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This document includes supplementary material to the paper. In Section 1, I finish the proof

of Theorem 1 in the paper, by describing in detail the equilibrium behavior of the uninformed

traders. In Section 2, I endogenize the decisions of the impatient traders in the model, and show

that these traders’ optimal behavior coincides with the behavior assumed in the paper. In Section 3,

I model explicitly the traders’ information acquisition decision, and analyze the welfare implications

of a reduction in the information acquisition cost. In Section 4, I define a numerical Monte Carlo

procedure which estimates the information function I from Definition 1 in the paper, and I verify

numerically the properties of I which are used in the paper. In Section 5, I introduce several

extensions of the benchmark model discussed in the paper. In Section 6, I provide proofs for the

various extensions of the benchmark model in the paper, and further discuss the robustness of the

main results. In Section 7, I examine stationary filtering, in which the public volatility is constant

over time.
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1 Optimal Strategies of Uninformed Patient Traders

In this section, I finish the proof of the part of Theorem 1 in the paper that describes the

optimal behavior of uninformed patient traders. For that, I first prove Lemma A3 in the

paper, which states that the continuation payoff of the uninformed natural buyer is:

(IA.1) UUBLO = ū+
S

2
−∆.

Proof of Lemma A3. I simplify notation and assume that the initial BLO is submitted

at t = 0. In Section II in the paper, I assume that the initial belief of an uninformed trader

with private valuation ū is such that after submitting a BLO at t = 0, his posterior belief

at t = 1 is the public density, ψ1 = N
(
µ1, V

2
)
. Formally, this is done by assuming that

before trading at t = 0, the uninformed trader believes v0 to be distributed as follows:1

(IA.2) v0 ∼ N
(
µ0 + γ∆, V 2 − σ2

I

)
.

By submitting his BLO at t = 0, he instantly affects the public mean according to µ1 =

µ0+γ∆. His belief about v0, however, stays the same, since he knows he is uninformed. The

asset value evolves according v1 = v0 + (v1 − v0), with the increment normally distributed

according to N (0, σ2
I ). Therefore, at t = 1 he believes v1 ∼ N (µ1, (V

2− σ2
I ) + σ2

I ), which is

the public density at t = 1.

As in Lemma A2 in the Appendix of the paper, denote by Q the set of all execution se-

quences Q =
(
O0 = BLO,O1, . . . ,OT−1,OT = SMO

)
for the initial BLO. At the execution

time T , the bid price is µT − S/2, therefore:

(IA.3) UUBLO = ū+
S

2

∑
Q∈Q

P0(Q) +
∑
Q∈Q

E0

(
vT − µT | Q

)
P0(Q),

where Et is the expectation operator conditional on It, the public information set just before

trading at t; and P0(Q) is the probability that the sequence Q will occur conditional on

I0. Denote by e(Q) = E0

(
vT − µT | Q

)
. The executing order at T is an SMO, therefore

e(Q) = E0 ET
(
vT − µT | SMOT

)
. Equation (A-4) in the Appendix of the paper implies

ET
(
wT | SMOT

)
= ET

(
wT
)

+ δSMO = ET
(vT−µT

V

)
− ∆

V . Thus, e(Q) = E0 ET
(
vT − µT

)
−∆.

But ET (vT ) = µT , therefore e(Q) = −∆.

1Equation (13) in the paper implies that V 2 − σ2
I > 0.
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To finish the proof, I show that
∑

Q∈Q P0(Q) = 1, which means that the initial BLO

is executed with probability 1. I use the theory of absorbing Markov chains, as described

in Chapter 11 of Grinstead and Snell (2003). I briefly indicate the proof. Consider the

following Markov chain with a countable number of states, where the state j ≥ 0 indicates

that the initial BLO is jth in the bid queue. The absorbing state j = 0 means that the

BLO is executed. Then, from each state j ≥ 1 the system moves to either j − 1 with

probability 1/4 (if SMO occurs), to j + 1 with probability 1/4 (if BLO occurs), or remains

in j with probability 1/2 (if either BMO or SLO occurs). One can then check that the

fundamental matrix M (corresponding to the non-absorbing states) has entry (i, j) given

by Mij = 4 min{i, j}, for i, j ≥ 1. The matrix of transition to the absorbing state is the

column matrix R, whose jth entry is either 1/4 if j = 1, or 0 if j > 1. Theorem 11.6 from

Grinstead and Snell (2003) shows that the probability of absorption (execution) starting

from state j is the jth entry in the column matrix B = MR. But B has all entries equal to

1. This completes the proof of (IA.1).

I finish the discussion by analyzing the payoff of the uninformed trader in state j ≥ 0,

when the BLO is jth in the bid queue. By using the same argument as above, it follows

that his payoff is affected only by the amount of adverse selection at the time T when his

order is executed. Thus, his payoff is the same regardless of j. This is not surprising, since

the uninformed trader has a zero waiting cost.

I now finish the part of the proof of Theorem 1 in the paper that deals with uninformed

patient traders.

Proof of Theorem 1. To simplify the description of the strategies, I use the one-stage de-

viation principle of subgame perfection (see Fudenberg and Tirole 1991, Section 4.2).2 This

principle implies that one need not define the strategy profile for all conceivable histories,

but only for the histories that arise from at most a finite number of (out-of-equilibrium)

deviations, assuming that all other players than the transgressor act according to their

strategies at the time of the deviation. Thus, this principle restricts the values that certain

state variables can take.

Remark IA.1. By the one-stage deviation principle of subgame perfection, I assume that

2The principle states that in order to verify that an equilibrium is subgame perfect, it suffices to check
whether there is any history ht where some player i can gain by deviating from the action prescribed by his
strategy at ht and conforming to it thereafter—assuming all other players follow their strategies.
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at all times (integer or not) the public volatility is equal to the parameter V .3 At all integer

times t = 0, 1, . . ., the ask price is µt + S/2 and the bid price is µt − S/2.4

I now describe the complete strategy profile S, this time including the reaction to out-

of-equilibrium behavior:

(a) The uninformed buyer arriving at t submits a BLO at the price (µt + γ∆)− S/2.

(b) The uninformed buyer arriving at t submits an SLO at the price (µt − γ∆) + S/2.

(c) The informed trader who observes an asset value vt when she arrives at t submits an

order O ∈ {BMO,BLO,SLO, SMO} whenever her signal vt−µt
V lies, respectively, in

the interval {(α,∞), (0, α), (−α, 0), (−∞,−α)}.

(d) After the initial order submission, all traders behave as described in (e) and (f).

(e) If a BMO is submitted at t, then an instant later the public mean is updated to µt+∆,

the ask price to µt + ∆ + S/2, and the bid price to µt + ∆− S/2, and all other limit

traders shift their orders by ∆ such that the relative ranks in the ask and bid queues

are preserved. After that, no other trader moves until t+ 1.

The reaction to an SMO at t is symmetric to the reaction to a BMO.

(f) If a BLO is submitted at t, then an instant later the public mean is updated to µt+γ∆,

the ask price to µt + γ∆ + S/2, and the bid price to µt + γ∆ − S/2, and all other

limit traders shift their orders by γ∆ such that the relative ranks in the ask and bid

queues are preserved. After that, no other trader moves until t+ 1.

The reaction to an SLO at t is symmetric to the reaction to a BLO.

(g) (Out-of-equilibrium behavior) If a trader submits a limit order of different type than

specified by his equilibrium strategy, then immediately he switches to a limit order of

the type specified in (a), (b) or (c). Such a limit order switch does not reveal any new

information about the transgressor’s type.

(h) (Out-of-equilibrium behavior) If a limit order trader on the bid side deviates from the

behavior above and instead of b∗ submits an order at b = b∗ + d, then

3At t = 0 this is true by construction. Later, this is true both in equilibrium (see part (d) of Lemma A1
in the paper), and out-of-equilibrium, since the public density after any deviation remains equal to V (see
S(g) and S(h)).

4Indeed, even after deviations that modify the bid–ask spread, the instant reactions of the other traders
would restore the bid and ask prices at the correct values (see S(g)).
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• If d < 0, the other traders do not infer any new information about the transgres-

sor’s type, and no state variables change, unless the transgressor is the first in

the bid queue, in which case another limit buyer modifies his BLO at b.

• If d > 0, an instant later the other traders believe the transgressor is informed

with probability 1. As a result, the transgressor’s private information is revealed,

and the public mean is updated to µt+d′, with d′ > d, while the public volatility

remains V .5 The transgressor remains at b, and the rest of the book shifts up

by either d or d′, such that the relative ranks in the bid and ask queues are the

same as before the deviation.

The case when the transgressor is on the ask side is symmetric.

The belief system is described by the following rules: At t = 0, the uninformed investors

perceive the asset value distributed according to N (0, V 2). Subsequently, the uninformed

investors’ belief about the asset value (the public density) is updated using the approximate

Bayes’ rule described in Section II in the paper. At the time of arrival to the market, the

informed investor observes the asset value and can compute the average payoff of a limit

order based on updating her belief according to the exact Bayes’ rule. After the arrival,

however, the informed trader cannot update her belief, and becomes essentially uninformed.

In the limit order book at t = 0, all traders are uninformed with probability 1. At t ≥ 0, each

new trader is believed to be informed with probability ρ by the other traders. Subsequently,

traders’ beliefs about the other investors’ types are updated according to the Bayes’ rule.

Uninformed Traders

I analyze only the strategy of an uninformed buyer, since the proof for an uninformed

seller is symmetric. I therefore show that the strategy of an uninformed buyer described in

S(a), S(e)–S(h) is optimal. Consider a (patient) uninformed buyer, with private valuation

ū > S/2. If he arrives at t, I first analyze his choice among one of the following options:

(i) BMO, (ii) SMO, (iii) NO (no order), (iv) BLO at b∗ = (µt + γ∆)−S/2, and later follow

5I also require that d′ is a one-to-one function of d. The exact value of d′ > d is not important, but
because the transgressor gets price priority at b = b∗ + d, some limit orders need to be shifted by more than
d to preserve the relative ranks in the bid and ask queue. An out-of-equilibrium belief can be arbitrary,
but it should be about the transgressor’s type rather than directly about the resulting public belief on
v. Thus, the existing investors regard the transgressor as informed with probability 1, with information
vt ∼ N (µt + d′, V 2 − σ2

I ). (Note that equation (13) in the paper implies V > σI .) Since d is observed by
the public and d′ is a one-to-one function of d, the transgressor’s private information is fully revealed to the
public. Thus, the public at t also has the belief N (µt + d′, V 2 − σ2

I ). Because the asset value has a normal
increment with density N (0, σ2

I ), the public density at t+ 1 becomes N (µt + d′, V 2).
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S, or (v) SLO at a∗ = (µ − γ∆) + S/2, and later follow S. I can rule out option (v),

since it is essentially equivalent to option (iv): S(g) requires that the uninformed buyer

immediately reverses his SLO to a BLO, while the other traders do not infer any new

information regarding the transgressor’s type.

I first show that, as specified by S, the option (iv) dominates all the other options when

the limit prices in (iv) have the equilibrium values, b∗ and a∗, respectively. Then, I show

that option (iv) is less profitable when the limit prices have different values. Moreover, I

show that option (v) is less profitable when the SLO is switched to BLO after a lag—the

proof presented below only works for an infinite lag (the SLO is never switched to BLO),

but the argument is similar for a finite lag. In conclusion, the uninformed buyer always

submits a BLO at the equilibrium price, which proves that S(a) is optimal. Moreover, I

rule out subsequent one-stage deviations after (iv) or (v) are chosen, which proves that S(e)

and S(f) are optimal for the uninformed trader (as well as S(g)). Finally, if another trader

later deviates by submitting a limit order at a non-equilibrium price, then the uninformed

buyer optimally reacts as specified in S(h).

Let UUO be the expected payoff from submitting O ∈ {BMO,BLO,NO, SLO,SMO} and

later following S, except that in the case of OUSLO, I assume that the SLO is not switched

to BLO. As explained in Remark IA.1, I assume that the current limit order book is such

that the ask price is at = µt + S/2, and the bid price is bt = µt − S/2. I show that

UUBLO > UUBMO > UUNO > UUSLO > UUSMO. Recall that an uninformed buyer who arrives at

t believes the asset value vt to be distributed according to N
(
µ0 + γ∆, V 2 − σ2

I

)
(see the

proof of Lemma A3). Then, Lemma A3 shows that UUBLO = S/2−∆ + ū, and also rules out

SLO, since this has a lower payoff than BLO. One also computes UUBMO = Et(vt)− at + ū =

(µt+γ∆)−(µt+S/2)+ū = ū+γ∆−S/2, UUSMO = bt−Et(vt)−ū = (µt−S/2)−(µt+γ∆)−ū =

−S/2− γ∆− ū, and UUNO = 0. Collecting these formulas, one obtains:

(IA.4) UUBMO = ū+ γ∆− S

2
, UUSMO = −ū− γ∆− S

2
, UUNO = 0.

By inspection, SMO and NO can be ruled out, because BMO clearly yields a larger payoff

(ū > S/2). To rule out BMO, note that condition (A-17) implies α − I(ρ, α) > ρ
β (1 + γ),

which if one multiplies by V = βρ−1∆ implies s > ∆(1 + γ), and hence UUBMO < UUBLO.

I now show that the continuation payoff for the uninformed buyer from submitting or

maintaining his BLO at the equilibrium price b∗ is at last as large as the payoff obtained
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by choosing BLO at either b > b∗ or b < b∗.

(D1) I first rule out BLO at b > b∗. According to S(h), overshooting a bid leads to a

shift in the public mean by a positive quantity. But the trader knows that he is in

fact uninformed and that the correct public mean is lower. This amounts to getting a

negative shift in the mean of his belief about the fundamental value. Condition (A-17)

then implies that a negative shift in mean for the trader’s density brings a decrease

in expected payoff.

(D2) I also rule out BLO at b < b∗. According to S(h), undershooting a bid at the bid

price does not change the public mean, but if the transgressor is the first in the bid

queue, it prompts another trader in the bid queue to immediately modify his BLO at

b∗. Then, the transgressor loses his first rank in the bid queue, which according to

Lemma A3 does not change his payoff.

Next, I prove the optimality of S(h), which describes the response of the uninformed

buyer to another trader who deviates from the equilibrium by choosing a limit order at

b = b∗+ d instead of b∗. Note that according to S(h), the out-of-equilibrium belief specifies

that the public mean moves up by a quantity d′ > d. Then, the uninformed buyer finds

himself in the same situation as before, when he had to decide whether to submit his bid

at the equilibrium price or not. A similar argument as in the cases (D1) and (D2) above

shows that it is indeed optimal for the uninformed buyer to also shift his bid by the amount

specified by S(h).

Informed Traders

The proof is in the Appendix of the paper.

8



2 Optimal Strategies of Impatient Traders

2.1 Model Setup

Recall that traders in the model described in Section II in the paper have a type defined by

two preference parameters: the private valuation u ∈ {−ū, 0, ū}, and the waiting coefficient

r ∈ {0, r̄}. I introduce the following notation: PNB for patient natural buyer (u = ū and

r = 0), PNS for patient natural seller (u = −ū and r = 0), INB for impatient natural buyer

(u = ū and r = r̄), INS for impatient natural seller (u = −ū and r = r̄), PS for patient

speculator (u = 0 and r = 0), and IS for impatient speculator (u = 0 and r = r̄).

In the model described in Section II in the paper, it is assumed that the impatient

traders make the following automatic decisions:

• An INB always submits a BMO (buy market order).

• An INS always submits an SMO (sell market order).

• An IS does not submit any order, and exits the model.

In this section, I endogenize these decisions, taking as given the information acquisition

decision described in Section 3 in this Internet Appendix. I thus assume that each PS

acquires information, in the sense of observing the asset value at the time of arrival, while

each IS remains uninformed.

I describe briefly the trading game, which is the same as in Section II in the paper. At

each integer time t = 1, 2, . . . (corresponding to clock times 1
λ ,

2
λ , . . .) the asset value changes

according to vt = vt−1 +σIεt, where σI = σv√
λ

is the inter-arrival volatility, and εt ∼ N (0, 1).

At each integer time t ≥ 0, a player called “Nature” draws a new trader. The trader’s type

is as follows: (i) with probability ρ, the trader is a speculator (u = 0), in which case with

probability 1 she is a PS and becomes informed, or with probability 0 is an IS and remains

uninformed,6 or (ii) with probability 1− ρ the trader is a natural buyer or seller, in which

case with equal probability the trader is a PNB, PNS, INB, or INS.

The only difference is that the impatient traders now can submit any type of orders.

Thus, a trader that arrives to the market at t either submits no order (NO), or chooses an

order of type {BMO,BLO, SLO, SMO} for 1 unit of the asset. In the case of no order, the

trader exits the model forever, and Nature immediately draws another trader from the pool.

6Even though the probability of an impatient speculator arriving is 0, I need to specify her strategy to
show that her optimal behavior is to submit no order and exit the model.
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At non-integer times the game is played with the existing traders in the limit order book.

The game is set in continuous time, based on the framework of Bergin and MacLeod (1993).

Thus, the game allows for instantaneous responses, by completing the space of strategies

with respect to the response time.

2.2 Equilibrium with Impatient Traders

In this section, I show that the stationary equilibrium of the benchmark model in the paper

extends to the different types of impatient traders in the way assumed in Section II in the

paper.

As in Theorem 1 in the paper, I show that there exists a stationary MPE of the model if

the conditions stated in Result 1 are satisfied. The conditions refer to the same information

function I from Definition 1 in the paper. To prove Theorem IA.1 below, there is no

new condition on I, but I introduce a condition on the waiting coefficient of the impatient

traders, r̄. Recall that the conditions of Result 1 are verified numerically in Section 4.

Theorem IA.1. Suppose the information function I satisfies analytically the conditions

from Result 1 in the paper, and the investor preference parameters satisfy ū ≥ S
2 , ω ≥ γ∆,

and r̄ > λS. Then, there exists a stationary Markov perfect equilibrium (MPE) of the game.

In equilibrium, the INB submits a buy market order, the INS a sell market order, and the

IS submits no order and exits the model.

2.3 Proofs of Results

As in the proof of Theorem 1, I define a game assessment for a perfect Bayesian equilibrium

(PBE), which is the collection of a strategy profile and a belief system which are compatible

withe each other. To show that the PBE is in fact an MPE, note that the strategy profile

(defined below) is Markov, meaning that the strategies depend only on the current value of

the following state variables:

• Public variables: the public density, given by the public mean (µt) and the public

volatility (σt); and the limit order book, given by the bid price (bt), the ask price (at),

and the bid and ask queues.7

• Private variable for informed traders at the time of arrival: the asset value (vt).

7Because in the model traders can submit orders only for 1 unit, the limit prices for orders other than
the first ones in the bid and ask queues are not relevant.
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Because I am interested in a stationary equilibrium, I assume that an instant before t = 0

the initial public density is N (0, V 2). The ask price is S/2, the bid price is −S/2, where S is

the parameter from (7) in the paper, while the initial limit order book has countably many

limit orders on each side. As in Remark IA.1 from Section 1 in this Internet Appendix,

I use the one-stage deviation principle of subgame perfection to assume that at all times

(integer or not) the public volatility is equal to the parameter V . Also, at all integer times

t = 0, 1, . . ., the ask price is µt + S/2 and the bid price is µt − S/2.

To define the strategy profile S, I first describe the action of a new trader who arrives

at t. Then, I describe the reaction of the other traders remaining in the limit order book

to the new arrival at t. Finally, I describe the reaction of the existing traders to any out-

of-equilibrium deviation that might occur from either the new trader or an existing trader.

As discussed before, I take the results of Section 3 in this Internet Appendix as given, and

assume that only the PS acquires information, while all the other types of traders remain

uninformed.

The Game Assessment

Recall that a game assessment is the collection of a strategy profile and a belief system which

are compatible withe each other. The strategy profile S is given by the set of rules S(a)–S(h)

in Section 1, plus the following rules:

(i) The INB arriving at t submits a BMO and exits the model.

(j) The INS arriving at t submits an SMO and exits the model.

(k) The IS arriving at t submits NO (no order) and exits the model.

The belief system is described by the following rules: At t = 0, the uninformed investors

perceive the asset value distributed according to N (0, V 2). Subsequently, the uninformed

investors’ belief about the asset value (the public density) is updated using the approximate

Bayes’ rule described in Section II in the paper. At the time of arrival to the market, the

informed investor observes the asset value and can compute the average payoff of a limit

order based on updating her belief according to the exact Bayes’ rule. After the arrival,

however, the informed trader cannot update her belief, and becomes essentially uninformed.

In the limit order book at t = 0, all traders on the bid side are PNBs, and all traders on

the ask side are PNSs. At t ≥ 0, each new trader is believed to be of the following type:
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PS with probability ρ, IS with probability 0, PNB with probability (1 − ρ)/4, PNS with

probability (1 − ρ)/4, INB with probability (1 − ρ)/4, or INS with probability (1 − ρ)/4.

Subsequently, traders’ beliefs about the other investors’ types are updated according to the

Bayes’ rule.

Because the strategy profile S defined above depends only on the current value of the

state variables, the strategies are indeed Markov. As in Theorem 1 in the paper, I now

show that the strategy of each type of impatient investor is a best response to the other

investors’ strategies.

Impatient Natural Buyers and Sellers

I show that conditional on the INB (impatient natural buyer) not acquiring information,

his strategy specified in S(i) and S(g) is optimal. The proof is symmetric for the INS

(impatient natural seller).

Consider an INB who arrives at t and has waiting cost r̄ > λS and private valuation

ū > S/2. To prove the optimality of S for the INB, I first show that at any time the INB

prefers a market order to a limit order in the same direction. Second, I show that among

BMO, BLO and NO, the INB prefers the BMO.

Let U INB
BMO be the expected payoff from submitting a BMO at t, and let U INB

BLO be the

expected payoff from a one-stage deviation by submitting a BLO at t and switching to

BMO at t+ 1. (The same argument works for a shorter time lag between BLO and BMO,

but it is simpler for a lag of 1.) From Corollary 3 in the paper, at t + 1 all orders in

{BMO,BLO, SLO,SMO} have equal probability 1/4. However, only the SMO leads to

the execution of the BLO, which produces an instant expected payoff of S
2 − ∆ + ū (see

Lemma A3 in the Appendix of the paper). All the other types of order (BMO, BLO, and

SLO) at t+ 1 imply that the BLO of the INB is not executed, and hence by switching to a

BMO at t+ 1 he gets a payoff of U INB
BMO = ū− S

2 . Moreover, the INB incurs a waiting cost

equal to r̄
λ , because between t and t+ 1 he waits a clock time equal to 1

λ . One thus obtains:

(IA.5) U INB
BMO = ū− S

2
, U INB

BLO =

(
3

4
U INB

BMO +
1

4

(S
2
−∆ + ū

))
− r̄

λ
.

But U INB
BMO > U INB

BLO is equivalent to r̄
λ >

1
4(s−∆), which is true since r̄ > λS.

By the same argument, it also follows that the INB prefers BMO to SLO (the argument

is stronger, since it leads to a loss of the private valuation ū).
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One now computes:

(IA.6) U INB
BMO = ū− S

2
, U INB

SMO = −ū− S

2
, U INB

NO = 0.

Since ū > S/2, it follows that the INB prefers BMO to SMO and NO.

Impatient Speculators

I show that conditional on the IS (impatient speculator) not acquiring information, his

strategy specified in S(k), and S(g) is optimal.

The analysis for IS is similar to the analysis for the INB, with the only difference that

the private valuation of the IS is 0. Recall that for the INB the only positive payoff comes

from a BMO, and it equals ū− S/2. For the IS, the payoff from either a BMO or an SMO

equals −S/2, which is negative. This shows that, as specified by S, the IS submits NO (no

order), which has zero payoff, and exits the model.

The proof of Theorem IA.1 is now complete.
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3 Information Acquisition and Welfare

In this section, I model explicitly the information acquisition decision, and discuss its welfare

implications. Throughout this section, I follow the principle that the number of natural

buyers and sellers is fixed, but the number of speculators is determined by the condition

that their expected payoff minus the information acquisition costs must be 0. Otherwise,

more informed speculators would arrive to the market, until they drive down their expected

profit to 0.

The zero profit principle implies that the total trading activity (λ) is no longer an exoge-

nous parameter, as assumed in Section II in the paper. Instead, the total trading activity

depends on the number of informed traders, which in turn depends on the information ac-

quisition cost. Thus, to study the effect of the information cost on the equilibrium, the cost

of acquiring information needs to be treated as exogenous.

In presenting the model, however, I treat the number of informed traders as exogenous

(in Sections 3.1 and 3.2), and I wait until Section 3.3 to endogenize it, when I discuss the

effect of an exogenous change in the information cost on aggregate trader welfare.

3.1 Model Setup

Recall that each trader has a type (u, r), which consists of a private valuation u for the asset

and a waiting coefficient r. The private valuation u can take 3 possible values, {−ū, 0, ū},

where ū > 0. A trader is a “natural buyer” if u = ū, a “natural seller” if u = −ū, or

“speculator” if u = 0. Traders incur a waiting cost of the form r × τ , where τ is the

expected waiting time, and r is a constant coefficient. The waiting coefficient r can take

two possible values, {0, r̄}, where r̄ > 0. A trader is “patient” if r = 0, or “impatient” if

r = r̄.

I now discuss in more detail the arrival process of the various types of traders, and show

that the process that results from explicitly modeling the information acquisition decision

is identical to the process exogenously assumed in Section II in the paper. At each time

t = 1, 2, . . ., a trader is drawn randomly from the pool of traders. The pool of traders is

divided into two main subpools: (i) a mass Nū of traders with u = ±ū, further divided

equally into natural buyers (u = ū) and natural sellers (u = −ū), and (ii) a mass N0 of

traders with u = 0 (speculators). Furthermore, each subpool of traders is divided equally

into patient and impatient traders. If a trader decides to stay out of the market—in which
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case exits the model forever,—another trader is immediately drawn from the same subpool

and replaces him.8 In Theorem IA.2 below, I show that impatient speculators stay out of

the market. Therefore, I assume directly that in the speculator pool there are only patient

speculators.

Consider the following exogenous parameters: the mass of speculators N0, the mass of

natural buyers and sellers Nū, and the fundamental volatility of the asset σv. Define:

(IA.7) ρ =
N0

N0 +Nū
, λ = ` (N0 +Nū),

where ` > 0 is an exogenous quantity called the “liquidity parameter.” As in Section II

in the paper, I call ρ the “informed share,” and λ the “total trading activity.” Given the

constants α, β, γ and the information function I from Section III.B in the paper, define:

∆ =
√

2
1+γ2

σv√
λ
, V = βρ−1∆, S =

(
α− I(ρ, α)

)
V.(IA.8)

where φ(·) is the standard normal density.

I now describe information acquisition. I assume that when a trader arrives to the

market, he must decide whether to pay a cost C to acquire information. If he pays C, he

observes the asset value only once, at the time of entry; otherwise, he remains uninformed.9

The cost C is increasing in the absolute value of his private valuation u. This reflects the

fact that natural buyers or sellers have different motivation for trading, such as hedging or

liquidity reasons, therefore it is plausible that they have a higher information cost than the

speculators.10 For simplicity, I assume a cost function of the form linear in the absolute

valuation:

(IA.9) C = C(u) = C0 + |u|, with C0 = 2

(
φ(α) +

∫ α

0
I(ρ, w)φ(w) dw

)
V.

As shown in Theorem IA.2 below, the formula for the base cost C0 implies a zero profit

condition for the (patient) speculators.

8This assumption is made for tractability, and it implies that time between trades is not informative.
9Intuitively, it is not optimal to acquire information after the initial decision has been made. This is

because information is expensive, in the sense that the cost of information is such that the expected payoff
of an informed trader equals the information cost (see Corollary IA.1 below). Thus, for simplicity I assume
that the decision can be made only once, at the beginning.

10If C is the same for all types of traders, all the results in Theorem IA.2 go through, except that the
impatient natural buyers and sellers might then prefer to acquire information.
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3.2 Equilibrium with Information Acquisition

In this section, I show that there exists a stationary MPE of the model with information

acquisition. In equilibrium, I show that the exogenous assumptions made in Section II in

the paper are true when traders decide whether to acquire information. In particular, the

natural buyers and sellers (patient or impatient) remain uninformed, the patient speculators

acquire information, while the impatient speculators do not acquire information. Given

these results, the equilibrium behavior of all types of traders coincides with the equilibrium

behavior described in Section III in the paper.

For simplicity, consider a commitment parameter equal to ω = γ∆.11 As in Section III

in the paper, the existence of an MPE depends on certain conditions that the information

function I must satisfy. To this end, however, I define a slightly more general information

function.

Definition IA.1. In the context of Definition 1 in the paper, denote by I(ρ, g1, j) and

J(ρ, g1, j) the two functions that satisfy the same formulas as the functions I and J , respec-

tively, except that the density g1 is now considered arbitrary.

Recall that the functions I(ρ, w, j) and J(ρ, w, j) are defined in the paper by starting

from a particular density: g1 = N
(
w − γ ρβ , ρ

2 1+γ2

2β2

)
. Thus, in this section, the new notation

I(ρ, g1, j) is used to indicate starting from an arbitrary density, while the old notation

I(ρ, w, j) is used to indicate starting from the density N
(
w − γ ρβ , ρ

2 1+γ2

2β2

)
. As in the

paper, when j = 1, the argument j can be omitted.

To state the conditions for an MPE, consider the conditions from Result 1 in the paper:

I(ρ, w), w − I(ρ, w), and I(ρ, w)− I(ρ,−w) are strictly increasing in w,

S > ∆(1 + γ),
S

2
+ 2I(ρ, 0)V + γ∆ > 0,

I = I(ρ, w, j) decreases in j for all w > 0, and

J(ρ, w, j) = 1 for all w and j ≥ 1.

(IA.10)

11Note that in order to prove Theorem 1 in the paper, the commitment parameter must be above a
threshold: ω ≥ γ∆. In this section, for simplicity the parameter is set equal to the threshold: ω = γ∆.
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I introduce the following additional conditions:

I(ρ, w) + I(ρ,−w) is strictly decreasing in w whenever w > 0,(IA.11)

b

2
+ ω̂ + I

(
ρ,−

(
b
2 − ω̂

))
> 0,(IA.12)

Ŝ

2
+
I(ρ, α) + I(ρ,−α)

2
+ ω̂ > 0 whenever D(α) > Ŝ,(IA.13)

ρ

β
+
Ŝ

4
− b

2
− Φ(−a∗)b−

(
φ(α)− φ(a∗)

)
+ F1 −D1 < 0,(IA.14)

2f
(
Ŝ
2 − ω̂

)
− ω̂ − Ĉ0 < 0, where f(x) = φ(x)− xΦ(−x),(IA.15)

Ŝ

2
+ I(ρ, g1, 1) < 0, with g1 = N

(
−γ∆

V
,
V 2 + σ2

I

V 2

)
,(IA.16)

F : (0, 1)→ (0,∞) is one-to-one and strictly decreasing in ρ,(IA.17)

where I define:

A(ρ, w) = w − I(ρ, w), B(ρ, w) = w − I(ρ,−w), D(ρ, w) = I(ρ, w)− I(ρ,−w),

F (ρ) =
2β

ρ

(
φ(α) +

∫ α

0
I(ρ, w)φ(w) dw

)
, ω̂ =

ω

V
=

γρ

β
, Ŝ = α− I(ρ, α),

Ĉ0 = 2

(
φ(α) +

∫ α

0
I(ρ, w)φ(w) dw

)
, b = max

(
B(α), 2Ŝ

)
, a∗ = B−1(b),

F1 =

∫ a∗

α
I(ρ,−w)φ(w) dw, D1 =

∫ α

0
D(w)φ(w) dw.

(IA.18)

The new conditions are verified numerically in Section 4 in this Internet Appendix.

Result IA.1. The conditions (IA.11)–(IA.17) are satisfied for all ρ ∈ (0, 1).

I now state the main result of this section.

Theorem IA.2. If the information function I from Definition IA.1 satisfies analytically the

conditions (IA.10)–(IA.17), and the investor preference parameters satisfy ū ≥ S
2 , ω = γ∆,

and r̄ > λS, then there exists a stationary MPE of the game. In equilibrium, the natural

buyers and sellers (patient or impatient) remain uninformed, the patient speculators acquire

information, while the impatient speculators do not acquire information.

An important property of the equilibrium is that for an informed trader arriving at t,

her continuation payoff after acquiring information, but before observing the asset value,

is equal to the information acquisition cost C0 from equation (IA.9). Equivalently, the
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informed trader’s ex-ante expected utility is 0. This is not surprising, because C0 was chosen

precisely so that the zero profit condition for the informed trader holds in equilibrium.

Corollary IA.1. In equilibrium, the informed trader has zero ex-ante expected utility.

Another property is that the information cost C0 is decreasing in the information ρ, or

equivalently, since ρ = N0
N0+Nū

, the information cost is decreasing in the mass of speculators

N0. I state this as a numerical result, and I verify it later, in Section 4 in this Internet

Appendix.

Result IA.2. The function F (ρ) satisfies the following approximation:

(IA.19) F (ρ) ≈ β2

(
1

ρ
− 1

)
.

Moreover, the function:

(IA.20) H(ρ) = F (ρ)
√

1− ρ : (0, 1) → (0,∞)

is one-to-one and strictly decreasing in ρ.

Intuitively, if there are more informed traders (N0 is larger), the informed share ρ is

larger, and the information cost C0 is smaller. Alternatively, if I consider an exogenous

decrease in the cost of information (C0 decreases), then there is an increase in the arrival

rate of informed traders, as well as an increase in the informed share ρ. In the next section,

I discuss the effects of such an exogenous change in the information cost on trader welfare.

3.3 Trader Welfare

In this section, I study the effect on aggregate trader welfare of an exogenous change in

the cost of information C0. As mentioned at the beginning of Section 3.1, I follow the

principle that the number of natural buyers and sellers is fixed (Nū), but the number of

speculators (N0) is determined by the condition that their ex-ante payoff from trading on

their information is equal to the information acquisition cost (C0).

Thus, in this section I treat as exogenous the number of natural buyers and sellers

(Nū, the information acquisition cost (C0), and the fundamental volatility of the asset (σv).

From Result IA.2, it follows that the function H(ρ) = F (ρ)
√

1− ρ is one-to-one and strictly

decreasing in ρ. Thus, numerically the inverse function H−1 : (0,∞)→ (0, 1) exists and is
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strictly decreasing in its argument. From Result 2, S
∆ = α−I(ρ,α)

ρ β is strictly decreasing in

ρ.

Proposition IA.1. If the inverse function H−1 : (0,∞) → (0, 1) exists and is strictly

decreasing, and α−I(ρ,α)
ρ β is strictly decreasing in ρ, then:

ρ = H−1

(
C0

m

)
, with m =

√
2σ2

v

`(1 + γ2)Nū
,

∆ = m
√

1− ρ, λ =
`Nū

1− ρ
, N0 = Nū

ρ

1− ρ
, N0 +Nū =

Nū

1− ρ
,

V =
βm
√

1− ρ
ρ

, S =
α− I(ρ, α)

ρ
β m

√
1− ρ.

(IA.21)

Also, the informed share ρ is strictly decreasing in the information cost C0. The variables

∆, V and S are strictly decreasing in ρ (and increasing in C0), while λ and N0 are strictly

increasing in ρ (and decreasing in C0).

Thus, an exogenous decrease in the cost of acquiring information C0 increases the in-

formed share ρ and the total trading activity λ, which induces a decrease in public volatility

V , and bid–ask spread S.

The surprising result is that the price impact coefficient ∆ decreases as well. Recall that

in equilibrium in the benchmark model, price impact does not change when the informed

share decreases (see Proposition 1). But this is because in the benchmark model the total

trading activity λ is constant. In the current setup, the trading activity increases when

there is a decrease in the information cost, and this increase in liquidity causes a decrease

in adverse selection (formally, this follows from the fact that ∆ is proportional to σI = σv√
λ

).

I now discuss welfare implications of lowering the information cost C0, or equivalently

of raising the informed share ρ. I define the measure of “aggregate trader welfare” W to

be equal to the total mass or traders (N0 +Nū) multiplied by the average trader expected

utility (Ū):

(IA.22) W = (N0 +Nū) Ū

To compute W , it is necessary to compute the average trader expected utility Ū . The

next result describes the equilibrium expected utility of the different types of traders. In

equilibrium, the natural buyers and sellers remain uninformed, and by symmetry their

expected utility is the same. Thus, let UUP be the expected utility of the uninformed
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patient traders, and UUI the expected utility of the uninformed impatient traders. Let also

UI be the expected utility of the informed traders (who are the patient speculators). The

next result computes all trader expected utilities, as well as the aggregate welfare.

Proposition IA.2. The expected utilities of the different types of traders are:

(IA.23) UI = 0, UUP =
S

2
−∆ + ū, UUI = −S

2
+ ū.

The average trader expected utility is:

(IA.24) Ū = (1− ρ)ū− 1− ρ
2

∆ = (1− ρ)ū−

√
σ2
v(1− ρ)3

2`(1 + γ2)Nū
.

The aggregate trader welfare is:

(IA.25) W = Nūū−
Nū

2
∆ = Nūū−

√
σ2
vNū(1− ρ)

2`(1 + γ2)
,

and is strictly increasing in the informed share ρ.

Equation (IA.25) shows that an exogenous decrease in the information cost C0 (or

equivalently an increase in the informed share ρ) leads to an increase in the aggregate

trader welfare W . This is partially due to the fact that a decrease in information costs

increases the total number of informed traders. Indeed, Proposition IA.1 implies that the

number of informed traders is N0 = Nū ρ/(1− ρ), while the number Nū of natural buyers

and sellers is considered fixed. But the average trader welfare Ū usually decreases when the

informed share increases.12

Therefore, to understand better why welfare is increasing in the informed share, I now

analyze the disaggregated welfare numbers. First, note that the informed traders always

break even (Corollary IA.1), and hence their expected utility does not change. The unin-

formed patient traders submit limit orders in equilibrium, and thus benefit from providing

liquidity (they gain the half-spread S/2), but lose from adverse selection to the informed

12Whether Ū is increasing or decreasing in ρ depends on the value of the parameter z = σv
ū

√
1

2`(1+γ2)Nū
.

Indeed, using the equation Ū
ū

= (1−ρ)−z(1−ρ)3/2, simple calculus shows that there are two cases, depending
on the value of z. If z < 2/3, Ū is decreasing in ρ everywhere. If z > 2/3, Ū has a reverse U-shape, and
attains its maximum in (0, 1) at a point ρ∗ which is increasing in the parameter z (and approaches 1 as z
becomes large). Note that z is small when (i) the liquidity parameter ` is large, (ii) the number of natural
buyers and sellers Nū is large, (iii) the natural buyer’s private valuation u is large, or (iv) the fundamental
volatility σv is small. Hence, intuitively, the case when z is small can be thought as the case when the market
is naturally more liquid.
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traders (they lose the price impact coefficient ∆). Since both S and ∆ are decreasing in

the informed share (Proposition IA.1), an increase in ρ has an ambiguous on the welfare

of uninformed patient traders. Numerically, one can check that UUP has a U-shape with

respect to the informed share ρ. When ρ is small, an increase in ρ lowers the bid–ask spread

more than it lowers the adverse selection, and hence the utility UUP decreases. When ρ is

large, an increase in ρ strongly lowers the adverse selection (the latter approaches 0 as ρ

approaches 1), and hence the utility UUP increases.

The uninformed impatient traders submit market orders in equilibrium, and thus lose

from taking liquidity (they lose the half-spread S/2). Since S is decreasing in the informed

share (Proposition IA.1), an increase in ρ has the unambiguous effect to increase the welfare

of the uninformed impatient traders.

If one aggregates the welfare of the uninformed traders (patient and impatient), the

effect of the bid–ask spread cancels out, as the patient gain half the bid–ask spread, while

the impatient lose half the bid–ask spread. In the aggregate, the uninformed traders lose

from the adverse selection coefficient ∆. And when ρ is large, the adverse selection is

small, which unambiguously increases the welfare of the uninformed traders. Since the

informed traders break even (have zero aggregate welfare), the previous discussion about

the uninformed trader welfare translates to the aggregate trader welfare, and therefore an

increase in the informed share leads to an increase in the aggregate trader welfare.

In conclusion, an exogenous decrease in information costs always leads to an increase

in aggregate trader welfare, for two reasons: (i) there is an increase in the total number of

traders, as more informed traders enter the market when the information cost is low, and

(ii) the uninformed traders benefit from a decrease in adverse selection due to the increase

in liquidity (the increase in trading activity from the informed traders).

3.4 Proofs of Results

Proof of Theorem IA.2. Conditional on the information acquisition decision and on the

behavior of the impatient traders, the existence of an MPE is proved in Theorem 1 in the

paper, and the behavior of impatient traders is proved in Theorem IA.1 (see Section 2 in

this Internet Appendix).

Because the traders have now the option of acquiring information, I extend the game

assessment from Section 2.3 in this Internet Appendix, and I prove that the corresponding

strategies must be optimal. Thus, I must show that S(l) is correct, which implies that the
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patient speculators acquire information, while all other types of traders remain uninformed.

Also, I must show that the out-of-equilibrium behavior described in S(m)–S(o) is optimal.

The Game Assessment

The strategy profile S is given by the set of rules S(a)–S(h) in Section 1, S(i)–S(k) in

Section 2, plus the following rules:

(l) The PS acquires information, while all the other types of traders (PNB, PNS, INB,

INS, IS) remain uninformed.

(m) (Out-of-equilibrium behavior) If the PNB acquires information, then he subsequently

pursues the following strategy. If a solution exists, denote by a∗ be the solution of

a∗−I(ρ,−a∗) = s+2ū
V , and by a0 the solution of I(ρ, a0)−I(ρ,−a0) = 2ū

V ; if a solution

to one of these equations does not exist, set the corresponding value to +∞.13 Let

wt = vt−µt
V . There are two cases:

• If a∗ > α, the PNB submits O ∈ {SMO,BLO,BMO} whenever wt lies in the

corresponding interval in {(−∞,−a∗), (−a∗, α), (α,∞)}.

• If a∗ < α, the PNB submits O ∈ {SMO, SLO,BLO,BMO} whenever wt lies in

the corresponding interval in {(−∞,−α), (−α,−a0), (−a0, α), (α,∞)}.

The PNS has a symmetric strategy to that of the PNB.

(n) (Out-of-equilibrium behavior) If an impatient trader acquires information, then he

subsequently pursues the following strategy. Denote by a± = S/2−ω±u
V , respectively,

where u ∈ {−ū, 0, ū} is the trader’s private valuation. Then, the trader submits

O ∈ {BMO,NO,SMO} (where NO means that no order is being submitted) whenever

vt − µt lies in the corresponding interval in {(−∞,−a−), (−a−, a+), (a+,∞)}.

(o) (Out-of-equilibrium behavior) If the PS decides not to acquire information, then she

submits no order and exits the model.

Patient Natural Buyers

I study the decision of the PNB to acquire information, and show that the optimal strategy

conditional on acquiring information is the one specified by S(m). Suppose the PNB pays

13Recall that according to Result 1 in the paper, the functions w − I(ρ,w) and I(ρ,w) − I(ρ,−w) are
strictly increasing in w; therefore their sum, w − I(ρ,−w), is also increasing in w. Thus, the solutions are
unique if they exist.
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C and observes an asset value vt, or equivalently a signal wt = vt−µt
V . Denote by û = ū

V his

normalized private valuation, and by Ŝ = s
V the normalized bid–ask spread. Let ÛO = UO

V

be the normalized payoff of this trader from submitting O and subsequently following S. As

for the PS, one uses equation (A-19) in the Appendix of the paper—modified to include the

private valuation ū—to compute ÛBMO−ÛBLO = A(wt)−Ŝ, ÛBMO−ÛSLO = B(wt)−Ŝ+2û,

ÛBLO−ÛSLO = D(wt) + 2û, ÛBLO−ÛSMO = Ŝ−B(−wt) + 2û, ÛSLO−ÛSMO = Ŝ−A(−wt).

If a solution exists, denote by by a∗ the solution of B(a∗) = Ŝ+2û, and by a0 the solution

of D(a0) = 2û; if a solution to one of these equations does not exist, set the corresponding

value to +∞. If the order preference of the informed PNB is denoted by “>”, one gets

BMO > BLO ⇐⇒ wt > α; BLO > SLO ⇐⇒ wt > −a0; BLO > SMO ⇐⇒ wt > −a∗;

SLO > SMO ⇐⇒ wt > −α.

One has A(a∗)+D(a∗) = B(a∗) = Ŝ+2û = A(α)+D(a0), which implies A(a∗)−A(α) =

D(a0)−D(a∗). Therefore, a∗−α and a0− a∗ have the same sign, which implies that either

α < a∗ < a0 or a0 < a∗ < α.

Case 1: α < a∗ < a0.

In this case, it is easy to verify that the informed PNB submits O ∈ {SMO,BLO,BMO}

whenever wt lies in the corresponding interval in {(−∞,−a∗), (−a∗, α), (α,∞)}, as specified

by S(m). So far, I have excluded NO (no order) from this analysis. Now, I show that NO

is ruled out by the penalty ω for non-trading.

Recall that ω = γ∆, or ω̂ = ω
V = γ ρβ . Since UO is increasing for wt > −a∗ and decreasing

for wt < −a∗, it is necessary to compare ÛSMO(wt = −a∗) with −ω̂. However,

(IA.26) ÛSMO(wt = −a∗) = − Ŝ
2

+ a∗ − û = a∗ − B(a∗)

2
=

a∗ + I(ρ,−a∗)
2

.

(The second equality follows from the definition of a∗: B(a∗) = Ŝ + 2û.) Because B is

an increasing function, and a∗ > α, one gets Ŝ + 2û = B(a∗) > B(α). From û > Ŝ/2,

one gets Ŝ + 2û > 2Ŝ. The inequalities above imply Ŝ + 2û > max{B(α), 2Ŝ}. Denote by

b = max{B(α), 2Ŝ}, and by a∗ the solution of B(a∗) = b. One has B(a∗) > B(a∗), therefore

a∗ > a∗. According to condition (IA.10), the function A(ρ,−w) = −w− I(ρ,−w) is strictly

decreasing in w, therefore w−B(w)/2 =
(
w+ I(ρ,−w)

)
/2 is strictly increasing in w. Thus,

USMO(wt = −a∗) = a∗−B(a∗)/2 > a∗−B(a∗)/2 = a∗−b/2. I now check that a∗−b/2 ≥ −ω̂,

which is equivalent to a∗ ≥ b/2− ω̂, or B(a∗) ≥ B(b/2− ω̂). By the definition of B and a∗,

this is the same as b ≥ b/2− ω̂ − I
(
ρ,−(b/2− ω̂)

)
, or b/2 + ω̂ + I

(
ρ,−(b/2− ω̂)

)
≥ 0. But
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this follows from condition (IA.12).

Next, denote by Ewt ÛPNB the normalized expected payoff of the informed PNB before

observing wt, but after paying the normalized information cost Ĉ = C/V . Using the

formulas above, one computes Ewt ÛPNB =
∫ −a∗
−∞

(
−Ŝ/2 − w − û

)
φ(w) dw +

∫ α
−a∗
(
Ŝ/2 +

I(ρ, w) + û
)
φ(w) dw+

∫∞
α

(
w− Ŝ/2 + û

)
φ(w) dw. It is necessary to compare Ewt ÛPNB− Ĉ

with the normalized payoff of the uninformed PNB from equation (A-16) in the Appendix

of the paper, ÛPNB
BLO = û + Ŝ/2 − ∆/V . From (IA.9), one gets Ĉ = Ĉ0 + û = 2

(
φ(α) +∫ α

0 I(ρ, w)φ(w) dw
)

+ û, and from the definition of a∗ one gets û =
(
B(a∗) − Ŝ

)
/2. Then,

one computes:

Ewt ÛPNB − Ĉ − ÛPNB
BLO =

∆

V
+
Ŝ

4
− B(a∗)

2
− Φ(−a∗)B(a∗)−

(
φ(α)− φ(a∗)

)
+

∫ a∗

α
I(ρ,−w)φ(w) dw −

∫ α

0
D(w)φ(w) dw.

(IA.27)

I check that the PNB does not acquire information, which is equivalent to Ewt ÛPNB − Ĉ −

ÛPNB
BLO < 0. The derivative of (IA.27) with respect to a∗ equals −B′(a∗)/2−Φ(−a∗)B′(a∗) <

0, since B is strictly increasing. Thus, it is sufficient to verify the inequality when a∗ = a∗

and B(a∗) = max{B(α), 2Ŝ} = b. This follows from condition (IA.14), which states that

ρ
β + Ŝ

4 −
b
2 −Φ(−a∗)b−

(
φ(α)− φ(a∗)

)
+F1−D1 < 0, with F1 =

∫ a∗
α I(ρ,−w)φ(w) dw, and

D1 =
∫ α

0 D(w)φ(w) dw.

Case 2: a0 < a∗ < α.

In this case, one can check that the informed PNB submits O ∈ {SMO,SLO,BLO,BMO}

whenever wt lies in the corresponding interval in {(−∞,−α), (−α,−a0), (−a0, α), (α,∞)},

as specified by S(m). Again, NO is excluded from this analysis. I now show that NO is

ruled out by the penalty ω for not trading.

Since UO is increasing for wt > −a0 and decreasing for wt < −a0, one needs to compare

ÛBLO(wt = −a0) with −ω̂. However,

(IA.28) ÛBLO(wt = −a0) =
Ŝ

2
+ I(ρ,−a0) + û =

Ŝ

2
+
I(ρ, a0) + I(ρ,−a0)

2
.

(The second equality follows from the definition of a0: D(a0) = I(ρ, a0) − I(ρ,−a0) =

2û.) Because D is an increasing function, and a0 < α, one gets 2û = D(a0) < D(α).

From û > Ŝ/2, it follows that 2û > Ŝ. Denote by a1 the solution of D(a1) = Ŝ. The

inequalities above imply Ŝ < D(a0) < D(α), which also implies a1 < a0 < α. According
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to condition (IA.11), the function I(ρ, w) + I(ρ,−w) is strictly decreasing in w for w > 0.

Thus, UBLO(wt = −a0) > Ŝ/2 +
(
I(ρ, α) + I(ρ,−α)

)
/2. It remains to check that Ŝ/2 +(

I(ρ, α)+I(ρ,−α)
)
/2 > −ω̂, but only if D(α) > Ŝ. But this follows from condition (IA.13).

Next, denote by Ewt ÛPNB the normalized expected payoff of the informed PNB before

observing wt, but after paying the information cost C. Using the formulas above, one

computes Ewt ÛPNB =
∫ −α
−∞
(
−Ŝ/2−w− û

)
φ(w) dw+

∫ −a0

−α
(
Ŝ/2 + I(ρ,−w)− û

)
φ(w) dw+∫ α

−a0

(
Ŝ/2 + I(ρ, w) + û

)
φ(w) dw +

∫∞
α

(
w − Ŝ/2 + û

)
φ(w) dw. It is necessary to compare

Ewt ÛPNB − Ĉ with the normalized payoff of the uninformed PNB from equation (A-16) in

the Appendix of the paper, ÛPNB
BLO = û + Ŝ/2 − ∆/V . Using (IA.9), write Ĉ = Ĉ0 + û =

2
(
φ(α)+

∫ α
0 I(ρ, w)φ(w)dw

)
+ û. Then, since û = D(a0)/2 (which comes from the definition

of a0), one computes:

(IA.29) Ewt ÛPNB − Ĉ − ÛPNB
BLO =

∆

V
− Ŝ

4
− D(a0)

2
− Φ(−a0)D(a0)−

∫ a0

0
D(w)φ(w) dw.

I check that the PNB does not acquire information, which is equivalent to Ewt ÛPNB − Ĉ −

ÛPNB
BLO < 0. The derivative of (IA.29) with respect to a0 equals −D′(a0)/2−Φ(−a0)D′(a0) <

0, since D is strictly increasing. Thus, it is sufficient to verify the inequality when a0 =

a1, which is defined by D(a1) = Ŝ. The last term in (IA.29) is negative, and a0 < α

implies Φ(−a0) > Φ(−α) = 1/4. Hence, since D(a0) = Ŝ, it is sufficient to verify that

∆/V − Ŝ/4−D(a0)/2−D(a0)/4 = ∆/V − Ŝ < 0, which is equivalent to ∆ < s. But this

follows from condition (IA.10), which implies that ∆(1 + γ) < s.

Patient Speculators

I show that, as specified by S(l), the PS prefers to acquire information. For this, I compute

the expected payoff of the PS before observing wt, by integrating (A-19) over wt. If one

denotesH(x) =
∫ x

0 I(ρ, w)φ(w)dw, the ex-ante normalized expected payoff equals Ewt ÛPS =

2
(∫ α

0

(
w− Ŝ/2

)
φ(w) dw+

∫∞
α

(
Ŝ/2 + I(ρ, w)

)
φ(w) dw

)
= 2
(
φ(α) +H(α)

)
; I have used the

fact that
∫ α

0 φ(w)dw =
∫∞
α φ(w)dw = 1/4. Since by (IA.9) the normalized information cost

is by definition Ĉ0 = 2
(
φ(α) + H(α)

)
, it follows that the PS’s ex-ante expected payoff is

always at least equal to C0. This implies that the PS weakly prefers to acquire information.

Suppose that the PS does not acquire information, which is out-of-equilibrium behavior.

If the PS arrives at t, she believes the asset value to be distributed according to the public

density N
(
µt, V

2
)
. By submitting the BLO, the public mean moves up by γ∆ (the price
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impact of a BLO). The PS, however, knows that she is in fact uninformed, hence she

maintains the belief that on average the asset value is the previous public mean (µt), while

all the other uninformed traders believe the asset value is on average µt+1 = µt + γ∆. This

difference of beliefs makes the PS now essentially an informed trader. Moreover, the asset

value also changes by vt+1 = vt + σIεt+1, where εt+1 ∼ N (0, 1). Therefore, the PS’s belief

at t+ 1 is given by the density N (µt+1 − γ∆, V 2 + σ2
I ), which corresponds to a normalized

density for the signal wt+1 = vt+1−µt+1

V equal to:

(IA.30) g1 = N
(
−γ∆

V
,
V 2 + σ2

I

V 2

)
.

By Lemma A2 in the Appendix of the paper applied to the density g1, it follows that the

normalized expected payoff of the PS from a BLO is ÛPS
BLO = Ŝ

2 J(ρ, g1, 1) + I(ρ, g1, 1).

But, by condition (IA.10), J = 1, hence:

(IA.31) ÛPS
BLO =

Ŝ

2
+ I(ρ, g1, 1).

But by condition (IA.16), this payoff is negative. By symmetry, the PS’s expected payoff

from submitting an SLO is also negative. Moreover, the expected payoff from submitting

BMO or SMO is −S/2 < 0. Therefore, conditional on not acquiring information, the PS

prefers to submit NO (no order), which has zero expected payoff. This proves that S(o) is

optimal.

Impatient Traders

I study the decision of an impatient trader (INB or IS, or by symmetry INS) whether to

acquire information, and I show that the optimal strategy conditional on acquiring infor-

mation is the one specified by S(n). Suppose the impatient trader pays C and observes

an asset value vt, or equivalently a signal wt = vt−µt
V . Denote by û = u

V his normalized

private valuation, where u ∈ {0, ū}; by Ŝ = s
V the normalized bid–ask spread; by r̂ = r̄

V

the normalized waiting cost; and by ω̂ = ω
V = γ∆

V the normalized commitment parameter

(which is a penalty for not trading).

Let ÛO = UO
V be the normalized payoff of this trader from submittingO and subsequently

following S. As in the proof of Theorem IA.1 for the INB, let UBLO be the expected payoff

from a one-stage deviation by submitting a BLO at t and switching to BMO at t + 1. An
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informed trader who arrives at t and observes the signal wt, has at t + 1 a belief about

the signal wt+1 given by g1 = N
(
ν1, τ

2
1

)
, where ν1 = wt − γ ρβ and τ1 = σI

V = ρ
√

1+γ2

2β2 (see

Definition 1 in the paper). I use the notation from Lemma A1 in the Appendix of the paper.

By equation (A-2), the informed trader computes a probability of SMO at t+ 1 equal to:

(IA.32) PSMO =
1− ρ

4
+ ρ

∫ α

−∞
g1(z) dz =

1− ρ
4

+ ρ Φ
(α− ν1

τ1

)
.

The only time the informed trader benefits from the BLO is when his order is executed at

t+ 1 by an SMO, in which case his normalized expected payoff is Ŝ/2 + ν1 + δ2,SMO, where

δ2,SMO is the adverse selection coming from the SMO (it usually has a negative sign). If the

order is of the other 3 types, O ∈ {BMO,BLO,SLO}, the normalized expected payoff from

switching to a BMO immediately after the order O is −Ŝ/2+ν2,O = −Ŝ/2+ν1− δO+ δ2,O,

where the last equality follows from equation (A-5) in the Appendix of the paper. Since the

average adverse selection δ2,O is 0 over all 4 types of orders (see Lemma A1), the average

normalized payoff net of waiting costs is:

(IA.33) ÛBLO = ν1 −
Ŝ

2
+ PSMO Ŝ −

∑
O∈{BMO,BLO,SLO}

POδO.

But the informed trader incurs a waiting cost equal to r̄
λ , because between t and t + 1 he

waits a clock time equal to 1
λ . Since ν1 = wt − δBLO, if δ = δBMO = ρ

β , one computes:

(IA.34)

ÛBMO = wt −
Ŝ

2
, ÛBLO = wt − γδ −

Ŝ

2
+ PSMOŜ − PBMOδ − PBLOγδ + PSLOγδ −

r̄

λV
.

The (non-normalized) difference in payoff between BMO and BLO is:

(IA.35) UBMO − UBLO = −PSMOs+ PBMO∆ + PBLOγ∆ + (1− PSLO)γ∆ +
r̄

λ
.

Hence, to have UBMO > UBLO is sufficient to have r̄
λ > s, which is true since r̄ > λS.

It follows that BMO is always preferred to BLO, and by a symmetric argument SMO is

always preferred to SLO. Therefore, I need to compare only BMO, SMO, and NO. Denote

by a± = Ŝ/2 − ω̂ ± û. One has a+ + a− = Ŝ/2 − ω̂ > 0, since S/2 − ω = S/2 − γ∆ > 0

by condition (IA.10). (Indeed, S > ∆(1 + γ) > 2γ∆, since γ ≈ 0.2554 < 1). This implies

−a− < a+. Note that at wt = −a− the trader is indifferent between SMO and NO, while

at wt = a+ the trader is indifferent between BMO and NO. This proves that the strategy
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specified by S(n) is indeed optimal.

Next, denote by Ewt Û the normalized expected payoff of the impatient trader before

observing wt, but after paying the information cost C = C0 + u, where u is the trader’s

private valuation. Denote by f(x) = φ(x)−xΦ(−x), and note that f ′(x) = −Φ(−x). Using

the formulas above, one computes Ewt Û =
∫ −a−
−∞

(
−Ŝ/2−w−û

)
φ(w)dw+

∫ a+

−a−(−ω̂)φ(w)dw+∫∞
a+

(
w − Ŝ/2 + û

)
φ(w) dw = −ω̂ + f(a+) + f(a−). Then, the expected payoff net of

information cost is Ewt Û − Ĉ0 − û = −ω̂ − Ĉ0 + f(a+) + f(a−) − û. I now show that

Ewt Û is decreasing in û. Indeed, one verifies that the derivative of Ewt Û − Ĉ0 − û with

respect to û equals Φ(−a+)−Φ(−a−)− 1 = −Φ(−a−)−Φ(a+) < 0. Thus, Ewt Û − Ĉ0 − û

attains its maximum at û = 0. When û = 0, denote by a = a+ = a− = Ŝ/2 − ω̂. Then,

Ewt Û − Ĉ0− û = 2f(a)− ω̂− Ĉ0. By condition (IA.15), 2f(a)− ω̂− Ĉ0 < 0. It follows that

the impatient trader has a negative expected payoff conditional on acquiring information.

Thus, the impatient trader does not acquire information in equilibrium.

The proof of Theorem IA.2 is now complete.

Proof of Corollary IA.1. Ex ante, an informed trader who arrives at t believes that

his signal wt = vt−µt
V is distributed according to the standard normal density N (0, 1).

From equation (10), the informed trader’s expected payoff when w is in the interval O ∈

{BMO,BLO, SLO,SMO} is, respectively,
{
−S

2 +wV, S2 +I(ρ, w)V, S2 +I(ρ,−w)V,−S
2−wV

}
.

By integrating this payoff over the standard normal density, one obtains the formula for C0

in equation (IA.9). Hence, the ex-ante expected utility of the informed trader is 0.

Proof of Proposition IA.1. Combining equations (IA.7) and (IA.8), one obtains:

(IA.36) λ = `(N0 +Nū) =
`Nū

1− ρ
, ∆ =

√
2

1+γ2

σv√
λ

= m
√

1− ρ.

From the definition of F (ρ), one obtains:

(IA.37) C0 = F (ρ)∆ = mF (ρ)
√

1− ρ = mH(ρ) =⇒ ρ = H−1

(
C0

m

)
.

The other formulas follow from simple algebraic manipulation, and from the equations for

V and S in (IA.8).

It is clear that the informed share ρ is strictly decreasing in the information cost C0,

because both H and its inverse are strictly decreasing functions. Moreover, it is clear that

∆, V are strictly decreasing in ρ, while λ and N0 are strictly increasing in ρ. For the bid–ask
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spread parameter, Result 2 implies that S
∆ is strictly decreasing in ρ (see also Figure 3).

Since ∆ = m
√

1− ρ is also strictly decreasing in ρ, it follows that S is also strictly decreasing

in ρ.

Proof of Proposition IA.2. The fact that UI = 0 is essentially Corollary IA.1. The

formula UUP = S
2 − ∆ + ū follows from Lemma A3 in the Appendix of the paper. The

formula UUI = −S
2 +ū is straightforward, since in the equilibrium the uninformed impatient

traders submit market orders which execute at the ask or at the bid, which are a half bid–

ask spread away from the public mean. The equation Ū = (1 − ρ)ū − 1−ρ
2 ∆ follows from

the formula:

(IA.38) Ū = ρUI +
1− ρ

2
UUP +

1− ρ
2
UUI .

To obtain the second part of equation (IA.24), I use the formulas from Proposition IA.1.

To obtain equation (IA.25), note that from Proposition IA.1, N0 +Nū = Nū
1−ρ .

29



4 Verification of Numerical Results

In this section, I verify the various properties of the information functions I(ρ, w, j) and

J(ρ, w, j) from Definition 1 in the paper. The definition of these functions is completely

formal, but each variable has an interpretation in the model. The definitions are:

(IA.39) I(ρ, w, j) =
∑
Q∈Q

P (Q)ν(Q), J(ρ, w, j) =
∑
Q∈Q

P (Q),

where the different variables are interpreted as follows: First, the input w represents the

initial signal w0 = v0−µ0

V of an informed trader, before she submits a BLO at t = 0.

The input ρ is the informed share. The input j represents the rank j0 = 1, 2, . . . of the

initial BLO in the bid queue. Let gt be the posterior density of the signal wt = vt−µt
V

before trading at t (after observing the sequence of orders O0 = BLO, O1, . . ., Ot−1),

and its mean is νt = E(gt). I define an execution sequence to be a sequence of orders

Q = (O0 = BLO,O1, . . . ,OT = SMO), where Ot ∈ {BMO,BLO, SLO,SMO}, such that the

last order (SMO) executes the initial BLO. (This translates into the final rank of the BLO

being 0, after trading at T .) Let P (Q) be the ex-ante probability of a particular execution

sequence Q = (O0,O1, . . . ,OT ). Also, let ν(Q) = νT+1 − ρ
β be the expected signal wT after

the execution at T .14 Then, I(ρ, w, j) is the expected signal immediately after execution,

where the expectation is take at t = 0 over all possible execution sequences. Finally, the

function J(ρ, w, j) is simply the probability that an initial BLO is eventually executed,

when the BLO starts from rank j = j0 in the bid queue. If j = 1, I write I(ρ, w) instead of

I(ρ, w, 1), and J(ρ, w) instead of J(ρ, w, 1).

Since there are infinitely many such execution sequences, I do not attempt to compute

the information function in closed form. The definition, however, suggests a simple Monte

Carlo procedure, described in Section 4.1, and refined in Section 4.2. The verification of

the main numerical results is done in Section 4.3.

4.1 A Monte Carlo Procedure

In this section, I describe a Monte Carlo procedure to compute the information function

with a good approximation. I choose two main parameters:

14The expected signal wT after T is similar to the expected signal wT+1 before T + 1 (which is simply
νT+1), except that the public means at T and T + 1 differ by the price impact of an SMO, which is −∆.
Therefore, ν(Q) = νT+1 − ∆

V
= νT+1 − ρ

β
. For more details, see the proof of Lemma A2 in the Appendix of

the paper.

30



• M = the number of execution sequences Q for which one computes ν(Q), and

• L = the maximum length of the execution sequence Q.

I now describe the procedure. Fix w ∈ R and ρ ∈ (0, 1). For each m = 1, . . . ,M , the

procedure yields a random order sequence Q(m), along with two numbers, ν(m) and i(m).

The number ν(m) is interpreted the average signal at execution of the initial BLO along the

sequence Q(m), while i(m) is equal to 1 if the sequence Q(m) executes the initial BLO until

time L, or is equal to 0 otherwise.

As suggested by Definition 1 in the paper, one starts a sequence Q(m) by specify-

ing the initial density, g1 = N
(
w − γ ρβ , ρ

2 1+γ2

2β2

)
, and the initial bid rank (rank in the

bid queue), j0 = 1. Then, one computes PO, the probability of each type of order

O ∈ {BMO,BLO, SLO, SMO}, by using the formula PO = πg1,O, where, as in equation (5)

in the paper,

(IA.40) πg,O = 1−ρ
4 + ρ

∫
z∈iO

g(z)dz, with iO ∈ {(α,∞), (0, α), (−α, 0), (−∞,−α)}.

Using the 4 probabilities PO, I choose O1 randomly (with probability PO) among the 4

types of orders. I then update g2 to include the information contained in the order O1, by

using the formula g2 = fg1,O1 , where, as in equation (5) in the Appendix of the paper,

(IA.41) fg,O(x) =

∫ (1−ρ
4 + ρ1z∈iO

)
g(z)φ

(
x; z − δO, ρ

√
1+γ2

2β2

)
dz

πg,O
,

where δO ∈
{
ρ
β , γ

ρ
β ,−γ

ρ
β ,−

ρ
β

}
, respectively, and φ( · ;m, s) is the normal density with mean

m and standard deviation s.

Also, if the order O1 ∈ {BMO,BLO, SLO, SMO}, set the increment in the bid rank to

be, respectively, jO1 ∈ {0,+1, 0,−1}. Hence, one updates the bid rank to j1 = j0 + jO1 .

One continues to choose randomly Ot and update gt+1, its mean νt+1, and the bid rank jt

in the same way as described thus far, until one of the following two scenarios occurs:

• The bid rank jT = 0 for some T ≤ L. This means that the initial BLO is executed at

T (the bid rank is 0). In this case, one sets ν(m) = νT+1 − ρ
β , and i(m) = 1.

• The bid rank jt > 0 for all t = 1, . . . , L. This means that the initial BLO has not

been executed until L. In this case, one sets ν(m) = νL+1 − ρ
β , and i(m) = 0.
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I finally define the numerical estimate of the information function as the average value

of the numbers ν(m), i.e.,

(IA.42) Î(ρ, w) =
1

M

M∑
m=1

ν(m).

Note that ĝ estimates the informed trader’s average signal wT after the random sequence

Q(m) executes the initial BLO. (Proposition 2 in the paper shows that this interpretation

is correct.)

The function J from Definition 1 in the paper can be numerically estimated by the

average of the numbers i(m), i.e.,

(IA.43) Ĵ(ρ, w) =
1

M

M∑
m=1

i(m).

Note that Ĵ estimates what percentage of the time the random sequence Q(m) leads to the

execution of the initial BLO.

4.2 Practical Issues

The default values used in practice are:

• Informed share, ρ ∈ [0.05, 0.95], step = 0.05 (19 values);

• Initial signal: w ∈ [−5α, 5α] ≈ [−3.3724, 3.3724], step = α
30 ≈ 0.0225 (301 values);

• Number of iterations: M = 5, 000;

• Maximum order flow length: L = 100;

• Span for the moving average along the values of w: Span = 25.

The baseline procedure described in Section 4.1 in this Internet Appendix computes the

exact density gt at each step, and is therefore extremely memory-intensive. A close alter-

native is to approximate the density gt with a normal density N (νt, τ
2
t ). This approach is

consistent with the principle stated in Section II in the paper, that information processing

is difficult, and traders (including informed traders) may not be able to compute all the

moments of the density. Thus, implicitly here I assume that informed traders compute their

beliefs using only the first two moments of the density.
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Thus, I modify the procedure in Section 4.1 by changing only the way the density gt

is updated, in such a way that it stays normal. Note that the initial density g1 is normal.

By induction, assuming that gt is normal, equation (A-8) from Lemma A1 in the Appendix

of the paper provides simple formulas to compute the mean νt+1 and standard deviation

τt+1 of the correct density gt+1,cOt after the informed trader observes the order Ot. Then,

approximate gt+1,Ot with the normal densityN (νt+1,Ot , τ
2
t+1,Ot), and continue the procedure

as before.15

With this procedure, if one sets M = 15, 000 and L = 40, 000, the function I is computed

with a very good approximation. To improve the precision, I also consider a smoothed-out

version of ĝ which takes a moving average over the initial signal w, with Span = 25. I

perform the following tests to verify that the procedure produces good approximations.

First, I check that estimate of the function Ĵ is approximately equal to 1. I find that the

minimum over all the values of ρ and w considered is 0.9587, and the mean is 0.9857. These

results indicate that for most sequences Q(m) the initial BLO is executed, which reduces

the potential bias that might occur because in a small percentage of cases the BLO is not

executed.

Second, I compare the raw estimate (Iraw) with a smoothed-out version (I
smooth

) which

takes a moving average over the values of w, with Span = 25. Figure IA.1 shows that

the two estimates are approximately equal, which means that taking M = 15, 000 and

L = 40, 000 provides very good estimates. Numerically, I also verify the magnitude of the

error when w = 1, and the maximum error is maxρ |Iraw(ρ, 1)−I
smooth

(ρ, 1)| ≈ 0.0100, which

is relatively small.

Third, I compare the smoothed-out version for M = 15, 000 and L = 40, 000 with the

smoothed-out version for M = 5, 000 and L = 100. The goal is to verify that smooth-

ing out the estimates increases precision enough that one does not need to consider large

values of M and L (which are very time consuming). As before, the maximum error is

maxρ |IM=15,000, L=40,000(ρ, 1)− IM=1,000, L=100(ρ, 1)| ≈ 0.0102, which again is relatively small.

15This approximate procedure improves the execution time by a factor larger than 104 when ρ is large,
and larger than 106 when ρ is small. To verify that the approximation is good, I verify that average absolute
difference in νt (for the 19 values of ρ) is 0.0111×∆, with a standard deviation of 0.0098×∆, and a maximum
of 0.0321×∆. These values are small compared for instance with the price impact of a limit order, which is
γ∆ ≈ 0.2554×∆. Also, the average absolute difference in τt is 0.0336×∆, the maximum 0.0746×∆, and
the standard deviation 0.0207×∆.
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FIGURE IA.1

Raw versus Smoothed-Out Estimates of the Information Function

Figure IA.1 shows estimates of the information function I(ρ, w), where ρ is the informed share,

and w is the initial signal observed by the informed trader who submits a BLO. Graph A shows

Iraw(ρ, w), which is the raw output from the Monte Carlo procedure. Graph B shows Ismooth(ρ, w),

which is the smoothed-out version of Iraw(ρ, w) that takes a moving average over w with Span = 25.

Each graph considers the function for the following values of the informed share: ρ = 0.05 (solid

line), ρ = 0.5 (dashed-dotted line), and ρ = 0.95 (dotted line). The Monte-Carlo parameters are

M = 15, 000 and L = 40, 000.
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4.3 Numerical Properties of the Information Function

Verification of Result 1. I verify numerically the conditions of Result 1, which are stated

in the equations (IA.10) in this Internet Appendix. I use the Monte Carlo procedure de-

scribed above, with normal approximation of densities, and moving-average smoothing. In

general, I use the values of ρ and w described in Section 4.2, and the Monte-Carlo parameters

M = 5, 000, and L = 100 mentioned above.

I begin with the part of the condition (IA.10) which states that the functions I(ρ, w),

A(ρ, w) = w − I(ρ, w), D(ρ, w) = I(ρ, w) − I(ρ,−w) are strictly increasing in w. As a

consequence, the function B(ρ, w) = A(ρ, w) + D(ρ, w) is also strictly increasing in w. I

only display the results for ρ ∈ {0.05, 0.50, 0.95}. Graphs A, B, and C in Figure IA.2 show

that the functions I(ρ, w), w− I(ρ, w), and I(ρ, w)− I(ρ,−w) are indeed strictly increasing

in w. Moreover, Graph B shows the inequality w − I(ρ, w) > 0.
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FIGURE IA.2

Functions of ρ and w

Figure IA.2 shows estimates of various functions of the informed share ρ and the signal w. If I(ρ, w)

is the information function, Graph A shows the function I(ρ, w), Graph B shows the function

w − I(ρ, w), Graph C shows the function I(ρ, w) − I(ρ,−w), and Graph D shows the function

I(ρ, w) + I(ρ,−w). Each graph shows the function for the following values of the informed share:

ρ = 0.05 (solid line), ρ = 0.5 (dashed-dotted line), and ρ = 0.95 (dotted line). The Monte-Carlo

parameters are M = 5, 000 and L = 100.
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I now verify the inequality max
(
ρ(1+γ)
β , −2I(ρ, 0) − 2ργβ

)
< α − I(ρ, α) from (IA.10).

In addition, I also prove the inequality α − I(ρ, α) < 2ρ(1+γ)
β . Using the formulas S =(

α−I(ρ, α)
)
V , and V = βρ−1∆, these inequalities are equivalent to: (i) S

∆ ∈ [1+γ, 2(1+γ)],

and (ii) S
∆ > Γ(ρ) = −2β

ρ I(ρ, 0)− 2γ. Figure IA.3 shows that indeed S
∆ is larger than 1 + γ

and Γ(ρ) = −2β
ρ I(ρ, 0)− 2γ, and smaller than 2(1 + γ). This completes the verification of

the inequalities in (IA.10). Note that this figure is related to Figure 3 in the paper, which

shows S
∆ , as well as its components.
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FIGURE IA.3

Spread Inequalities

Figure IA.3 shows various functions of the informed share ρ: the ratio S
∆ , where S is the bid–ask

spread parameter and ∆ is the price impact parameter ∆; the function Γ(ρ) = − 2β
ρ I(ρ, 0)− 2γ; the

two constant function 1 + γ; and the constant function 2(1 + γ). The Monte Carlo parameters are

M = 5, 000 and L = 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1+γ

Γ

s/∆

2(1+γ)

 ρ

In condition (IA.10), I state that I increases if the initial density g1 has a positive shift

in mean. In the computation of I, the mean of g1 is w − γ δρ , therefore a positive shift in

mean of g1 implies that one considers a larger value of w. But, as shown before, I is strictly

increasing in w. The result is nevertheless needed in more generality, therefore I also verified

it for initial standard deviations other than ρ
√

(1 + γ2)/(2β2).16

In condition (IA.10), I state that I = I(ρ, w, j) decreases in j if w > 0. Thus, one

computes Ij(ρ, w) = I(ρ, w, j) by initializing j = 1, 2, 3, 10 in the regular Monte Carlo

procedure. I verify that this property holds, by checking that I1−I10 > I1−I3 > I1−I2 > 0.

The results are shown in Figure IA.4. One sees that, except when ρ = 0.95 (in which case

the three functions are too close to each other), the desired inequalities are true when w > 0.

The last part of condition (IA.10) is that J(ρ, w) = 1. But this is discussed at the end

of Section 4.2, where this identity is shown to hold with a good approximation.

Verification of Result 2. The verification is essentially illustrated in Figure 3 in the pa-

16I did not try non-normal densities, as all of the densities are approximated by normal ones.
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FIGURE IA.4

Dependence of I(ρ, w, j) on the Bid Rank j

Figure IA.4 shows the differences I1−I10, I1−I3, and I1−I2, for the information function Ij(ρ, w) =

I(ρ, w, j) corresponding to a general bid rank j. Graphs A, B, C, and D correspond, respectively,

to an informed share ρ ∈ {0.05, 0.35, 0.65, 0.95}. The Monte Carlo parameters are M = 5, 000 and

L = 100.
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per. The slippage function Is(ρ, w) is estimated with the same procedure as described above,

except that for each m = 1, 2, . . . ,M I consider ν(m) = νT instead of ν(m) = νT+1 − ρ
β .

Verification of Result IA.1. I verify numerically the conditions (IA.11)–(IA.17) from

Section 3.2 in this Internet Appendix.

The condition (IA.11) is that I(ρ, w) + I(ρ,−w) is strictly decreasing in w whenever

w > 0. But this is shown in Graph D of Figure IA.2, which shows that the function

I(ρ, w) + I(ρ,−w) is strictly increasing in w when w > 0.
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Recall the following notation (see equation (IA.18)):

A(ρ, w) = w − I(ρ, w), B(ρ, w) = w − I(ρ,−w), D(ρ, w) = I(ρ, w)− I(ρ,−w),

F (ρ) =
2β

ρ

(
φ(α) +

∫ α

0
I(ρ, w)φ(w) dw

)
, ω̂ =

ω

V
=

γρ

β
, Ŝ = α− I(ρ, α),

Ĉ0 = 2

(
φ(α) +

∫ α

0
I(ρ, w)φ(w) dw

)
, b = max

(
B(α), 2Ŝ

)
, a∗ = B−1(b),

F1 =

∫ a∗

α
I(ρ,−w)φ(w) dw, D1 =

∫ α

0
D(w)φ(w) dw.

(IA.44)

Condition (IA.12) is: b
2 + ω̂ + I

(
ρ,−( b2 − ω̂)

)
> 0. I use the numerical procedure to

compute I(ρ, w) for w ∈ [−5α, 5α]. Using a spline interpolation, one computes I(ρ,−x) for

x = b
2 − ω̂. Graph A of Figure IA.5 displays x+ 2ω̂+ I(ρ,−x) as a function of ρ, and shows

that condition (IA.12) is satisfied.

Condition (IA.13) is: Ŝ
2 + I(ρ,α)+I(ρ,−α)

2 + ω̂ > 0 whenever D(α) > Ŝ. Graph B of

Figure IA.5 displays
(
Ŝ
2 + I(ρ,α)+I(ρ,−α)

2 + ω̂
)
· 1D(α)>Ŝ as a function of ρ, and shows that

condition (IA.13) is satisfied.

Condition (IA.14) is: ρ
β + Ŝ

4 −
b
2 − Φ(−a∗)b−

(
φ(α)− φ(a∗)

)
+ F1 −D1 < 0. Graph C

of Figure IA.5 displays ρ(1+γ)
β + Ŝ

4 −
b
2 −Φ(−a∗)b−

(
φ(α)− φ(a∗)

)
+ F1 −D1 as a function

of ρ, and shows that condition (IA.14) is satisfied.

Condition (IA.15) is: 2f
(
Ŝ
2 − ω̂

)
− ω̂−Ĉ0 < 0, where f(x) = φ(x)−xΦ(−x). Graph D of

Figure IA.5 displays 2f
(
Ŝ
2 − ω̂

)
− ω̂−Ĉ0 as a function of ρ, and shows that condition (IA.15)

is satisfied.

Condition (IA.16) is: Ŝ
2 + I(ρ, g1, 1) < 0, where g1 = N

(
−γ∆

V ,
V 2+σ2

I
V 2

)
. Graph E of

Figure IA.5 displays Ŝ
2 + I(ρ, g1, 1) as a function of ρ, and shows that condition (IA.16) is

satisfied.

Condition (IA.17) is: F (ρ) = 2β
ρ

(
φ(α) +

∫ α
0 I(ρ, w)φ(w) dw

)
: (0, 1)→ (0,∞) is one-to-

one and strictly decreasing in ρ. Graph F of Figure IA.5 displays F as a function of ρ, and

shows that condition (IA.17) is satisfied.

Verification of Result IA.2. From condition (IA.17), the function F (ρ) : (0, 1)→ (0,∞)

is one-to-one and strictly decreasing in ρ (see Graph F of Figure IA.5). But this implies that

the function H(ρ) = F (ρ)
√

1− ρ is also strictly decreasing in ρ. Graph A of Figure IA.6

shows that this is the case, and that the function H : (0, 1)→ (0,∞) is also one-to-one.
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FIGURE IA.5

Conditions for Information Acquisition

Figure IA.5 shows various functions of the informed share ρ that correspond to the condi-

tions (IA.12)–(IA.17) from Section 3.2 in this Internet Appendix. With the notation from equa-

tion (IA.44), Graph A shows x+2ω̂+I(ρ,−x), where x = b
2 − ω̂ (condition (IA.12)); Graph B shows(

Ŝ
2 + I(ρ,α)+I(ρ,−α)

2 + ω̂
)
·1D(α)>Ŝ (condition (IA.13)); Graph C shows ρ

β + Ŝ
4 −

b
2−Φ(−a∗)b−

(
φ(α)−

φ(a∗)
)
+F1−D1 (condition (IA.14)); Graph D shows 2f

(
Ŝ
2−ω̂

)
−ω̂−Ĉ0, where f(x) = φ(x)−xΦ(−x)

(condition (IA.15)); Graph E shows Ŝ
2 +I(ρ, g1, 1), where g1 = N

(
−γ∆

V ,
V 2+σ2

I

V 2

)
(condition (IA.16));

and Graph F shows F (ρ) = 2β
ρ

(
φ(α) +

∫ α
0
I(ρ, w)φ(w) dw

)
(condition (IA.17)). The Monte Carlo

parameters are M = 5, 000 and L = 100.
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Finally, Graph B of Figure IA.6 shows that the approximation ρ
βF (ρ) ≈ β(1 − ρ) is

good.
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FIGURE IA.6

Approximation for the Information Cost

Figure IA.6 shows various functions of the informed share ρ. Let F (ρ) =
2β
ρ

(
φ(α) +

∫ α
0
I(ρ, w)φ(w) dw

)
, as in equation (IA.44). Graph A shows the function

H(ρ) = F (ρ)
√

1− ρ. Graph B shows the function ρ
βF (ρ) = 2

(
φ(α) +

∫ α
0
I(ρ, w)φ(w) dw

)
(solid line) in comparison with the linear function β(1 − ρ) (dashed line). The Monte Carlo

parameters are M = 5, 000 and L = 100.
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5 Extensions – Theory

5.1 Public Information Processing

In the benchmark model in the paper, the uninformed traders can compute the posterior

belief of the asset value only partially: they compute correctly (i) the first moment of the

posterior belief conditional on the order type, and (ii) the second moment of the posterior

belief conditional on the order arrival (not conditional on the order type), but they cannot

compute any higher moments. In this section, I assume that the uninformed traders can

compute the entire posterior belief.

As in the previous sections, I define the public density as the uninformed traders’ belief

about the fundamental value just before trading at t. Let µt and σt be respectively the

mean and the volatility of the public density. Because the uninformed traders can compute

all moments of the distribution, the shape of the public density is no longer constant and

normal as in the benchmark model, but it keeps changing after each order. Nevertheless,

at the initial date t = 0 the public density is assumed to be N (0, V 2), which is normal

with standard deviation equal to the public volatility parameter V from equation (7) in the

paper. Equivalently, if I define the normalized public density gt as the density of the signal

wt = vt−µt
V , then the initial normalized public density is standard normal: g0 = N (0, 1).

The other assumptions are as in the benchmark model. In particular, the informed

trader can compute only the average signal at the time of her limit order’s execution.

In the benchmark model, this expectation is equal to the information function I from

Definition 1 in the paper. I assume that in the current setup, the informed traders use the

same information function when computing their expected payoff from a limit order.17

Proposition IA.3 shows that there exists an MPE of the model if the conditions in

Result IA.5 are satisfied. These conditions are verified in Section 6 below. The next result

also describes several properties of the equilibrium.

Proposition IA.3. If the conditions in Result IA.5 are satisfied, there exists an MPE of

the game. In equilibrium, if an order O ∈ {BMO,BLO,SLO, SMO} arrives at t, the public

mean changes from µt to µt+∆gt,O, and the public density changes from gt to gt+1 = fgt,O,

where δg,O =
∆g,O
V and fg,O are defined in equation (IA.64) in the Appendix. At date t, the

17This is consistent with the principle that information processing is difficult. The computation of the
exact information function in the current setup would be much more difficult, because the information
function now depends on an additional parameter: the public density ψ, which keeps changing shape with
each order.
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ask price is µt + Ha
t and the bid price is µt − Hb

t , where Ha
t = S/2 + ∆gt,BMO − ∆ and

Hb
t = S/2−∆gt,SMO −∆.

I call Ha
t the “ask half-spread” and Hb

t the “bid half-spread.” These quantities are

not equal to each other, because in the current context the public density is now precisely

computed by the uninformed traders, and is therefore no longer normal. In fact, Proposi-

tion IA.3 describes the exact shape of the posterior density and its evolution.

The last statement in Proposition IA.3 is the indifference condition for the uninformed

traders.18 Consider an uninformed trader who is first in the ask queue at date t. If a buy

market order arrives, then his expected payoff (net of his private valuation) is given by

the ask half-spread (Ha
t ), minus the adverse selection of the buy market order (∆gt,BMO).

The expected payoff is the same regardless of the date t, because otherwise the uninformed

traders would have an incentive to modify their position in the bid queue. The discussion

thus far explains why the expected payoff Ha
t /2−∆gt,BMO is constant. I set this constant

equal to S/2−∆, because I want the equilibrium to be on average the same as the stationary

equilibrium of Section III in the paper. More directly, this equality holds if the initial

normalized public density g0 is the standard normal density N (0, 1).

In equilibrium the informed trader has the same threshold strategy as in Corollary 2 in

the paper, because she uses the same information function I as in the stationary equilibrium.

Depending on her signal wt = vt−µt
V , she submits a BMO if wt ∈ (α,∞), BLO if wt ∈ (0, α),

SLO if wt ∈ (−α, 0), or SMO if wt ∈ (−∞,−α). The magnitude of the price impact thus

depends on how the normalized public density gt is averaged out over the intervals that

define the informed trader’s strategy.

Figure IA.7 shows the relative price impact coefficient after observing a particular order

flow sequence of length 1 and 2. The relative price impact of a buy market order is the ratio

∆gt,BMO/∆, where ∆ is the price impact of a BMO in the benchmark model, and gt is the

public density after the particular order flow sequence, assuming that the initial density is

standard normal. Graph A of Figure IA.7 shows the relative price impact for the 4 types

of order after a BMO is observed (the 4 points on the left) or after a BLO is observed (the

4 points on the right). There is no need to analyze the relative price impact for an SLO

or an SMO, because the results are symmetric with respect to the line y = 1. In all cases,

the price impact coefficients are close to the benchmark price impact, indicating that the

standard normal approximation is good.

18This result is essentially Corollary 8 from the paper translated into the current context.
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FIGURE IA.7

Price Impact with Exact Densities

Figure IA.7 shows the relative price impact of an order O ∈ {BMO,BLO,SLO,SMO}, conditional

on a sequence of orders being observed. The relative price impact of an order O is the price impact

coefficient of that order, divided by the price impact of the same type of order in the benchmark

model. For all graphs, the initial normalized public density (before the sequence of orders) is the

standard normal density. Graph A shows the relative price impact coefficient of the order O after

an order O1 is observed, where O1 is either BMO or BLO. Graph B shows the relative price impact

coefficient of the order O after two orders O1 and O2 are observed, where O1 ∈ {BMO,BLO} and

O2 ∈ {BMO,BLO,SLO,SMO}. The informed share is ρ = 0.10.

 Order
0

0.5

1

1.5

 R
el

at
iv

e 
P

ri
ce

 Im
p

ac
t

A. Price Impact After 1 Order

BMO BLOBMO BLO

BMO
BLO
SLO
SMO

 Order Sequence
0

0.5

1

1.5

 R
el

at
iv

e 
P

ri
ce

 Im
p

ac
t

B. Price Impact After 2 Orders

BMO,
BMO

BMO,
BLO

BMO,
SLO

BMO,
SMO

BLO,
BMO

BLO,
BLO

BLO,
SLO

BLO,
SMO

BMO,
BMO

BMO,
BLO

BMO,
SLO

BMO,
SMO

BLO,
BMO

BLO,
BLO

BLO,
SLO

BLO,
SMO

BMO
BLO
SLO
SMO

Graph B of Figure IA.7 shows the relative price impact for the 4 types of order after

observing a sequence of 2 orders, O1 ∈ {BMO,BLO} and O2 ∈ {BMO,BLO,SLO,SMO}.

The figure suggests testable implications of the model. To give an example, after an order

flow sequence containing a BLO, the price impact of a BMO is generally lower than in the

benchmark model. For instance, after observing 2 BLOs in a row, the relative price impact

of a BMO is significantly smaller than 1. The intuition is that the occurrence of a BLO

indicates to the uninformed traders that the asset mispricing is relatively smaller (i.e., its

standard deviation is lower) than after observing a market order. Therefore, a subsequent

BMO is less likely to be informed, and therefore has a smaller price impact.

Overall, I conclude that the price impact of various types of orders stays close to the

price impact in the benchmark model. To provide further evidence, consider Figure IA.8.

Graphs A and B of Figure IA.8 show the normalized public density after a BMO and

after a BLO.19 In both cases, the shape of the posterior density is not normal, although the

19The normalized public densities after an SMO or an SLO are, respectively, symmetric around the y-axis

43



FIGURE IA.8

Average Public Density

Figure IA.8 shows the normalized public density after various types of orders. Suppose at t the signal

wt = vt−µt

V has a normal density N (0, 1). Graphs A and B show the normalized public density at

t+ 1 after, respectively, observing a BMO or a BLO. Graph C shows the average normalized public

density at t+ 1 after observing either a BMO or BLO (with equal probability). Graph D shows the

average normalized public density at t+ 1 after observing either a BMO, BLO, SLO, or SMO (with

equal probability). In all graphs, the public density is displayed as a solid line, while the standard

normal density is displayed as a dashed line. The informed share is ρ = 0.10.
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difference from the standard normal density is not large. If I take the average of these shapes

(Graphs C and D of Figure IA.8), the average public density is quite close to the benchmark

public density, which is standard normal. Very similar results are obtained if instead of the

average public density after 1 order, one considers the average public density after several

orders. All these results suggest that the assumption that the uninformed traders process

information by using a normal approximation to the public density is plausible.

5.2 No-Order Region

In the benchmark model, each informed trader receives a penalty ω (called the “commitment

parameter”) if after observing the fundamental value she chooses not to trade. In this

section, I set ω = 0. Because in this case the informed trader might choose not to submit

any order, I assume that whenever this event occurs, an uninformed trader is drawn instantly

to the densities after a BMO or a BLO.
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from the pool.20

In this section, I use the same methodology as in the benchmark model, except that now

the optimal strategy of the informed trader includes a “no-order region” when the informed

share ρ is above a threshold. Thus, instead of the parameter α (the threshold signal between

BLO and BMO), I introduce two parameters that are functions of ρ. The first parameter,

α0, is the threshold signal between not trading and BLO, with α0 = 0 if the no-order region

is empty. The second parameter, α1, is the threshold signal between BLO and BMO, with

α1 = α if the no-order region is empty.

I start by defining parameters similar to those in Section III.B in the paper, except that

all parameters now depend on the informed share ρ. To indicate the different values, I add

a superscript “1” to the parameters, and write α1, β1, γ1, I1, ∆1, V 1, and S1. Also, the

new information function I1 cannot be defined independent of the other parameters, as in

Definition 1 in the paper. Therefore, in Definition IA.2 below, I define all parameters at

the same time. Recall that φ( · ) is the standard normal density, and Φ( · ) is its cumulative

density. In the next definition, I also use the parameters α, β, γ, I, V , ∆, and S from

Section III.B of the paper.

Definition IA.2. Let ρ > 0 and w ∈ R. Define the function I1(ρ, w) as in Definition 1 in

the paper, except that instead of the numeric parameters α, β, and γ, one uses the functions

α1 = α1(ρ), β1 = β1(ρ), γ1 = γ1(ρ) defined below, and equation (5) is replaced with:

πg,O =

∫ (
1− ρ

4
+
ρ

4
1z∈iNO + ρ1z∈iO

)
g(z)dz,

fg,O(x) =

∫ (1−ρ
4 + ρ

41z∈iNO + ρ1z∈iO

)
g(z)φ

(
x; z − δO, ρ

√
1+(γ1)2

2(β1)2

)
dz

πg,O
,

(IA.45)

where iO ∈ {(α1,∞), (α0, α0), (−α0, α0), (−α1,−α0), (−∞,−α1)}, respectively, for

O ∈ {BMO,BLO,NO,SLO,SMO}. The functions α0 = α0(ρ), α1 = α1(ρ), β1 = β1(ρ),

and γ1 = γ1(ρ) are defined by the implicit equations:

α1 − I1(ρ, α1) + 2I1(ρ, α0) = 0, 1− Φ(α1) = Φ(α1)− Φ(α0),

β1 =
1

4φ(α1)
, γ1 =

φ(α0)− φ(α1)

φ(α1)
.

(IA.46)

20This assumption is consistent with the principle of working in event time rather than calendar time.
Indeed, if an informed trader decides not to trade at t, the clock only gets restarted when an uninformed
trader arrives to the market and trades, in which case this event occurs at t+ 1. If one worked in calendar
time instead, the model would be more complicated, because the time elapsed between order arrivals would
become informative about the fundamental value.
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If there is no solution of the equations above with α0 > 0, define α0 = 0, α1 = α, β1 = β,

γ1 = γ, and I1 = I. Finally, define:

∆1 =

√
2

1 + (γ1)2

σv√
λ
, V 1 = β1ρ−1∆1, S1 =

(
α1 − I1(ρ, α1)

)
V 1.(IA.47)

Note that, as in Corollary 3 in the paper, the condition 1 − Φ(α1) = Φ(α1) − Φ(α0)

from Definition IA.2 ensures that all orders are equally likely, and that the equilibrium is

stationary.

FIGURE IA.9

Equilibrium with No-Order Region

Figure IA.9 shows several functions of the informed share ρ that correspond to certain variables in

the equilibrium with no-order region. Graph A shows the threshold signal α1 between BLO and

BMO, and the threshold α0 of the no-order region (between BLO and NO = no order). Graph B

shows the price impact coefficient ∆1, divided by the benchmark value ∆. Graph C shows the public

volatility V 1, divided by the benchmark value V . Graph D shows the bid–ask spread S1, divided by

the benchmark price impact coefficient ∆.
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Proposition IA.4 shows that there exists an MPE of the model if the conditions in

Result IA.6 are satisfied. I verify these conditions numerically in Section 6 below. Proposi-

46



tion IA.4 also describes several properties of the equilibrium.

Proposition IA.4. If the conditions in Result IA.6 are satisfied, there exists an MPE of

the game. In equilibrium, if an order O ∈ {BMO,BLO,SLO, SMO} arrives at t, the public

mean changes from µt to µt + ∆1
O, where, respectively, ∆1

O ∈ {∆1, γ1∆1,−γ1∆1,−∆1}.

An informed trader who arrives at t ≥ 0 and observes wt = vt−µt
V 1 in the interval iO ∈

{(α1,∞), (α0, α0), (−α0, α0), (−α1,−α0), (−∞,−α1)} optimally submits an order O ∈ {BMO,BLO,NO,SLO,SMO},

respectively. At date t, the ask price is µt + S1/2 and the bid price is µt − S1/2.

In equilibrium, the size of the no-order region (−α0, α0) depends on the informed share

ρ. Result IA.3 below shows that there exists a threshold informed share (ρ0 ≈ 0.1560, such

that when the informed share is below this threshold the no-order region is empty. I call this

region the “low-information regime,” as opposed to the case when ρ > ρ0 which is called

the “high-information regime.” Result IA.3 also shows that the size of the no-order region

is increasing in the informed share in the high-information regime. The intuition is that

competition among informed traders makes it less profitable to trade when the informed

trader’s signal is moderate. Differently said, competition among informed traders raises the

bar for their incentive to trade on information.

Result IA.3. There exists a threshold informed share ρ0 ≈ 0.1560, such that when ρ < ρ0

(the “low-information regime”) the no-order region is empty and the equilibrium coincides

with the benchmark equilibrium. When ρ < ρ0 (the “high-information regime”), (i) the no-

order region (−α0, α0) is nonempty and increasing in ρ, (ii) α1, β1 and γ1 are increasing in

ρ, (iii) the relative public volatility V 1/V is increasing in ρ, (iv) the price impact coefficient

∆1 is decreasing in ρ.

Figure IA.9 helps illustrate graphically some stylized facts from Result IA.3. In the

high-information regime, adverse selection as measured by the price impact coefficient ∆1

is decreasing in ρ. Indeed, when competition among informed traders increases, the thresh-

old (α0) for trading on information increases, and because of the decrease in informed

trading activity, the overall adverse selection decreases, although not strongly (by at most

7%). (Recall that the overall adverse selection parameter ∆ is constant in the benchmark

model.) The effect on the bid–ask spread is ambiguous. In the benchmark model, the

increase in competition among the informed traders makes the market more dynamically

efficient and therefore lowers the bid–ask spread (although not very strongly). In the high-

information regime, the existence of a no-order region decreases dynamic efficiency relative
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to the benchmark model. Indeed, according to Result IA.3, the relative public volatility

V 1/V is increasing with ρ. Nevertheless, the public volatility itself V 1 is still decreasing

in ρ. Overall, the effect of ρ in the high-information regime is very weak, and the bid–ask

spread appears approximately constant in this region, although the result is less conclusive

because the estimation error is relatively large in this case.
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6 Extensions – Proofs and Numerical Results

In this section, I provide proofs and numerical verifications for the results in Section V in

the paper and in Section 5 in this Internet Appendix. I also provide further discussion.

6.1 Non-Stationary Equilibria

Proof of Proposition 5. The proof follows closely the proof of Theorem 1 in the paper.

The difference consists in the fact that the public volatility is no longer constant. Recall

that the normalized public volatility at t is defined by:

(IA.48) θt =
σt
V
,

where σt is the public volatility at t, and V is the constant public volatility parameter from

equation (7) in the paper. In the benchmark (or stationary) model, θt is constant and equal

to 1. In the non-stationary case, however, θt changes over time, and along with it the other

parameters of the model. For instance, denote by α̃t the threshold signal between BLO

and BMO at t. Because the problem is symmetric with respect to the public mean µt, it

follows that an informed trader who observes a signal wt = vt−µt
V at t submits an order

O ∈ {BMO,BLO,SLO,SMO} whenever the signal belongs, respectively, to the interval:

(IA.49) iO ∈ {(α̃t,∞), (0, α̃t), (−α̃t, 0), (−∞,−α̃t)}.

Then α̃t also evolves over time as well, and is determined in equilibrium jointly with θt and

with the other parameters, including the information function Ĩ(ρ, w, θ) (see Definition A1

in the paper).

By the assumptions made in Section II in the paper, the uninformed traders update the

public volatility by calculating the average variance over the 4 types of orders, which leads

to a deterministic evolution of the public volatility.21

The update of θt follows equation (A-7) from Lemma A1 in the Appendix of the paper,

which implies that the average normalized public variance evolves by the formula (τ̄t in the

lemma coincides with θt in this context):

(IA.50) θ2
t+1 = θ2

t + σ̂I
2 − EO δ

2
t+1,O,

21Otherwise, the public volatility would be stochastic, as it would change depending on the type of order
submitted at each date.
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where δt+1,O is the normalized price impact after observing O at t, and σ̂I is the normalized

inter-arrival volatility, which is constant and satisfies:

(IA.51) σ̂I =
σI
V

= ρ

√
1 + γ2

2β2
.

But the normalized public density at t is of the form:

(IA.52) gt = N
(
0, θ2

t

)
.

Using part (A-8) of Lemma A1 in the Appendix of the paper, one computes:

(IA.53) θ2
t+1 = ρ2 1 + γ2

2β2
+ θ2

t − 2ρ2θ2
t

( (
φ
(
α̃t
θt

))2

1−ρ
4 + ρ

(
1− Φ

(
α̃
θt

)) +

(
φ
(

0
θt

)
− φ

(
α̃t
θt

))2

1−ρ
4 + ρ

(
Φ
(
α̃
θt

)
− Φ(0)

)),
which proves equation (28) in the paper.

I compute the normalized price impact δt+1,O of the order O by using equation (A-8) in

the Appendix of the paper. The formula for O ∈ {BMO,BLO,SLO, SMO} is, respectively,

(IA.54) δt+1,O =

{
ρ

β̃
θt , γ̃

ρ

β̃
θt , −γ̃

ρ

β̃
θt ,

ρ

β̃
θt

}
,

where:

(IA.55) β̃ =
1−ρ

4 + ρ
(
1− Φ

(
α̃
θ

))
φ
(
α̃
θ

) , γ̃ =
φ(0)− φ

(
α̃
θ

)
φ
(
α̃
θ

) 1−ρ
4 + ρ

(
1− Φ

(
α̃
θ

))
1−ρ

4 + ρ
(
Φ
(
α̃
θ

)
− Φ(0)

) ,
which is part of equation (A-21) in the paper.

The other formulas are justified in the same way as in the benchmark case. In particular,

one has:

(IA.56) S̃t =
(
α̃t − Ĩ(ρ, α̃t, θt)

)
V, ∆̃t = δt+1,O V.

The only exception is equation (29) from Corollary 8 in the paper:

(IA.57)
S̃t
2
− ∆̃t =

S

2
−∆.

This equation represents the indifference condition for the uninformed traders, meaning

that they have the same expected utility whether their order is executed now or is executed
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later (see Lemma A3 in the Appendix of the paper). If equation (IA.57) is divided by V ,

one obtains:

(IA.58) α̃− Ĩ(ρ, α̃, θ)− 2
ρ θ φ

(
α̃
θ

)
1−ρ

4 + ρ
(
1− Φ

(
α̃
θ

)) = α− I(ρ, α)− 2
ρ

β
.

This justifies the first equality in equation (A-21) in the paper.

The arguments presented thus far show that the notation made in Definition A1 in the

paper mirrors the notation in the benchmark case. Hence, the proof of Theorem 1 in the

paper can be adapted to show that the usual strategies of the informed and uninformed

traders are optimal in this case, as well.

It only remains to state the conditions for the new information function Ĩ that mirror

the conditions in Result 1 in the paper. Thus, if the conditions in Result IA.4 are true, the

proof of the theorem is now complete.

Result IA.4. For all ρ ∈ (0, 1) and θ > 0, the functions Ĩ(ρ, w, θ), w − Ĩ(ρ, w, θ) and

Ĩ(ρ, w, θ)− Ĩ(ρ,−w, θ) are strictly increasing in w, and:

(IA.59) max
( ρ(1 + γ̃)

β̃
, −2Ĩ(ρ, 0, θ)− 2

ργ̃

β

)
< α̃− Ĩ(ρ, α̃, θ).

Let Ĩ(ρ, g1, θ, j) and J̃(ρ, g1, θ, j) be as in Definition A1 in the paper, but for general density

g1 and rank j ∈ N+, and denote by Ĩ(ρ, w, θ, j) and J̃(ρ, w, θ, j) the same functions for g1 =

N
(
w − γ ρβ , ρ

2 1+γ2

2β2

)
. When j = 1, the argument j can be omitted. Then, (i) Ĩ(ρ, g1, θ, j)

increases if g1 has a positive shift in mean, (ii) Ĩ = Ĩ(ρ, w, θ, j) decreases in j if w > 0, and

(iii) J̃ = 1.

I also include here the conditions on the preference parameters, ū > S/2 and ω > γ∆.

Proof of Corollary 8. This is discussed in the course of proving Proposition 5.

Proof of Proposition 6. The proof mirrors the proof of Proposition 4 in the paper.

Proof of Proposition 7. This is a simple application of the methods used to prove Propo-

sition 5. Indeed, if one applies equation (A-2) in the Appendix of the paper to the normal

density gt = φ
(
0, θ2

t

)
, one computes:

(IA.60) PMO =
1− ρ

4
+ ρ

(
1− Φ

( α̃
θ

))
, PLO =

1− ρ
4

+ ρ

(
Φ
( α̃
θ

)
− Φ(0)

)
.
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Taking their ratio, one proves equation (32) in the paper.

Verification of Results 4, 5, and IA.4. To verify Result 4, I need to show that the

non-stationary equilibrium that starts with normalized public density θ0 = θ converges to

the stationary equilibrium, which corresponds to θ = 1. But θ evolves deterministically

according to equation (28) in the paper, and can numerically be seen to converge to 1

regardless of the initial value. This is done in Figure 4 in the paper.

To verify Results 5 and IA.4, I need to solve numerically for the non-stationary equilib-

rium that begins with θ0 = θ. It is thus necessary to compute the parameters α̃, β̃, γ̃, and

Ĩ from Definition A1 in the paper. These parameters are functions of ρ and θ, while Ĩ also

depends on the initial signal w. Numerically, I consider the following values of ρ and θ:

• Informed share, ρ ∈ [0.05, 0.95], step = 0.05 (19 values);

• Normalized public volatility, θ ∈ [0.50, 1.50], step 0.10 (11 values);

Note that I choose values of θ around θ = 1, because in that case the equilibrium is

stationary.

The computation of the parameters α̃, β̃, γ̃, and Ĩ amounts to finding a fixed point of the

equations in Definition A1 in the paper. A natural starting point is to use the parameters

in the benchmark model (θ = 1), and take α̃(0)(ρ, θ) = α, β̃(0)(ρ, θ) = β, γ̃(0)(ρ, θ) = γ, and

Ĩ(0)(ρ, w, θ) = I(ρ, w). I then update α̃, by solving numerically for each value of ρ and θ

the implicit equation:

(IA.61) α̃− Ĩ(ρ, α̃, θ)− 2
ρ θ φ

(
α̃
θ

)
1−ρ

4 + ρ
(
1− Φ

(
α̃
θ

)) = α− I(ρ, α)− 2
ρ

β
.

(see equation (A-21) in the paper). This produces the function α̃(1)(ρ, θ). Using (IA.55), one

computes also β̃(1)(ρ, θ) and γ̃(1)(ρ, θ). The function Ĩ(1)(ρ, w, θ) is obtained as explained

in Definition A1 in the paper, using the current values for the parameters α̃, β̃, and γ̃. I

iterate the procedure until |α̃(m+1) − α̃(m)| is below some tolerance level, say 10−4.

This process, however, is very computationally intensive, and I stop after only 3 iter-

ations. Nevertheless, I impose the stringent condition that the solution α̃ of the implicit

equation (IA.61) must be unique at each step of the iteration. With this condition, for θ ≥ 1

there is always an approximate solution, but for θ < 1 there is no longer a unique solution

for sufficiently large values of ρ (in Figure 5 in the paper I omit the data points for which
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the numerical procedure fails to produce a solution).22 Now, visual inspection of Figure 5

in the paper shows that the price impact coefficient ∆̃ is indeed increasing in θ, as stated

in Result 5. The same is true about the bid–ask spread S̃, since ∆̃ and S̃ are related by a

linear relation that does not depend on θ (see equation (IA.57)).

When the procedure yields a solution, the numerical verification of the conditions in

Result IA.4 for Ĩ(ρ, w, θ) is then done as for Result 1. Even when the numerical procedure

does not yield a solution, there is reason to believe that the conditions in Result IA.4 still

hold. Indeed, for θ = 1 the function Ĩ(ρ, w, 1) coincides with the benchmark information

function I(ρ, w), therefore by continuity the conditions in Result IA.4 must still hold in a

neighborhood of θ = 1. In order for the conditions to hold for a general θ, I suspect that

a larger value of the commitment parameter ω is necessary (larger than the current value

γ∆), such that the inequality condition in (IA.59) becomes less stringent.

6.2 Public Information Processing

As in the case of Theorem 1 in the paper, the results depend on certain conditions being

true. I verify them numerically in the following result.

Result IA.5. Besides the conditions (IA.10) from Result 1 in the paper, the following

condition is true:

(IA.62) S −∆ > max
(
−Hb

t ,
S

2
−Ha

t

)
.

I also include here the conditions on the preference parameters, ū > S/2 and ω > γ∆.

Verification of Result IA.5. The stringent condition is S−∆ > S
2 −H

a
t . But, as shown

in Figure IA.7, the approximation of the normalized public density by the standard normal

density is very good, and so S
2 −H

a
t is close to 0, while S −∆ is large. This condition is

therefore easily satisfied.

Proof of Proposition IA.3. Let ψt be the public density at t, and let µt and σt be re-

spectively its mean and standard deviation. Let also gt be the normalized public density

(i.e., the density of the signal wt = vt−µt
V ). By assumption, the initial density g0 is the

standard normal density (which is the normalized public density in the benchmark model).

22In that case, I conjecture that economically the model still has an equilibrium, and therefore by properly
choosing the initial parameter values (different than the benchmark values), one can solve for the equilibrium
using the same numerical procedure. Because of the computational constraints, however, I choose to not
pursue this path.
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The proof is simplified by the assumption that the informed trader uses the same in-

formation function as in the benchmark model. Therefore, for the informed traders I use

the same proof as in Theorem 1 in the paper. It follows that in equilibrium the informed

trader has the same threshold strategy as in Corollary 2 in the paper: depending on her

signal wt = vt−µt
V , she submits an order O ∈ {BMO,BLO,SLO,SMO} if the signal lies in

the interval iO, where, respectively,

(IA.63) iO ∈ { (α,∞) , (0, α) , (−α, 0) , (−∞,−α) }.

The magnitude of the price impact thus depends on how the normalized public density gt

is averaged out over the intervals that define the informed trader’s strategy. Then, for an

order O ∈ {BMO,BLO,SLO, SMO}, define:

δg,O =
ρ
∫
iO
zg(z)dz

1−ρ
4 + ρ

∫
iO
g(z)dz

,

fg,O(x) =

∫ (1−ρ
4 + ρ1z∈iO

)
g(z)φ

(
x; z − δg,O, ρ

√
1+γ2

2β2

)
dz

1−ρ
4 + ρ

∫
iO
g(z)dz

,

∆g,O = δg,O V.

(IA.64)

By Lemma A1 in the Appendix of the paper, it follows that the normalized public density

is updated by the rule:

(IA.65) gt+1 = fgt,O,

and the public mean is updated by the rule:

(IA.66) µt+1 = µt + ∆gt,O.

I now analyze the optimal strategy of a (patient) uninformed buyer UB, with private

valuation ū. If he submits a BLO, Lemma A2 in the Appendix of the paper implies that

his expected utility is:

(IA.67) UUB
BLO = Hb

t + ∆gt,SMO + ū,
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where by definition Hb
t = S/2−∆gt,SMO −∆ is the bid half-spread. Hence, one obtains:

(IA.68) UUB
BLO =

S

2
−∆ + ū,

which is simply the indifference condition of the uninformed traders. If the uninformed

buyer submits a BMO instead, his expected utility is:

(IA.69) UUB
BMO = −Ha

t + ū,

since the ask price is µt +Ha
t . Similarly, the expected utility from SMO is:

(IA.70) UUB
SMO = −Hb

t − ū.

Since S
2 −∆ + ū > 0 when ū > S

2 , the uninformed buyer prefers to submit a BLO to doing

nothing (the inequality S > ∆ follows from condition (IA.10) from Result 1 in the paper).

He also prefers to submit BLO to SLO, since the latter order makes him lose his private

valuation ū. Using the results above, if ū = S
2 , it follows that BLO is optimal if the following

inequality holds:

(IA.71) S −∆ > max
(
−Hb

t ,
S

2
−Ha

t

)
.

But this condition is ensured by Result IA.5.

In the remainder of this section, I complement the results of Section 5.1 by giving a few

more example to illustrate the evolution of the normalized public density. In all cases, start

at t = 0 with the stationary public density N (µ0, V
2), which after normalization becomes

the standard normal density N (0, 1).

Figure IA.10 shows the public density after t = 0, t = 1, and t = 5 BMOs for various

values of the informed share ρ. By visual inspection, the public density appears close to

the standard normal density even after a sequence of 5 BMOs (this sequence happens with

probability 4−5, which is less than 1 in 1000). Interestingly, the deviation of the public

densities from the standard normal density is at its smallest level when the informed share

is either small or large, and it peaks for an intermediate value ρ near 0.2. When ρ is small,

the order flow is uninformative, hence the posterior is not far from the prior. When ρ

is large, the information decays very quickly, and the informed trader becomes essentially
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FIGURE IA.10

Exact Public Density after Series of BMOs

Figure IA.10 shows the evolution of the normalized public density gt after t = 0, t = 1 and t = 5

BMOs. In all graphs, the initial normalized public density (at t = 0) is the standard normal

density N (0, 1). Graphs A, B, C, D, E, and F correspond, respectively, to an informed share

ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}.

uninformed. Similarly, Figure IA.11 shows the public density after t = 0, t = 1, and

t = 5 BLOs for various values of the informed share ρ. Here one can observe visually

a slightly larger difference between the posterior density after a series of BLOs and the

standard normal density than after a series of BMOs. Nevertheless, as explained below,

what matters for risk-neutral traders is the difference in means, not the difference in higher

moments.

A more direct measure for the quality of the approximation is to compare the exact pos-

terior mean of the public density with 0, which is the posterior mean under the approximate

density. Since in the model traders are risk-neutral, it is important to compute posterior

means, for instance one wants to compute the exact price impact of order flow. Consider an

informed share ρ = 0.2, for which the deviation of the posterior density from normality is

close to the largest. Then, I am interested in the standard deviation of the posterior mean,

when the posterior mean is estimated after 200 random series of t = 5 orders. I estimate

a standard deviation of 0.062, which is reasonably small, compared with 1, the standard

deviation of the (normalized) public density.
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FIGURE IA.11

Exact Public Density after Series of BLOs

Figure IA.11 shows the evolution of the normalized public density gt after t = 0, t = 1 and t =

5 BLOs. In all graphs, the initial normalized public density (at t = 0) is the standard normal

density N (0, 1). Graphs A, B, C, D, E, and F correspond, respectively, to an informed share

ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}.

Additionally, I compute the average density over 200 random series of length t = 5. The

result for all ρ is almost indistinguishable from the standard normal density, giving another

indication that traders are reasonable in making the standard normal approximation. In

fact, an alternative justification of this approximation is that in practice there is significant

uncertainty about the actual shape of the public density. Thus, it is reasonable to expect

that the uninformed traders are not fully Bayesian, and only do approximate inferences

about the public density in order to preserve tractability.

6.3 No-Order Region

Let 0 ≤ α0 ≤ α1. For O ∈ {BMO,BLO,NO,SLO, SMO}, define respectively iO ∈

{(α1,∞), (α0, α0), (−α0, α0), (−α1,−α0), (−∞,−α1)}, which are the intervals defining the

strategy of the informed trader. For O ∈ {BMO,BLO, SLO,SMO}, define respectively

δO ∈
{
ρ
β1 , γ

1 ρ
β1 ,−γ1 ρ

β1 ,− ρ
β1

}
. Let φ(·;M,S) be the normal density with mean M and stan-

dard deviation S, φ(·) the standard normal density (M = 0, S = 1), and Φ(·) the cumulative

normal density. Denote the normalized inter-arrival volatility by σ̂I
1 = σI

V 1 = ρ
√

1+(γ1)2

2(β1)2 .
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Lemma IA.1. In the context of Proposition IA.4, consider a trader who just before trading

at t believes that the signal wt = vt−µt
V = z has probability density function gt(z). Then, the

following are true:

(a) The probability of observing O ∈ {BMO,BLO,SLO, SMO} at t is:

(IA.72) PO =
1− ρ

4
+
ρ

4

∫
z∈iNO

gt(z)dz + ρ

∫
z∈iO

gt(z)dz.

After seing the order O at t, the posterior density of wt+1 = vt+1−µt+1

V is:

(IA.73) gt+1,O(x) =

∫ (1−ρ
4 + ρ

41z∈iNO + ρ1z∈iO
)
gt(z)φ

(
x; z − δO, σ̂I1

)
dz

PO
.

(b) Suppose gt(·) is not necessarily normal, and has mean νt and standard deviation τt.

Define the “normalized price impact” δt+1,O = E(wt | gt,O)−E(wt | gt) as the change

in the expectation of wt after observing O ∈ {BMO,BLO,SLO,SMO} at t. Then,

(IA.74) δt+1,O =

ρ
4

∫
iNO

gt(z)(z − νt)dz + ρ
∫
iO
gt(z)(z − νt)dz

PO
.

Denote by νt+1,O and τt+1,O the mean and standard deviation, respectively, of the

posterior density gt+1,O(x). Define:

(IA.75) Vt+1,O =
1

PO

∫
gt(z)

(1− ρ
4

+
ρ

4
1z∈iNO + ρ1z∈iO

)((z − νt
τt

)2
− 1

)
dz.

Then,

νt+1,O = νt − δO + δt+1,O, τ2
t+1,O = τ2

t (1 + Vt+1,O) + (σ̂I
1)2 − δ2

t+1,O,(IA.76)

E(wt | gt,O) = νt+1,O + δO = νt + δt+1,O.(IA.77)

Let ν̄t+1 = EO
(
νt+1,O

)
and τ̄2

t+1 = EO
(
τ2
t+1,O

)
, where EO represents the average over

O ∈ {BMO,BLO, SLO, SMO}, with weights PO. Then, EO(δt+1,O) = EO(Vt+1,O) = 0,

and

(IA.78) ν̄t+1 = νt − EO δO, τ̄2
t+1 = τ2

t + (σ̂I
1)2 − EO δ

2
t+1,O.
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(c) If gt(·) = N (νt, τ
2
t ) is normal, let iO = (LO, HO), `O = LO−νt

τt
, hO = HO−νt

τt
. Then,

PO =
1− ρ

4
+
ρ

4

(
Φ(hNO)− Φ(`NO)

)
+ ρ
(
Φ(hO)− Φ(`O)

)
,

νt+1,O = νt − δO + δt+1,O, τ2
t+1,O = τ2

t (1 + Vt+1,O) + (σ̂I
1)2 − δ2

t+1,O,

δt+1,O =
ρ
4τt
(
φ(`NO)− φ(hNO)

)
+ ρτt

(
φ(`O)− φ(hO)

)
PO

,

Vt+1,O =
ρ
4

(
`NOφ(`NO)− hNOφ(hNO)

)
+ ρ
(
`Oφ(`O)− hOφ(hO)

)
PO

.

(IA.79)

If one writes ν̄t+1 = f(νt), then

(IA.80)

f ′(νt) = 1 − ρ2

τtβ1

(
γ1
(
φ
(
α0+νt
τt

)
+φ
(
α0−νt
τt

))
+ (1−γ1)

(
φ
(
α1+νt
τt

)
+φ
(
α1−νt
τt

)) )
.

(d) If gt(·) is the standard normal density, with νt = 0 and τt = 1, then for all O at t,

(IA.81) PO =
1

4
, δt+1,O = δO, νt+1,O = 0, τ̄t+1 = 1.

Hence, the normalized density gt has constant volatility.

Proof. Conditional on observing wt = vt−µt
V = z, the probability of an orderO ∈ {BMO,BLO,SLO,SMO}

at t is

P
(
Ot = O | wt = z

)
=

1− ρ
4

+
ρ

4
1z∈iNO + ρ 1z∈iO .

Indeed, if the trader at t is uninformed (with probability 1 − ρ), he submits an order O

with equal probability 1
4 . If the trader at t is informed (with probability ρ), she submits an

order O if and only if z ∈ iO; but if z ∈ iNO, she does not trade and is immediately replaced

by an uniformed trader who submits O with equal probability 1
4 . Integrating over z, one

obtains PO = 1−ρ
4 + ρ

4

∫
z∈iNO

gt(z)dz + ρ
∫
z∈iO gt(z)dz, which proves (IA.72).

I now compute the density of the normalized asset value at t + 1 after observing an

order O ∈ {BMO,BLO, SLO,SMO} at t. Immediately after t the public mean moves

to µt+1 = µt + ∆O, where ∆O ∈ {∆1, γ1∆1,−γ1∆1,−∆1}. Since ∆1

V 1 = ρ
β1 , note that

δO = ∆O
V 1 ∈

{
ρ
β1 , γ

1 ρ
β1 ,−γ1 ρ

β1 ,− ρ
β1

}
. If z = wt and δv = vt+1−vt

V , write x = wt+1 =

vt+1−(µt+∆O)
V = δv + z − δO. But δv has a normal distribution given by with mean 0 and

standard deviation σ̂I
1 = σI

V 1 , hence P
(
wt+1 = x | Ot = O, wt = z

)
= P

(
δv = x− z + δO

)
=
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φ(x− z + δO; 0, σ̂I
1) = φ(x; z − δO, σ̂I1). One computes also:

P
(
wt+1 = x,Ot = O | wt = z

)
= P

(
wt+1 = x | Ot = O, wt = z

)
P
(
Ot = O | wt = z

)
= φ

(
x; z − δO, σ̂I1

)(1− ρ
4

+
ρ

4
1z∈iNO + ρ1z∈iO

)
.

Thus, the posterior density is:

gt+1,O(x) = P
(
wt+1 = x | wt ∼ gt(z),Ot = O

)
=

∫
P
(
wt+1 = x,Ot = O | wt = z

)
gt(z)dz∫

P
(
Ot = O | wt = z

)
gt(z)dz

=

∫ (1−ρ
4 + ρ

41z∈iNO + ρ1z∈iO
)
φ
(
x; z − δO, σ̂I1

)
gt(z)dz

PO
.

This proves (IA.73).

To prove part (b), start with P
(
wt = z | Ot = O

)
=

1−ρ
4

+ ρ
4
1z∈iNO

+ρ1z∈iO
PO

. Multi-

plying by z and integrating, one gets E
(
wt | gt,O

)
=

∫
z
(

1−ρ
4

+ ρ
4
1z∈iNO

+ρ1z∈iO

)
gt(z)dz

PO
, and

by subtracting νt = E
(
wt | gt

)
one gets δt+1,O =

∫ ( 1−ρ
4

+ ρ
4
1z∈iNO

+ρ1z∈iO

)
(z−νt)gt(z)dz

PO
. But∫

(z − νt)gt(z)dz = 0, hence δt+1,O =
∫ ( ρ

4
1z∈iNO

+ρ1z∈iO

)
(z−νt)gt(z)dz

PO
, which proves (IA.74).

To compute the mean of gt+1,O(x), integrate the formula (IA.73) over x, and obtain

νt+1,O =
∫

( 1−ρ
4

+ ρ
4
1z∈iNO

+ρ1z∈iO )(z−δO)gt(z)dz

PO
. This is similar to the formula proved for

δt+1,O, except that νt is replaced by δO. One gets νt+1,O = δt+1,O + νt − δO, which proves

the first part of (IA.76).

For the second part of (IA.76), note that for any (not necessarily normal) distribution

g with mean ν and variance σ2
I ,
∫

(x+ a)2g(x)dx = σ2
I + (ν + a)2. Then,

(IA.82)

∫
(x− νt + δO)2gt+1,O(x)dx = τ2

t+1,O + (νt+1,O − νt + δO)2 = τ2
t+1,O + δ2

t+1,O.

One also integrates directly
∫

(x−νt+δO)2gt+1,O(x)dx by replacing gt+1,O(x) as in (IA.73).

Using the formula
∫

(x− νt + δO)2φ(x; z − δO, σ̂I1)dx = (z − νt)2 + (σ̂I
1)2, one obtains:

(IA.83)∫
(x− νt + δO)2gt+1,O(x)dx = (σ̂I

1)2 +

∫
gt(z)

(1−ρ
4 + ρ

41z∈iNO + ρ1z∈iO
)
(z − νt)2dz

PO
.

Putting together (IA.82) and (IA.83), one obtains the desired formula for τ2
t+1,O. Equa-

tion (IA.77) follows directly from (IA.74) and (IA.76). Finally, proving EO(δt+1,O) = 0 and

EO(Vt+1,O) = 0 is straightforward, which also implies equation (IA.78).

60



To prove part (c), first use (IA.72) to compute PO = 1−ρ
4 + ρ

4

(
Φ(hNO) − Φ(`NO)

)
+

ρ
(
Φ(hO)− Φ(`O)

)
. To prove the formula for δt+1,O, make the change of variable z′ = z−νt

τt

and denote by i′O = (`O, hO). Then,

δt+1,O =
ρτt
∫
i′NO

φ(z′)z′dz + ρτt
∫
i′O
φ(z′)z′dz

PO

=
ρ
4τt
(
φ(`NO)− φ(hNO)

)
+ ρτt

(
φ(`O)− φ(hO)

)
PO

.

A similar computation for Vt+1,O finishes the proof of (IA.79). Finally, by taking the average

of νt+1,O over O ∈ {BMO,BLO,SLO,SMO}, one obtains:

ν̄t+1 = f(νt) = νt −
∑
O
POδO

= νt −
1− ρ

4

∑
O
δO −

ρ

4

∑
O

(
Φ(hNO)− Φ(`NO)

)
δO − ρ

∑
O

(
Φ(hO)− Φ(`O)

)
δO

= νt − ρ
∑
O

(
Φ(hO)− Φ(`O)

)
δO,

(IA.84)

where the last equality follows from
∑
O δO = 0. If one differentiates the endpoints of i′O

with respect to νt, one gets − 1
τt

in all cases, hence f ′(νt) = 1−ρ
∑
O
(
φ(hO)−φ(`O)

)(
− 1
τt

)
δO.

Using δO ∈
{
ρ
β1 , γ

1 ρ
β1 ,−γ1 ρ

β1 ,− ρ
β1

}
, a straightforward calculation proves (IA.80).

To prove part (d), I substitute νt = 0 and τt = 1 in the formulas above. I only prove

the results for O = BMO and BLO, the proof for the other order types being symmetric.

To compute the probability of a BMO, I use the equality
∫ α1

α0 φ(z)dz =
∫∞
α1 φ(z)dz. This

implies
∫∞
α1 φ(z)dz = 1

2

∫∞
α0 φ(z)dz, from which one computes:

PBMO =
1− ρ

4
+
ρ

4

∫ α0

−α0

φ(z)dz + ρ

∫ ∞
α1

φ(z)dz

=
1− ρ

4
+
ρ

2

∫ α0

0
φ(z)dz +

ρ

2

∫ ∞
α0

φ(z)dz =
1− ρ

4
+
ρ

2

1

2
=

1

4
.

(IA.85)

The probability of a BLO is PBLO = 1−ρ
4 + ρ

4

∫ α0

−α0 φ(z)dz+ρ
∫ α1

α0 φ(z)dz. Using
∫ α1

α0 φ(z)dz =∫∞
α1 φ(z)dz, note that PBMO = PBLO, hence PBLO = 1

4 .

The normalized price impact of a BMO is:

(IA.86) δt+1,BMO =

ρ
4

∫ α0

−α0 φ(z)zdz + ρ
∫∞
α1 φ(z)zdz

PBMO
=

ρφ(α1)

1/4
=

ρ

β1
= δBMO.
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The normalized price impact of a BLO is:

δt+1,BLO =

ρ
4

∫ α0

−α0 φ(z)zdz + ρ
∫ α1

α0 φ(z)zdz

PBLO
=

ρ
(
φ(α0)− φ(α1)

)
1/4

=
φ(α0)− φ(α1)

φ(α1)

ρφ(α1)

1/4
= γ1 ρ

β1
= δBLO.

(IA.87)

By symmetry, it follows that δt+1,O = δO for all orders O ∈ {BMO,BLO,SLO,SMO}.

I now compute νt+1,O = νt − δO + δt+1,O = νt = 0. Also, τ̄2
t+1 = EO

(
τ2
t+1,O

)
=

EO
(
τ2
t + (σ̂I

1)2 − δ2
O
)
. But EO(δ2

O) = 1
4

(
( ρ
β1 )2 + (γ1 ρ

β1 )2 + (−γ1 ρ
β1 )2 + (− ρ

β1 )2
)

= (σ̂I
1)2,

hence τ̄2
t+1 = τ2

t + (σ̂I
1)2− (σ̂I

1)2 = τ2
t , from which τ̄t+1 = τt = 1. Thus, the posterior mean

is equal to 0 irrespective of the order O at t, while the posterior variance is equal to 1 on

average. This means that the normalized density N (0, 1) does not change.

As for the benchmark model, the existence of the equilibrium with no-order region

depends on certain properties of the information function I1 being true. These are stated in

Result IA.6 below. Conditional on these properties being true, this proves Proposition IA.4.

Proof of Proposition IA.4. This proof is essentially identical to that of Theorem 1. The

only difference is that the informed trader no longer faces a penalty ω ≥ γ∆ from not

trading. Instead, the commitment parameter is ω = 0. As a result, it is sometimes optimal

for the informed trader to submit no order and exit the model, if the signal wt is the no-order

region (−α0, α0). Indeed, if one applies Lemma A2 in the Appendix of the paper, it follows

that the normalized expected payoff of the informed trader from a BLO is ÛIBLO(wt) =

S1

2V I
1(ρ, wt) + J1(ρ, wt). But, by Result IA.6, J1 = 1, hence:

(IA.88) 2ÛIBLO(wt) = α1 − I1(ρ, α1) + 2I1(ρ, wt).

By Result IA.6, I1(ρ, w) is strictly increasing in w. The informed trader prefers BLO to

NO (no order) if and only if α1− I1(ρ, α1) + 2I1(ρ, wt) > 0. Hence, the worst-case scenario

for the informed trader is to observe a positive signal wt ≈ 0.

From Result IA.6, there always exists a solution α0
∗ to the system of equations (IA.46).

If α0
∗ > 0, then α0 = α0

∗ and ÛIBLO(α0) = α1−I1(ρ, α1)+2I1(ρ, α0) = 0, hence the informed

trader is indifferent between BLO and NO at the threshold wt = α0. This means that the

informed trader has a no-order region. The rest of the proof in this case now continues as

in Theorem 1 in the paper.
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If α0
∗ < 0, then α0 = 0 (by Definition IA.2), and ÛIBLO(0) = α1 − I1(ρ, α1) + 2I1(ρ, 0) >

α1 − I1(ρ, α1) + 2I1(ρ, α0
∗) = 0, which means that even when wt = 0 the trader still prefers

BLO to NO. Thus, the informed trader does not have a no-order region in this case. In this

case, by Definition IA.2, all the other parameters have the same values as in the benchmark

model, and the rest of the proof in this case continues as in Theorem 1 in the paper.

Result IA.6. For all ρ ∈ (0, 1), the functions I1(ρ, w), w−I1(ρ, w) and I1(ρ, w)−I1(ρ,−w)

are strictly increasing in w, and S1 > ∆1(1 + γ1). The system of equations (IA.46) in the

paper always has a real solution, although not necessarily with α0 > 0. Let I1(ρ, w, j) and

J1(ρ, w, j) be as in Definition 1 in the paper. Then, (i) I1 = I1(ρ, w, j) decreases in j if

w > 0, and (ii) J1(ρ, w, j) = 1.

I also include here the conditions on the preference parameter, ū > S/2.

Verification of Result IA.6. The function I1 is close to the function I, and hence its

properties are very similar to the properties of the information function. It remains to verify

that the system of equations (IA.46) always has a real solution, which is straightforward to

check. This property is related to the verification below of Result IA.3.

Verification of Result IA.3. The verification is essentially done by visual inspection of

Figure IA.9. It remains just to show the existence of the threshold ρ = ρ0 below which the

no-order region is empty. The worst-case scenario for the informed trader is when she gets

a positive signal wt which is very close to 0. In that case, a similar result to Lemma A2 in

the Appendix of the paper implies that the informed trader gets a continuation payoff from

BLO which is very close to S/2 + I1(ρ, 0)V . The rest of the verification is straightforward.

Consider thus the function:

(IA.89) f(ρ) =
S
2 + I(ρ, 0) V

∆
=
(
α− I(ρ, α) + 2I(ρ, 0)

) β

2ρ
.

Figure IA.12 shows the function f(ρ). The function f is strictly decreasing in ρ, and takes

both positive and negative values. Therefore, by continuity there must be some ρ0 ∈ (0, 1)

for which f(ρ0) = 0. By spline interpolation, one estimates:

(IA.90) ρ0 ≈ 0.1560.
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FIGURE IA.12

The Commitment Threshold

Figure IA.12 shows f(ρ) =
(
α − I(ρ, α) + 2I(ρ, 0)

)
β
2ρ as a function of the informed share ρ. The

Monte Carlo parameters are M = 5, 000 and L = 100.
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6.4 Private Information Processing

In the benchmark model, if an informed trader arrives at date t and submits a limit order,

she can compute the average signal at the execution of her limit order, but she can do this

computation only once, at t, after which she cannot condition on the subsequent order flow.

Thus, the informed trader becomes essentially uninformed after one trading round, and,

like the other patient uninformed traders in the order book, has no incentive to later cancel

her order. In this section, I provide some heuristic discussion regarding what happens if

informed traders can continue to process information correctly at least for the next few

trading rounds.

To get intuition for this situation, consider the case of an informed trader who observes

initially a moderately positive signal wt = vt−µt
V > 0 and submits a BLO. Then, if she can

correctly compute her posterior belief after observing the order flow, it may happen that

after adverse order flow (a sequence of buy orders, market or limit), the posterior mean of

her belief becomes negative. In that case, she can cancel the BLO, after which she has three

options: (i) submit an SLO, (ii) submit an SMO, or (iii) exit the model. I conjecture that

option (i) can be ruled out by out-of-equilibrium beliefs, as in the proof of Theorem 1 in the
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paper, because it provides information to the other limit order book traders. Option (ii) is

expensive, because by submitting a market order the informed trader loses half the bid–ask

spread. Moreover, it is unlikely that the informed trader’s belief switches from moderately

positive to extremely negative, to justify the submission of an SMO. Option (iii) is then the

most likely outcome, provided the exchange does not charge cancellation cost, or provided

that the informed trader does not worry about losing time priority in the book. In the

model setup, time priority does not matter because the tick size is 0, but in practice tick

size can be an important factor in the decision to cancel a limit order.

Another possibility is to leave the BLO in the book, but just modify the price to a lower

price, away from the market. This move has the advantage of lowering the expected negative

signal at execution, which, using the terms in the paper, is a form of “reverse slippage.”

Nevertheless, the informed trader now has to wait more. In the model, the waiting costs

are 0, but with positive waiting costs the decision to step away from the market is less

attractive.

Note also that signal shifts from moderately positive to extremely negative are rare.

Such an adverse move could occur if for instance the informed trader observed a series of

BMOs. Indeed, such order flow would increase the public mean µ, and therefore decrease her

private signal wt+τ . Consider, however, the case in which the informed share ρ is significantly

smaller than αβ ≈ 0.5306; denote this situation by ρ � αβ. Then, the normalized price

impact parameter satisfies:

(IA.91)
∆

V
=

ρ

β
� α.

This implies that, compared to the informed trader’s signal wt (which is between 0 and α),

the normalized change in public mean is significantly smaller, as long as the signal wt it is

not very close to 0. Hence, it would take a large number of BMOs to decrease the signal

wt+τ below 0. The ex-ante probability of such an adverse order flow is small. Conversely, if

ρ is large, then the informed trader quickly becomes uninformed, and hence her signal does

not change much after each order, either. One thus expects that adverse signal moves are

more likely when the informed share is in an intermediate range.

A formal analysis along the lines discussed above is beyond the scope of the present

paper. Yet, the arguments above suggest that allowing traders to continuously process

information correctly does not fundamentally alter the robustness of the main results.
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7 Stationary Filtering

In this section, I show that in a stationary equilibrium the variance of changes in the asset

value is the same as the variance of changes in the public mean. Let vt be a diffusion

process with no drift, and constant volatility σv. Suppose each period the market gets

(public) information about vt. Let Jt be the public information set available at time t.

Denote by µt = E(vt|Jt) = Et(vt) the public mean at time t (i.e., the expected asset value

given all public information). (The subscript t indicates conditioning on the information

set, Jt.) This filtration problem is called “stationary” if the public variance is constant over

time: Vart(vt) = Vart+1(vt+1). This means that each period the public has the same prior

variance about the asset value.

Proposition IA.5. The filtration problem is stationary if and only if

Var(vt+1 − vt) = Var(µt+1 − µt).

Proof. The value vt can be decomposed into two orthogonal (uncorrelated) components:

vt = µt + µt. Moreover, Var(µt) = Vart(vt). Similarly, vt+1 = µt+1 + µt+1, and Var(µt+1) =

Vart+1(vt+1). So the stationary condition reads Var(vt+1 − µt+1) = Var(vt − µt).

The difference vt+1 − µt can be decomposed in two ways:

vt+1 − µt = (vt+1 − µt+1) + (µt+1 − µt)

= (vt+1 − vt) + (vt − µt).

First, I check that these are orthogonal decompositions. The first condition is that cov(vt+1−

µt+1, µt+1−µt) = 0, i.e., that cov(µt+1, µt+1−µt) = 0. As cov(µt+1, µt+1) = 0, one can just

check that cov(µt+1, µt) = 0. Note that µt+1 has zero conditional mean: Et+1(µt+1) = 0. By

the law of iterated expectations, one also has Et(µt+1) = E(µt+1) = 0. Then, cov(µt+1, µt) =

E(µt+1µt) − E(µt+1)E(µt) = E(µt+1µt) = EEt(µt+1µt) = E(µt Et(µt+1)) = 0. The second

condition is that cov(vt+1−vt, vt−µt) = 0. But vt has independent increments, so vt+1−vt

is independent of vt and anything contained in the information set at time t. (This is true

as long as the market does not get at t information about the asset value at a future time.)

Now, I use the orthogonal decompositions to decompose the variance of vt+1 − µt:

Var(vt+1 − µt+1) + Var(µt+1 − µt) = Var(vt+1 − vt) + Var(vt − µt). But being stationary is

equivalent to Var(vt+1 − µt+1) = Var(vt − µt), which is then equivalent to Var(vt+1 − vt) =

Var(µt+1 − µt).
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