.2. O

5. ELLIPTIC CURVES.

In this section we record the well known facts about elliptic curves that will play a part
in our construction. We use [15] as a basic reference for facts about elliptic curves, and [12]
as background from algebraic geometry.

Let A be an elliptic curve (i.e. a smooth projective curve of genus 1 with a specified point
e) over an algebraically closed field &k of characteristic 0 and let O = Q4 be its sheaf of
regular functions. Note that I'O = k, so the sheaf contains a great deal more information
than its ring of global sections. A divisor on A is a finite Z-linear combination of points,
and associated to any rational function f on A we have the divisor div(f) = Xpordp(f)(P),
where ordp(f) € Z is the order of vanishing of f at P. In the usual way, if D is a divisor on
A, we write O(D) for the associated invertible sheaf. Its global sections are given by

PO(D) = {f | div(f) = =D} U {0},

so that for a point P, the global sections of O(—P) are the functions vanishing at P.

We also have O(D;) ® O(D,) = O(D; + D).

Since the global sections functor is not right exact, we are led to consider cohomology, but
since A is one-dimensional this only involves H%(A;-) = T'(-) and H'(A;-), which are related
by Serre duality. This takes a particularly simple form since the canonical divisor is zero on
an elliptic curve:

H°(A;0(D)) = H'(A;0(-D))",
where (-)¥ = Homg(+, k) denotes vector space duality.

From the Riemann-Roch theorem we deduce that the canonical divisor is 0 and the coho-
mology of each line bundle:

dim(H®(4;0(D)) = { 0 i degng < -1
and
| deg D| if deg(D) < —1
dim(H'(4;0(D)) = { l) 5P if deiED; > 1

For the trivial divisor one has
dim(HO(A; 0)) = dim(Hl(A; 0)) =1.
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Now if D = Xpnp(P) is a divisor of degree 0, we may form the sum P(D) = XpnpP in A,
and D is linearly equivalent to (P(D)) — (e). If P(D) = e then the sheaf O(D) has the same
cohomology as O. Otherwise, since no function vanishes to order exactly 1 at P, we find

H°(A; O(D)) = H'(A; O(D)) = 0.

We may recover A from the graded ring I'(O(xe)) = {T'O(ne)},>0. Indeed, this is the
basis of the proof in [15, II1.3.1] that any elliptic curve is a subvariety of P? defined by a
Weierstrass equation. We choose a basis {1, z} of I'O(2¢) and a extend it to a basis {1, z,y}
of T'O(3e). Now observe that since I'O(6e) is 6-dimensional, there is a relation between
the seven elements 1,z 22, 2%, y, zy and y?: this is the Weierstrass equation, and it may be
verified that A is the closure in P? of the plane curve it defines. The graded ring T'(O(xe))
has generator Z of degree 1 corresponding to the constant function 1 in T'O(e), X of degree
2 corresponding to x, and Y of degree 3 corresponding to y. These three variables satisfy
the homogeneous form of the Weierstrass equation. The statement that A is the projective
closure of the plane curve defined by the Weierstrass equation may be restated in terms of
Proj:

A = Proj(T'(O(xe))).

6. COORDINATE DATA

Our main theorem constructs a cohomology theory of type A from an elliptic curve together
with suitable coordinate data. In this section we describe the data, and the choices of
functions that they permit.

Definition 6.1. Coordinate data for an elliptic curve is a choice of two functions x, with
a pole of order 2 at the identity and nowhere else, and ¥, with a pole of order 3 at the
identity and nowhere else. We also require that z, and 7. only vanish at torsion points. This
coordinate data determines a local uniformizer ¢, = x./y. of O, and hence also a uniformizer
tp at P by translating ..

Remark 6.2. (i) Since ?, is a uniformizer, 2z, = u, is a unit in O,.

However, we note that any global representative of ¢, must have two poles Z, Z' away from
e, so u, cannot be a constant.

(iii) One popular choice of coordinate data involves choosing a point P of order 2. This
determines a choice of x, and y, up to a constant multiple by the conditions

div(z.) = —2(e) + 2(P) and div(y.) = —3(e) + (P) + (P') + (P")
where A[2] = {e, P, P, P"}. Thus
div(t,) = (&) + (P) = (P') = (P"). O
The divisor A{n) of points of exact order n will play a central role. Note that
Aln] = A(d),
dln

and
Altors] =Y A(d).
d>1
The coordinate data allow us to specify a function defining the points of exact order d.
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Lemma 6.3. Given a choice of coordinate data on the elliptic curve d, for each d > 2, there
15 a unique function tg with the properties

(1) tq vanishes exactly to the first order on A{d),
(2) tq is regqular except at the identity e € A where it has a pole of order |A{d)|,

(3) 124, takes the value 1 at e

Proof: Consider the divisor A(d) — |A(d)|(e). Note that the sum of the points of A(d) in
A is the identity: if d # 2 this is because points occur in inverse pairs, and if d = 2 it is
because the A[2] is isomorphic to Cy x Cy. It thus follows from the Riemann-Roch theorem
that there is a function f with A(d) —|A(d)|(e) as its divisor. This function (which satisfies
the first two properties in the statement) is unique up to multiplication by a non-zero scalar.
The third condition fixes the scalar. O

Remark 6.4. If we choose any finite collection 7 = {dy, ..., ds} of orders > 2, there is again
a unique function ¢(7) with analogous properties. Indeed, the good multiplicative property
of the normalization means we may take

$(m) = H é(d;).

This applies in particular to the set A[n]\ {e}. O

For some purposes, it is convenient to have a basis for functions with specified poles. We
already have the basis 1, x,y, 22, zy, ... if all the poles are at the identity. Multiplication by
a function f induces an isomorphism

f-:TO(D) — TO(D + (f))

so we can translate the basis we have.

Lemma 6.5. For the divisor D = Yg>1n(d)A(d) let t*(D) := []5, tg(b). Multiplication by
t*(D) gives an isomorphism

t*(D)- : H'(A; 0(deg(D)(e)) — H°(A; O(D)).
A basis of H'(A; O(D)) is given by t*(D) if deg(D) = 0, and by the first deg(D) terms in

the sequence
t*(D), t*(D)z, t*(D)y, t*(D)x* t*(D)xy, . . .

otherwise. O

Remark 6.6. It is essential to be aware of the exceptional nature of the degree zero case.

7. LOCAL COHOMOLOGY SHEAVES ON ELLIPTIC CURVES.

The basic ingredients of the torsion model of a the cohomology theory associated to an
elliptic curve A are analogous to the affine case. The vertex

VA =T0O(occtors)
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consists of rational functions whose poles are all at torsion points, however the torsion module
is not simply the quotient of this by regular functions, but rather

TA=T(0(cctors)/0).
Before we work with this definition we need some basic tools.

Convention 7.1. Here and elsewhere, we only consider open sets obtained by deleting
torsion points. Thus localization only permits poles at torsion points: for example Op is the
subsheaf of O(ocotors) consisting of functions regular at P.

For any effective divisor D we may use the short exact sequence
0— 00— 0(aD) — Q(aD) — 0

of sheaves to define the quotient sheaf Q)(aD) for 0 < a < oo. The cohomology of Q(coD)
is the cohomology of A with support on D.

In fact we may reduce constructions to the case when the divisor D is a single point P.
Evidently, Q(coP) is a skyscraper sheaf concentrated at P, so we may localize at P to obtain

0 — Op — O(c0P)p — Q(c0P) — 0.

Notice that O(coP)p = O(octors).

Since A is a smooth curve, the local ring Op is a discrete valuation ring, and if we choose
a local uniformizer ¢p any element of I'(Q(occP)) may be represented by an element of the
form

a_1tp' +a_stp’ + - +a_ptp"
for suitable scalars a_;. Thus the sequence becomes
0— Op — OP[l/tp] — OP/t%O — 0.

This gives the basis of the Thom isomorphism.

Lemma 7.2. A choice of local uniformizer at P gives isomorphisms

O((a+1)P)/O(rP) =Q((a+r)P)/Q(rP) = Q(aP),
and hence

Q(oP)® O(rP) 2 Q(ccP). O

Note that it is immediate from the Riemann-Roch formula that for 0 < a < oo the
cohomology group H°(A; Q(aP)) is a dimensional, and H'(A; Q(aP)) = 0.
Now we may assemble these sheaves for each point. Indeed, we have a diagram
0 — O(ccD) — Q(ocoD)
} J
O — O(cc(D+ D)) — Q(oo(D + D))
of sheaves, and hence a map Q(ccD) — Q(oc(D + D')).
Proposition 7.3. If P, P' are distinct points of A then the natural map

Q(coP) & Q(0oP") — Q(oo(P + P"))

s an isomorphism.
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Proof: We apply the Snake Lemma to the diagram

OO0 — O(0P)®O(0Q) — Q(coP) ® Q(coP)
! ! !
O —  Oc(P+P) —  Qo(P+P))

in the abelian category of sheaves on A. The first vertical is obviously surjective with kernel
O. The kernel of the second vertical is also O, since if f and f’ are local sections of O(coP)
and O(coP’) (ie f only has poles at P and f’ only at P’) then f + f' = 0 implies that
f and f" are regular. Finally we must show that O(co(P + P’')) is the sheaf quotient of
O — O(c0P) @ O(ccP'). However, this may be verified stalkwise, where it is clear. O

Let us now collect what we need for the construction. To give a Thom isomorphism for
Q(ccA(d)) we need to choose local uniformizers ¢p at each point P of exact order d. For
example we explained in Section 6 how coordinate data determines a function ¢; vanishing
on A(d) to the first order at all points of A(d), and we could take tp = t, for all points P of
exact order d.

Corollary 7.4. The natural map gives an isomorphism

P Q(ooA(d) — Q(octors),

and a choice of coordinate tp at each P € A{d) gives a Thom isomorphism
Ty : Q(ooA(d)) ® O(A(d)) — Q(o0A(d)).
The sheaf Q(c0A{d)) has no higher cohomology and its global sections are
IQ(occA{d)) = VA/{f | [ is regular on A{d)}. O

Remark 7.5. This corresponds to the fact that there is a rational splitting
SEF, ~ \/SE(H)
H

where E(H) = cofibre(E[C H], — E[C H|,) [6, 2.2.3].

8. A COHOMOLOGY THEORY ASSOCIATED TO AN ELLIPTIC CURVE.
We are now ready to state and prove the main theorem. Indeed, the paper so far has
consisted entirely of motivation and repackaging of known results by way of preparation.
Theorem 8.1. Given an elliptic curve A over a field k of characteristic zero, and coordinate

data (xe,ye), there is an associated 2-periodic rational T-equivariant cohomology theory of
type A, so that for any representation W with W' = 0 we have
EAy(S™) = H'(4;0(~D(W)))
and .
EA; (SY) = H'(4,0(D(W)))
where the divisor D(W) is defined by taking
D(W) = ZanA[n] when W = Z anz".

n
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This association is functorial for isomorphisms of the elliptic curve.

Remark 8.2. (i) The elliptic curve can be recovered from the cohomology theory. Indeed,
we may form the graded ring
—0 —0
EAp(S7) := {EAp(S7) }azo
from the products S=% A S~ — S~(@+0)2 and the elliptic curve can be recovered from the
cohomology theory via
A = Proj(EAy(S ),

as commented in Section 5. Furthermore, this reconstruction is functorial in that any multi-
plicative natural transformation of cohomology theories will induce a map of elliptic curves.
(ii) The coordinate data on A can therefore be recovered from suitable elements of homology:

Te € EXZT(S%) and y, € /E\ZE(S?’Z).

Remark 8.3. We have not required the field to be algebraically closed. To see the advantage
of this, note that even for the multiplicative group, the individual points of order n are only
defined over k if k contains appropriate roots of unity. However G,,[n] (defined by 1—2") and
hence also G, (n) (defined by the cyclotomic polynomial ¢,(z)) are defined over Q. Hence
equivariant K theory itself is defined over Q. For an elliptic curve A we require that there
is a basis for I'O(aG(d))) consisting of functions defined over k.

Proof: We divide the proof into three parts: construction, functoriality and cohomology.

(1) The construction: We must describe a vector space V' =V A, an R-module T'A and an
R-map

qA:t] @ VA — TA.
It is easy to describe VA and T A; indeed, we take

VA =T0(cctors)
consisting of rational functions whose poles are all at torsion points, and torsion module
TA =T(Q(octors)).
The splitting
Q(ootors) = (D) Q(ooAld))
d

of 7.4 gives
TA=DTAd)
d
where
TA(d) =VA/{f | f is regular on A{d)}.

It is not hard to describe the R-module structure on T'A. The direct sum splitting of T'A
corresponds to the splitting

R=]]al,
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and T'A{d) is a Q[c]-module where ¢ acts as multiplication by the function t4 defining A{(d).
Since the order of any pole is finite, T'A(d) is a torsion Q[c]-module. Notice that the definition
of the Thom isomorphism is arranged so that the composite

¢p - Q(ooD) = Q(00D) ® 0 — Q(coD) ® O(D) = Q(c0D)

is multiplication by t4.

Definition 8.4. If u : ¥ — Z is a function positive almost everywhere, we define

gA: " @V — TA = PTA®)
d

by specifying its dth component

qA(C" ® f)a = tz(d)f.
Lemma 8.5. The definition does determine an R-map gA 112 @ V — TA.

Proof: Since any function is regular at all but finitely many points, the map ¢A maps into
the sum.

Now, R-maps ¢ : 7 @ V — @D, T are determined by the idempotent pieces g, :
Qlc,c7']® V. — Ty, and conversely, any set of Q[c]-maps ¢ so that ¢4(c® ® f) is non-
zero for only finitely many d determines an R-map ¢. It is easy to see that the components
of gA (ie qa(c®* ® f) = qA(c*? ® f)4) have these properties, and that the function they
determine agrees with gA(c* ® f) wherever it is defined. O

(2) Functoriality: It is already clear that the construction is functorial in the pair (A, ¢.). To
see how the construction depends on the uniformizer one should include twisting by various
modules of differentials. This makes no difference to the construction when A and t are
fixed.

More precisely, the element ¢ ® f € t7 ® V A should really be thought of as (cdt)” @ f.
Thus the dth component might be thought of as c“’(d)dt?w(d) ® f, and thought of as a section
of Q7"

This means the dependence on t is visible:

gA((cdt)” @ f)a =4V,
It is then clear that if # : A — B is an isomorphism of elliptic curves there is an induced
map
0*: EB — FEA
given on the level of vertices by
0" ((cdt)” ® f) = (cdft)” @ 6" f.

(3) Cohomology: Now we can check that the resulting homology and cohomology of spheres
agrees with the cohomology of the corresponding divisors on the elliptic curve.

Consider the complex representation W with W' = 0 and the corresponding function
w(H) = dime(WH). We see from 3.3 and 3.5 (as in the proof of 4.2 that

EZE(SW) =ker(qgA: " @ VA — TA)
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and

—T

EA (S") =cok(qgA: " @V — TA)
and similarly with W replaced by —W. Since the kernel and cokernel are vector spaces over
k, it is no loss of generality to extend scalars to assume it is algebraically closed. This is

convenient because it is simpler to treat separate points of order n one at a time.
The following two lemmas complete the proof. O

Lemma 8.6. If W is a representation with W™ =0 then
A, (S") = H'(A4;0(D(W)))

and if W # 0,

—T

EA,(S™") =0.
Proof: By definition

gA(c" ® fla=15""F.
Since the function ¢, vanishes to exactly the first order on A(d), the condition that f lies
in the kernel is that ordp(f) > —w(d) for each point P of exact order d. Since D(W) =
Ypw(dp)(P) we have
ker(qA: " @W — TA) ={f e VA |div(f) + D(W) > 0}
as required.
Replacing W by —W, the second statement is immediate. O

Remark 8.7. The proof is local and therefore shows the kernel is actually the subsheaf
O(D(W)) of the constant sheaf V A.

The calculation of the odd cohomology is less elementary.
Proposition 8.8. If W is a representation with W' = 0 then

EA,(S™) = H'(4;0(=D(W))),
and if W # 0,
EA, (S") = 0.
Proof: We have to calculate cok(gA : ¢ ® VA — T A). The following proof that this is
H'(A; O(—D(W))) is that given in [14, Proposition I1.3].
We have already considered the kernel, and we have an exact sequence of sheaves
0— O(-D(W)) —VA— Q(-D(W)) — 0.
The exact sequence in cohomology ends
VA5 HOAQ(=DW)) — H'(4; 0(=D(W))) — 0.

so it remains to observe that cok(¢) may be identified with cok(¢gA~™).
However Q(—D(W)) is a skyscraper sheaf concentrated its space of sections is W/W (D),
where

W ={(zp)p | zp € VA, and almost all zp € k}
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is the space of adeles (for torsion points P) and
W(D) = {(zp) € W | ordp(xzp) + ordp(D) > 0}.
Thus cok(¢) = W/ (W (—=D(W)) + VA) = cok(gA™") as required. O

Remark 8.9. It is possible to give a more explicit proof of 8.8 as follows. First, one checks
any element (g1, 92,...) € @,TA(d) is congruent to one with go = g3 = -+ = 0. Now,
identify a subspace of the correct codimension in the image. Using divisors one sees the
cokernel must be at least this big. Finally, the cokernel is naturally dual to H°(A; O(D(W)),
and hence naturally isomorphic to H'(A; O(—D(W))) by Serre duality.

Remark 8.10. The insertion of the twists by differential forms was forced in order to obtain
naturality. However it has other benefits: the analogy with the residue is more visible, and
the correspondence between suspensions and line bundles emerges once again.

9. MULTIPLICATIVE PROPERTIES.

Theorem 9.1. If E is constructed from a 1-dimensional group scheme (ie if E = EG or
EA) then E is a commutative ring spectrum.

For the rest of this section we suppose E = (N — t7 ® V), and that there is a short
exact sequence

0—N-S eV -5Q—o.
It is natural to use the geometric terminology, and talk of V' as a space of sections (of an

imagined bundle), and N(c°) as the space of regular sections
First we note that E is flat.

Lemma 9.2. A spectrum E with monomorphic structure 3 map is flat.

Proof: Tensor product on A, is defined termwise. First, note that 7 ® V is exact for tensor
product with objects P with E7'P = 7 @ W for some W, so the tensor product is exact on
the vertex part.

For the nub, we use the fact that the category Ay is of flat dimension 1 by [6, 23.3.5],
together with the fact that N is a submodule of 7 ® V. O

It follows that tensor product with £ models the smash product.

Lemma 9.3. Suppose that V' has a commutative and associative product (so we may refer
to it as an algebra of sections).

If the product of two reqular sections is reqular then the associated object E admits a
commutative and associative product.

Proof: By hypothesis the product on 7 ® V' takes N ®z N to N, and therefore gives a map
EFEQFE —FE

in Ag. Associativity and commutativity are inherited from V. 0

Corollary 9.4. (i) If V is an affine algebra of functions the product of two regular sections
18 reqular.
(i) If V is an elliptic algebra of functions then the product of two reqular sections is reqular.
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Proof: Suppose s and ¢ are sections. We must show that if ¢(s) = 0 and ¢(t) = 0 then
q(st) = 0. This is clear since regularity is detected one point at at time and ord,(fg) =
ord,(f) + ord,(g). O

Now that we have a product structure we can tie up topological and geometric duality in
a satisfactory way.

Lemma 9.5. Spanier- Whitehead duality for spheres corresponds to Serre duality in the sense
that the Serre duality pairing

H'(A;O(-=D(W))) ® H'(A; 0(D(W))) — H'(4;0)

| I
(S0, S W ASEA]" @ [S°, S A EA]" [S°, S EA]T

18 induced by the algebraically obvious Spanier- Whithead pairing
SWANEANSYANEA~S WASYANEANEA — S ANEANEA — EA.

Proof: Both maps are induced by multiplication of functions and a residue map (see [14,
Chapter IIJ). O
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