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ABSTRACT

We show that equivariant elliptic cohomology, as defined by I. Grojnowski, gives a

natural cohomological proof of the rigidity theorem of Witten for the elliptic genus.

We also state and prove a rigidity theorem for families of elliptic genera, and show the

existence for spin vector bundles of a Thom class (section) in S1-equivariant elliptic

cohomology. This in turn allows us to define equivariant elliptic pushforwards with the

correct properties.

Finally, we give a description of S1-equivariant K-theory in terms of equivariant coho-

mology, and show that a twisted version of the Chern character becomes an isomorphism.
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1. Introduction

The classical, or level 2, elliptic genus is defined (see Landweber [18], p.56) as the

Hirzebruch genus with exponential series the Jacobi sine s(x). It is known to physicists

as the supercharge of a supersymmetric nonlinear sigma model, and to mathematicians

in connection with the mysterious field of elliptic cohomology (see Segal [23]).

A striking property of the elliptic genus is its rigidity with respect to group actions.

This was conjectured by Witten in [26], where he used heuristic quantum field theory

arguments to support it.

Rigorous mathematical proofs were soon given by Taubes [25], Bott & Taubes [6],

and K. Liu [19]. While Bott & Taubes’s proof of the rigidity theorem involved the local-

ization formula in ordinary equivariant cohomology, Liu’s proof involved the modularity

properties of the elliptic genus. The question remained however whether one could find

a direct connection between the rigidity theorem and elliptic cohomology.

Earlier on, Atiyah & Hirzebruch [2] had used pushforwards in equivariant K-theory to

prove the rigidity of the Â-genus for spin manifolds. Following this idea, H. Miller [20]

interpreted the equivariant elliptic genus as a pushforward in the Borel (completed)

equivariant elliptic cohomology, and posed the problem of developing and using a non-

completed S1-equivariant elliptic cohomology, which didn’t exist at that time, to prove

the rigidity theorem.

In 1994 I. Grojnowski [13] proposed a noncompleted equivariant elliptic cohomology

with complex coefficients. For G a compact connected Lie group he defined E∗
G(−)

as a coherent holomorphic sheaf over a certain variety XG constructed from a given

elliptic curve. Grojnowski also constructed pushforwards in this theory. (At about the

same time and independently, Ginzburg, Kapranov and Vasserot [11] gave an axiomatic

description of equivariant elliptic cohomology.)

Given Grojnowski’s construction, it seemed natural to try to use S1-equivariant el-

liptic cohomology to prove the rigidity theorem. In doing so, we noticed that our proof

relies on a translation and generalization of Bott & Taubes’ transfer formula (see [6]).

And this generalization of the transfer formula turns out to be essentially equivalent to

the existence of a Thom class (or orientation) in S1-equivariant elliptic cohomology.
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One can generalize the results of this thesis in several directions. One is to extend

the rigidity theorem to families of elliptic genera, which we do in Theorem 6.7. Anohter

would be to generalize from G = S1 to an arbitrary connected compact Lie group,

or to replace complex coefficients with rational coefficients for all cohomology theories

involved. Such generalizations will be treated elsewhere.

2. Statement of results

All the cohomology theories involved in this paper have complex coefficients. If X is

a finite S1-CW complex, H∗
S1(X) denotes its ordinary S1-equivariant cohomology with

complex coefficients (for a description of this theory see the paper [1] of Atiyah & Bott).

Let E be a nonsingular elliptic curve over C. Let X be a finite S1-CW complex (e.g. a

compact S1-manifold). Then Grojnowski defines the S1-equivariant elliptic cohomology

E∗
S1(X) as a coherent analytic sheaf of superalgebras (i.e. Z/2-graded algebras) over

E. His definition uses a choice of a global isomorphism E ∼= S1 × S1. We are going to

give an invariant definition of E∗
S1(−), as a functor from the category of finite S1-CW

complexes to the category of sheaves of OE-superalgebras.

THEOREM A. E∗
S1(−) is an S1-equivariant cohomology theory with values in the

category of coherent analytic sheaves of OE-superalgebras.

If f : X → Y is a complex oriented map between compact S1-manifolds, Grojnowski

also defines equivariant elliptic pushforwards. They are maps of sheaves of OE-modules

fE
! : E∗

S1(X)twisted → E∗
S1(Y )

satisfying properties similar to those of a pushforward. E∗
S1(X)twisted has the same

stalks as E∗
S1(X), but the gluing maps are different. (See Section 5.)

The construction of fE
! has two steps. First, one defines local pushforwards, at the

level of stalks. Then one tries to assemble them into a sheaf map between E∗
S1(X) and

E∗
S1(Y ). This fails, because local pushforwards do not glue well. However, if one twists

E∗
S1(X), i.e. one changes the gluing maps, then fE

! becomes a map of sheaves from

E∗
S1(X)twisted to E∗

S1(Y ).
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In Grojnowski’s preprint, the existence of the local pushforwards is merely stated.

In spelling out the details, we realized that the proof (which is given in Corollary 5.4)

implies in particular that the equivariant elliptic genus of a compact S1-manifold is

meromorphic everywhere and holomorphic at zero. More precisely, we know that the

equivariant genus of an S1-manifold can be represented as a power series in one variable

u = the generator of H∗BS1. Then we have

PROPOSITION B. The S1-equivariant elliptic genus of a compact S1-manifold is

the Taylor expansion at zero of a function on C which is holomorphic at zero and mero-

morphic everywhere.

This question was posed by H. Miller and answered independently by Dessai &

Jung [7], who use a result in complex analysis suggested by T. Berger.

Grojnowski’s construction raises a few natural questions. First, can we say more

about E∗
S1(X)twisted? The answer is given in Proposition 6.8, where we show that, up

to an invertible sheaf, E∗
S1(X)twisted is the S1-equivariant elliptic cohomology of the

Thom space of ν(f), the stable normal bundle to f .

This suggests looking for a (Thom) section in E∗
S1(X)twisted. More generally, given

a real oriented vector bundle V → X, we can twist E∗
S1(X) in a similar way to obtain

a sheaf, which we denote by E∗
S1(X)[V ]. When does such a Thom section in E∗

S1(X)[V ]

exist? The answer is the following key result:

THEOREM C. If V → X is a spin S1-vector bundle over a finite S1-CW complex,

then the element 1 in the stalk of E∗
S1(X)[V ] at zero extends to a global section, called

the Thom section.

The sheaf E∗
S1(X)[V ] is regarded here not on E, but on a double cover Ẽ of E, for

reasons explained in the beginning of Section 6.

In proving Theorem C, one comes very close to the proof of the rigidity theorem given

by Bott & Taubes in [6]. In fact, Theorem C is essentially a generalization of Bott &

Taubes’ transfer formula. Armed with this result, the rigidity theorem of Witten follows

easily. But the slightly greater level of generality allows us to extend the rigidity theorem
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to families of elliptic genera. The question of stating and proving such a theorem was

posed by H. Miller in [21].

THEOREM D. (Rigidity for families) Let π : E → B be an S1-equivariant fibration

such that the fibers are spin in a compatible way, i.e. the projection map π is spin

oriented. Then the elliptic genus of the family, which is πE
! (1) ∈ H∗∗

S1(B), is constant as

a rational function in u (i.e. if we invert the generator u of C[[u]], over which H∗∗
S1(B)

is a module).

Here H∗∗(X) denotes the formal Laurent series over H∗(X) (as defined in Dyer [9],

p. 58), and H∗∗
S1(B) = H∗∗(B ×S1 ES1), where B ×S1 ES1 is the Borel construction.

H∗∗
S1(B) can be alternatively be thought as the completion of H∗

S1(B) with respect to

the ideal generated by u in H∗
S1(point) = C[u]. For every finite S1-CW complex B we

have the formula

H∗∗
S1(B) ∼= H∗

S1(B)⊗C[u] C[[u]] .

Notice that, while H∗
S1(B) is a Z-graded object, H∗∗

S1(B) is only Z/2-graded, by its even

and odd part.

A different path of research was taken in Section 4. There we show that a sheaf

K∗
S1(X)alg similar to E∗

S1(X), but constructed over C× instead of the elliptic curve

E, gives S1-equivariant K-theory after taking global sections. K∗
S1(X)alg is constructed,

just like E∗
S1(X), by gluing together the equivariant cohomology of subspaces of X fixed

by different subgroups of S1. The map which gives the isomorphism of K∗
S1(X) with

the global sections in K∗
S1(X)alg is some kind of “twisted” equivariant Chern character.

This seems to give a satisfactory way in which the S1-equivariant Chern character from

K∗
S1(X) to H∗∗

S1(X) (which is not an isomorphism in general) can be made into an

isomorphism, if the target is seen in this sheafified version over C×. The fact that the

result is the same when we use a general Lie group G represents work in progress.

Baum, Brylinski, and MacPherson [4] give a description of the G-equivariant K-theory

of a space X as a sheaf over the space of orbits X/G, but except in very special cases

they fail to show the connection with equivariant cohomology. Block and Getzler [5]

construct a sheaf, but they obtain cyclic cohomology instead of equivariant K-theory.
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The closest to our construction seems to be the work of Duflo and Vergne [8], but the

authors cannot prove that their construction yields indeed equivariant K-theory. For

one thing, they cannot prove Mayer-Vietoris, the reason being that they work directly

with the sections of the sheaf, for which it is much harder to prove Mayer-Vietoris.

Mayer-Vietoris is easy to show for our sheaf, though, and we do this in Proposition 3.9.

Then we use the fact that for K-theory, the sheaf is algebraic coherent over an affine

scheme (C×), so taking global sections preserve exactness, by a classical theorem of

Grothendieck. The problem with Duflo and Vergne’s sheaf is that it is defined using

smooth functions on the group, so we don’t have the machinery of algebraic geometry

to prove general results.

We should observe also that the twisting of the Chern character mentioned above is

rather a translation performed over the special points. This resembles a lot the transla-

tion we have to perform while proving rigidity, which Bott & Taubes call the “transfer

formula”. The connection between the twisted Chern character and the transfer formula

are, in our opinion, a good motivation for regarding generalized equivariant cohomology

theories in this sheafified way. In fact, one could notice that the whole HKR [17] has

this sheafifying touch. It is just the fact that they use a finite group, which saves them

from being forced to pass to a continuous family of stalks.

3. S1-equivariant elliptic cohomology

In this section we give, following Grojnowski [13], the construction of S1-equivariant

elliptic cohomology with complex coefficients. Given E an elliptic curve over C with

structure sheaf OE, S1-equivariant elliptic cohomology is defined as a contravariant

functor from the category of pairs of finite S1-CW complexes to the abelian category

of coherent analytic sheaves of OE-modules: (X, A) → E∗
S1(X, A). Moreover, E∗

S1(X)

turns out to be a sheaf of OE-superalgebras.

Let us start with an elliptic curve E over C. Choose an identification of C with the

universal cover of E. Let θ be a local inverse around zero to the covering map C → E.

We call θ an additive uniformizer. Any two such uniformizers differ by a nonzero

scalar multiple. Fix an additive uniformizer θ.
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Definition 3.1. Fix a neighborhood Vθ of zero in E such that θ : Vθ → θ(Vθ) ⊂ C is a

homeomorphism. We say that a neighborhood V of α ∈ E is small if t−α(V ) ⊆ Vθ. t−α

is translation by −α in E.

Let X be a finite S1-CW complex. Let α ∈ E. We say that α is a division point of

E of order n > 0 if nα = 0 and n is the smallest positive number with this property. If

H ⊆ S1 is a subgroup, denote by XH the submanifold of X fixed by each element of H.

Let Zn ⊆ S1 be the cyclic subgroup of order n.

Definition 3.2.

Xα :=

 XZn , if α has exact order n;

XS1
, otherwise.

Suppose we are given an S1-equivariant map of pairs of S1-CW complexes f : (X, A)→

(Y, B), i.e. an S1-equivariant map f : X → Y such that f(A) ⊆ B. A point α ∈ E is

called special with respect to f if at least one of Xα, Aα, Y α, Bα is not equal to XS1
,

AS1
, Y S1

, BS1
respectively. When it is clear what f is, we simply call α special.

An indexed open cover U = (Uα)α∈E of E is said to be adapted to f if it satisfies the

following conditions:

1. Uα is a small open neighborhood of α ∈ E;

2. If α is not special, then Uα contains no special point;

3. If α 6= α′ are special points, Uα ∩ Uα′ = ∅.

A point α ∈ E is called special with respect to the pair (X, A) if it is special with

respect to the identity function id : (X, A) → (X, A). α is called special with respect to

X if it is special with respect to the pair (X, ∅).

Definition 3.3. If (X, A) is a pair of finite S1-CW complexes, we define the holomor-

phic S1-equivariant cohomology of (X, A) to be

HO∗
S1(X, A) = H∗

S1(X, A)⊗C[u] OC,0 .
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OC,0 is the ring of germs of holomorphic functions at zero in the variable u, or al-

ternatively it is the subring of C[[u]] of convergent power series with positive radius of

convergence.

We are going to define now a sheaf F = Fθ,U over E whose stalk at α ∈ E is isomorphic

to HO∗
S1(Xα, Aα). Recall that, in order to give a sheaf F over a topological space,

it is enough to give an open cover (Uα)α of that space, and a sheaf Fα on each Uα

together with isomorphisms of sheaves φαβ : Fα|Uα∩Uβ
−→ Fβ|Uα∩Uβ

, such that the

cocycle condition φβγφαβ = φαγ is satisfied on Uα ∩ Uβ ∩ Uγ . The sheaf F is unique up

to isomorphism, with the condition F|Uα

∼= Fα.

Consider an adapted open cover U = (Uα)α∈E. Such a cover exists, because X is a

finite S1-CW complex, so the set of special points is a finite subset of E.

Definition 3.4. Define a sheaf Fα on Uα by declaring for any open U ⊆ Uα

Fα(U) := H∗
S1(Xα, Aaa)⊗C[u] OE(U − α) ,

where the map C[u]→ OE(U −α) is given by the sending u to the uniformizer θ (we use

the smallness of Uα here). U −α represents the translation of U by −α, and OE(U −α)

is the ring of holomorphic functions on U − α. The restriction maps of the sheaf are

defined so that they come from those of the sheaf OE.

First we notice that we can make Fα into a sheaf of OE |Uα
-modules: if U ⊆ Uα, we

want an action of f ∈ OE(U) on Fα(U). The translation map tα : U − α → U , which

takes u to u + α gives a translation t∗α : OE(U) → OE(U − α), which takes f(u) to

f(u + α). Then we take the result of the action of f ∈ OE(U) on µ ⊗ g ∈ Fα(U) =

H∗
S1(Xα, Aα)⊗C[u] OE(U −α) to be µ⊗ t∗αf · g. Moreover, Fα is coherent because, since

Xα and Aα are finite, H∗
S1(Xα, Aα) is a finitely generated C[u]-module.

Now for the second part of the definition of F, we have to glue the different sheaves

Fα we have just constructed. If Uα∩Uβ 6= ∅ we need to define an isomorphism of sheaves

φαβ : Fα|Uα∩Uβ
−→ Fβ|Uα∩Uβ

which satisfies the cocycle condition. Recall that we started

with an adapted open cover (Uα)α∈E. Because of the condition 3 in Definition 3.2, α
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and β cannot be both special, so we only have to define φαβ when, say, β is not special.

So assume Xβ = XS1
. Consider an arbitrary open set U ⊆ Uα ∩ Uβ.

Definition 3.5. Define φαβ on U as the composite of the following isomorphisms:

(∗)

Fα(U) = H∗
S1(Xα, Aα)⊗C[u] OE(U − α)

∼−→ H∗
S1(Xβ, Aβ)⊗C[u] OE(U − α)

∼−→ (H∗(Xβ, Aβ)⊗C C[u])⊗C[u] OE(U − α)
∼−→ H∗(Xβ , Aβ)⊗C OE(U − α)
∼−→ H∗(Xβ , Aβ)⊗C OE(U − β)
∼−→ H∗

S1(Xβ, Aβ)⊗C[u] OE(U − β)

= Fβ(U) .

The map on the second row from the top is the natural one: i∗ ⊗ 1, where

i : (Xβ , Aβ)→ (Xα, Aα) is the inclusion. i∗ ⊗ 1 is an isomorphism because

a) If α is not special, then Xα = XS1
= Xβ, and similarly Aα = Aβ, so i∗ ⊗ 1 is

the identity.

b) If α is special, then either Xα 6= Xβ or Aα 6= Aβ. However, we have (Xα)S1
=

XS1
= Xβ, and similarly (Aα)S1

= Aβ . Then we can use the Atiyah–Bott

localization theorem in equivariant cohomology from [1]. This says that i∗ :

H∗
S1(Xα, Aα) → H∗

S1(Xβ , Aβ) is an isomorphism after inverting u. So it is

enough to show that θ is invertible in OE(U −α), because this would imply that

i∗ becomes an isomorphism after tensoring with OE(U − α) over C[u]. Now,

because α is special, the condition 2 in Definition 3.2 says that α /∈ Uβ. But

U ⊆ Uα∩Uβ, so α /∈ U , hence 0 /∈ U −α. This is equivalent to θ being invertible

in OE(U − α).

The isomorphism on the third row comes from the isomorphism H∗
S1(Xβ, Aβ) =

H∗(Xβ, Aβ)⊗CC[u], since since Xβ and Aβ are fixed by the S1-action. The isomorphism

on the fifth row is given by the translation t∗β−α : OE(U − α)→ OE(U − β).
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Remark 3.6. To simplify notation, we can describe φαβ as the composite of the fol-

lowing two maps:

H∗
S1(Xα, Aα)⊗C[u] OE(U − α)

i∗

H∗
S1(Xβ, Aβ)⊗C[u] OE(U − α)

t∗β−α

H∗
S1(Xβ, Aβ)⊗C[u] OE(U − β) .

By the first map we really mean i∗⊗1. The second map is not 1⊗ t∗β−α, because t∗β−α is

not a map of C[u]-modules. However, we use t∗β−α as a shorthand for the corresponding

composite map specified in (∗).

One checks easily now that φαβ satisfies the cocycle condition: Suppose we have three

open sets Uα, Uβ and Uγ such that Uα ∩ Uβ ∩ Uγ 6= ∅. Because our cover was chosen

to be adapted, at least two out of the three pairs (Xα, Aα), (Xβ, Aβ) and (Xγ , Aγ) are

equal to (XS1
, AS1

). Thus the cocycle condition reduces essentially to t∗γ−βt∗β−α = t∗γ−α.

This completes the definition of F = Fθ,U. One can check easily that F is a coherent

analytic sheaf of OE-superalgebras.

We can remove the dependence of F on the adapted cover U as follows: Let U and V be

two covers adapted to (X, A). Then any common refinement W is going to be adapted

as well, and the corresponding maps of sheaves Fθ,U → Fθ,W ← Fθ,V are isomoprhisms

on stalks, hence isomorphisms of sheaves. Therefore we can omit the subscript U, and

write F = Fθ.

Next we want to show that Fθ is independent of the choice of the additive uniformizer

θ.

Proposition 3.7. If θ and θ′ are two additive uniformizers, then there exists an iso-

morphism of sheaves of OE-superalgebras fθθ′ : Fθ → Fθ′. If θ′′ is a third additive

uniformizer, then fθ′θ′′fθθ′ = ±fθθ′′.
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Proof. We modify slightly the notations used in Definition 3.4 to indicate the dependence

on θ:

Fθ
α(U) := H∗

S1(Xα, Aaa)⊗θ
C[u] OE(U − α) .

(u is sent to θ via the algebra map C[u] → OE(U − α)). If θ′ is another additive

uniformizer, there exists a nonzero constant c ∈ C such that θ = cθ′. Choose a square

root of c and denote it by c1/2 (we need the square root because u is in homogeneous

degree 2). For a homogeneous element x ∈ H∗
S1(Xα, Aaa), define a map fθθ′,α : Fθ

α(U)→

Fθ′
α (U) by

x⊗θ g 7→ c|x|/2x⊗θ′ g .

|x| is the homogeneous degree of x. One can easily check that fθθ′,α is a map of sheaves

of OE-superalgebras. We also have φθ′
αβ ◦fθθ′,α = fθθ′,β ◦φθ

αβ , which means that the maps

fθθ′,α glue to define a map of sheaves fθθ′ : Fθ → Fθ′ .

The equality fθ′θ′′fθθ′ = ±fθθ′′ comes from (θ′/θ′′)1/2(θ/θ′)1/2 = ±(θ/θ′′)1/2. �

Definition 3.8. The S1-equivariant elliptic cohomology of the pair (X, A) is defined to

be the sheaf F, which, according to the previous results does not depend on the adapted

open cover U or on the additive uniformizer θ.

For E∗
S1(−) to be a cohomology theory, we also need naturality. Let f : (X, A) →

(Y, B) be an S1-equivariant map of pairs of finite S1-CW complexes. We want to define a

map of sheaves f∗ : E∗
S1(Y, B)→ E∗

S1(X, A) with the properties that 1∗(X,A) = 1E∗
S1 (X,A)

and (fg)∗ = g∗f∗. Choose U an open cover adapted to f , and θ an additive uniformizer

of E. Since f is S1-equivariant, for each α we get by restriction a map of pairs fα :

(Xα, Aα)→ (Y α, Bα). This induces a map

H∗
S1(Y α, Bα)⊗C[u] OE(U − α)

f∗α⊗1−→ H∗
S1(Xα, Aα)⊗C[u] OE(U − α) .

To get our global map f∗, we only have to check that the maps f∗α glue well, i.e.

that they commute with the gluing maps φαβ . This follows easily from the naturality of

ordinary equivariant cohomology, and from the naturality in (X, A) of the isomorphism
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H∗
S1(XS1

, AS1
) ∼= H∗(XS1

, AS1
) ⊗C C[u]. Now we are in the position to state the

theorem–definition of Grojnowski S1-equivariant elliptic cohomology.

Theorem 3.9. E∗
S1(−) is an S1-equivariant cohomology theory with values in the cat-

egory of coherent analytic sheaves of OE-superalgebras.

Proof. First we have to define the coboundary map δ : E∗
S1(A) → E∗+1

S1 (X, A). This is

obtained by gluing the maps

H∗
S1(Aα)⊗C[u] OE(U − α) δα⊗1−→ H∗+1

S1 (Xα, Aα)⊗C[u] OE(U − α) ,

where δα : H∗
S1(Aα) → H∗+1

S1 (Xα, Aα) is the usual coboundary map. The maps δα ⊗ 1

glue well, because δα is natural.

To check the usual axioms of a cohomology theory (naturality, exact sequence of a

pair, and excision) for E∗
S1(−), recall that it was obtained by gluing the sheaves Fα along

the maps φαβ . Since the sheaves Fα were defined using H∗
S1(Xα, Aα), the properties of

ordinary S1-equivariant cohomology pass on to E∗
S1(X, A). �

This proves THEOREM A stated in Section 2. Here perhaps we should mention that

one can make E∗
S1(−) to take values in the category of coherent algebraic sheaves over

E rather than the category of coherent analytic sheaves. This follows from a theorem of

Serre which says that the the categories of coherent holomorphic sheaves and coherent

algebraic sheaves over a projective variety (in particular over E) are equivalent. (See for

example [12], Theorem A, p. 75.)

Now the description we gave above for E∗
S1(X) was good to prove that E∗

S1(−) is

a cohomology theory, but it is hard to work with it in practice. This is because the

open cover (Uα)α∈E has too many elements. To remedy this, we are going to use a

finite cover of E: Start with an adapted open cover (Uα)α∈E. Recall that the set of

special points with respect to X is finite. Denote this set by {α1, . . . , αn}. Denote by

Uα0 := E \ {α1, . . . , αn}. To simplify notation, denote by Ui := Uαi , for all 0 ≤ i ≤ n.

Definition 3.10. (See Definitions 3.4 and 3.5.) On each Ui, with 0 ≤ i ≤ n, we are

going to define a sheaf G as follows:
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a) If 1 ≤ i ≤ n, then ∀U ⊆ Ui,

Gi(U) := H∗
S1(Xαi)⊗C[u] OE(U − αi) .

The map C[u]→ OE(U − αi) was described in Definition 3.4.

b) If i = 0, then ∀U ⊆ U0,

Gi(U) := H∗(XS1
)⊗C OE(U) .

Now glue each Gi to G0 via the map of sheaves φi0 defined as the composite of the

following isomomorphisms (U ⊆ Ui∩U0): H∗
S1(Xαi)⊗C[u]OE(U−αi)

i∗⊗1−→ H∗
S1(XS1

)⊗C[u]

OE(U − αi)
∼=−→ H∗(XS1

)⊗C OE(U − αi)
t∗−αi−→ H∗(XS1

)⊗C OE(U).

Since there cannot be three distinct Ui with nonempty intersection, there is no cocycle

condition to verify.

Claim 3.11. The sheaf G described in the previous definition is isomorphic to F, thus

allowing an alternative definition of E∗
S1(X).

Proof. One notices that U0 = ∪{Uβ | β nonspecial}, because of the third condition in

the definition of an adapted cover. If U ⊆ ∪βUβ, a global section in F(U) is a collection

of sections sβ ∈ F(U ∩ Uβ − β) which glue, i.e. t∗β−β′sβ = sβ′ . So t∗−βsβ = t∗−β′sβ′ in

G(U ∩Uβ∩Uβ′), which means that we get an element in G(U), since the Uβ’s cover U . So

F|U0
∼= G|U0

. But clearly F|Ui
∼= G|Ui

for 1 ≤ i ≤ n, and the gluing maps are compatible.

Therefore F ∼= G. �

As it is the case with any coherent sheaf of OE-modules over an elliptic curve, E∗
S1(X)

splits (noncanonically) into a direct sum of a locally free sheaf, i.e. the sheaf of sections

of some holomorphic vector bundle, and a sum of skyscraper sheaves.

Given a particular X, we can be more specific: We know that H∗
S1(X) splits non-

canonically into a free and a torsion C[u]-module. Given such a splitting, we can speak

of the free part of H∗
S1(X). Denote it by H∗

S1(X)free. The map

H∗
S1(X)free

i∗−→ H∗
S1(XS1

)
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is an injection of finitely generated free C[u]-modules of the same rank (by the local-

ization theorem). C[u] is a p.i.d., so by choosing appropriate bases in H∗
S1(X)free and

H∗
S1(XS1

), the map i∗ can be written as a diagonal matrix D(un1 , . . . , unk), ni ≥ 0.

Since i∗1 = 1, we can choose n1 = 0.

So at the special points αi, we have the map H∗
S1(Xαi)free

i∗−→ H∗
S1(XS1

), which in

appropriate bases can be written as a diagonal matrix D(1, un2 , . . . , unk). This gives

over Ui ∩ U0 the transition functions u 7→ D(1, un2 , . . . , unk) ∈ GL(n, C). However, we

have to be careful since the basis of H∗
S1(XS1

) changes with each αi, which means that

the transition functions are diagonal only up to a (change of base) matrix. But this

matrix is invertible over C[u], so we get that the free part is a sheaf of sections of a

holomorphic vector bundle, and moreover we can describe it explicitly.

An interesting question is what holomorphic vector bundles one gets if X varies.

Recall that holomorphic vector bundles over elliptic curves were classified by Atiyah in

1957.

Example 3.12. Calculate E∗
S1(X) for X = S2(n) = the 2-sphere with the S1-action

which rotates S2 n times around the north-south axis as we go once around S1. If

α is an n-division point, then Xα = X. Otherwise, Xα = XS1
, which consists of two

points: {P+, P−}, the North and the South poles. Now H∗
S1(S2(n)) = H∗(BS1∨BS1) =

{(f, g) ∈ C[u]⊕ C[u] | f(0) = g(0)}. Denote this by C[u]⊕0 C[u]. C[u] acts diagonally.

H∗
S1(X) i∗−→ H∗

S1(XS1
) is the inclusion C[u]⊕0 C[u] ↪→ C[u]⊕ C[u].

Choose the bases

a) {(1, 1), (u, 0)} of C[u]⊕0 C[u];

b) {(1, 1), (1, 0)} of C[u]⊕ C[u].

Then H∗
S1(X) ∼−→ C[u]⊕ C[u] by (P (u), Q(u)) 7→ (P, Q−P

u ), and H∗
S1(XS1

) ∼−→ C[u]⊕

C[u] by (P (u), Q(u)) 7→ (P,Q−P ). Hence i∗ is given by the diagonal matrix D(1, u). So

E∗
S1(X) looks locally like OCP 1 ⊕ OCP 1(−1). This happens at all the n-division points

of E, so E∗
S1(X) ∼= OE ⊕ OE(∆), where ∆ is the divisor which consists of all n-division

points of E, with multiplicity 1.



18

One can also check that the sum of all n-division points is zero, so by Abel’s theorem

the divisor ∆ is linearly equivalent to −n2 · 0. Thus E∗
S1(S2(n)) ∼= OE ⊕ OE(−n2 · 0).

We stress that the decomposition is only true as sheaves of OE-modules.

Remark 3.13. Notice that S2(n) is the Thom space of the S1-vector space C(n), where

z acts on C by complex multiplication with zn. This means that the Thom isomorphism

doesn’t hold in S1-equivariant elliptic cohomology, because E∗
S1(point) = OE, while the

reduced S1-equivariant elliptic cohomology of the Thom space Ẽ
∗
S1(S2(n)) = OE(−n2·0).

Coming back to a previous observation, from the work of Serre, GAGA [24], we

know that the categories of coherent holomorphic sheaves and coherent algebraic sheaves

over a projective variety are equivalent. Hence we could replace E∗
S1(X), which is

holomorphic, by its algebraic correspondent via the GAGA functor. This means that

the S1-equivariant elliptic cohomology functor E∗
S1(−) can be made to take values in

the category of algebraic coherent sheaves over the elliptic curve E.

However, for the purposes of Section4, we would like to describe the algebraic version

of E∗
S1(−) as a subsheaf of the holomorphic one. For this, it is enough to have a criterion

which tells us when a local section in the holomorphic sheaf is algebraic. So, to work in

complete generality, let Fhol be a holomorphic coherent sheaf over the projective variety

X. Denote by Ohol
X and O

alg
X the holomorphic and the algebraic structure sheaves of

X, respectively. If Galg is some algebraic coherent sheaf over X, then we can associate

canonically to it a holomorphic one by Galg 7→ Ghol := Galg ⊗
Oalg

X
Ohol

X . For such a

sheaf Ghol there is a canonical notion of an algebraic section over any Zariski open

U ⊆ X: s ∈ Ghol(U) is algebraic if and only if it is in the image of the inclusion map

Galg(U) ↪→ Ghol(U).

Now coming back to Fhol, by GAGA we know that there is an algebraic coherent sheaf

Galg over X such that Fhol holomorphically isomorphic via Φ to Ghol = Galg ⊗
Oalg

X
Ohol

X .

Let s ∈ Fhol(U) be some holomorphic section over the Zariski open U . We say that s

is algebraic if Φ(s) is algebraic in Ghol(U). To check that this definition is independent

of the choice of G and Φ, let H and Ψ be other two similar choices. Then Ψ ◦ Φ−1 is a

holomorphic section in the holomorphic coherent sheaf Hom(Ghol,Hhol). For this sheaf
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we have a well defined notion of an algebraic section, and by applying GAGA again, it

follows that a global holomorphic section has to be algebraic. This means that Ψ ◦Φ−1

takes algebraic sections to algebraic sections, so our definition of an algebraic section of

Fhol is well defined. So we can define now the algebraic version of Fhol by

Falg(U) := {s ∈ Fhol(U) | s is algebraic} .

4. S1-Equivariant K-Theory

The purpose of this section is to motivate the definition we gave for the S1-equivariant

elliptic cohomology. We are going to show that a sheaf construction entirely parallel to

the one in the previous section, but using the multiplicative algebraic group C× instead

of the elliptic curve C/Λ, yields indeed S1-equivariant K-theory, after taking the global

sections. Again the division points of the algebraic group (for C× they are the roots of

1) will come to play an essential role.

For S1-equivariant cohomology the appropriate algebraic group is C with addition,

so here there is only one division point: zero. Therefore, H∗
S1(X) itself can be regarded

as a sheaf, whose only special part lies at zero (everywhere else the sheaf is built us-

ing H∗
S1(XS1

)). In this sense, equivariant cohomology is the simplest such equivariant

theory, and one can expect other theories to be built out of it.

This sheaf construction of S1-equivariant K-theory obtained by gluing together the S1-

equivariant cohomology of various subcomplexes Xα of X also answers in a satisfactory

way the problem that the equivariant Chern character K∗
S1(X)

chS1−→ H∗∗
S1(X) fails to

be and isomorphism, although the nonequivariant Chern character K∗(X) ch−→ H∗∗(X)

is. (Of course, we work at least with rational coefficients.) In fact, we will see that a

suitably modified equivariant Chern character gives indeed an isomorphism, when we

use instead of H∗∗
S1(X) the above mentioned sheaf construction.

We are going to discuss elsewhere the full story on the description of G-equivariant

K-theory using G-equivariant cohomology. For the purposes of this paper however, we

will restrict ourselves to the case when G = S1.
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A good reference concerning equivariant K-theory, is G. Segal’s paper [22]. If X is a

finite S1-CW complex, then its S1-equivariant K-theory K∗
S1(X) is a finitely generated

module over K∗
S1(pt) = R(S1), the representation ring of S1. If λ is the representation

of S1 given by the inclusion S1 ↪→ C× = End C, then R(S1) = C[λ, λ−1], the ring of

Laurent polynomials in λ. But Spec C[λ±1] = C×, hence one can regard K∗
S1(X) as

a coherent algebraic sheaf over C× (see Hartshorne [14]). The stalk of this sheaf at

a point a in C× is the localization K∗
S1(X)(λ−a) with respect to the maximal ideal in

C[λ±1] generated by λ− a.

On the other hand, we will see that by simply transposing the definition of E∗
S1(X)

using Λ = 2πiZ ⊂ C instead of a lattice in C, one obtains a holomorphic coherent

sheaf K∗
S1(X)hol over C×. Notice that this is built essentially out of the equivariant

cohomology of subcomplexes Xα of X fixed by different subgroups of S1. The sheaf

K∗
S1(X)hol extends naturally to CP 1, so by GAGA we have a well defined notion of an

algebraic section on any Zariski open of CP 1 (see the discussion at the end of Section 3).

So we denote by K∗
S1(X)alg the sheaf of algebraic sections of K∗

S1(X)hol, and we can use

the same notation for its restriction to the Zariski open C×.

So we have two coherent algebraic sheaves over C×, and it is natural to try to compare

them. In fact, they turn out to be isomorphic. For this, we will define a natural

multiplicative map

K∗
S1(X)

chS1−→ ΓK∗
S1(X)alg ,

which is built, not surprisingly , out of the equivariant Chern character of the Xα’s.

However, over the division points of C×, i.e. over the roots of 1, the equivariant Chern

character has to be twisted in a certain sense. Or, rather, one should call it a translation

of the Chern character. This bears a striking resemblance to the translation we have

to perform while dealing with the rigidity of the elliptic genus. There the phenomenon

is called “transfer”, from the transfer formula of Bott & Taubes [6]. This resemblance

indicates that sheafifying equivariant cohomology theories is not as unnatural as it might

first seem.
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To check that a map of S1-equivariant cohomology theories is an isomorphism over

the finite S1-CW complexes, we only have to check that it gives an isomorphism on the

“equivariant points”, i.e. on the orbits of the form S1/H, with H ⊆ S1 a subgroup.

In fact, to understand better the constructions used in this section, it is a good idea

to start by looking at what happens for X = S1/Zn. Recall that the equivariant Chern

character

K∗
S1(X)

chS1−→ H∗∗
S1(X)

is defined, if E → X is a complex S1-vector bundle over a finite finite S1-CW complex,

by chS1(E) = ex1 + · · ·+ exn , where x1, . . . , xn are the equivariant Chern roots of E (see

Definition A.3 in the Appendix). chS1 is multiplicative, but unlike the nonequivariant

case it fails to be a rational isomorphism.

Consider now X = S1/Zn,

K∗
S1(S1/Zn) ∼−→ R(Zn) = C[Zn] = C[λ±1]/(λn − 1) .

This isomorphism sends a complex S1-vector bundle to its fiber over a point. Since

S1/Zn is fixed by Zn, the fiber is a representation of Zn. The inverse of the above

isomorphism sends a Zn-module V to its Borel construction S1 ×Zn V → S1/Zn. C[Zn]

is the group ring of Zn. The generator λ represents the bundle S1 ×Zn C(1) → S1/Zn,

where C(1) is the standard representation of S1 restricted to Zn.

H∗
S1(S1/Zn) = H∗(S1/Zn ×S1 ES1) = H∗(ES1/Zn) = H∗(BZn) = C .

BZn is the classifying space of Zn. H∗(BZn; Z) = Z[u]/(nu) is torsion in degree higher

than zero, so the complex cohomology H∗(BZn) = C.

One can check that C[Zn] splits as a C-algebra into a direct product C ⊕ · · · ⊕ C, n

copies. This splitting is given by the idempotents Iε = 1
n(1 + ε−1λ + · · ·+ ε−(n−1)λn−1),

one for each root of unity ε. Say εn = e
2πi
n is the generator of Zn. Then the direct

product decomposition of C[Zn] can be rewritten as

C[Zn] ∼−→ C(1) ⊕ C(εn) ⊕ C(ε2n) ⊕ · · · ⊕ C(εn−1
n ) .
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To describe this isomorphism, take λ ∈ C[Zn] and multiply it by the idempotents Iε.

Then λIε = εIε. So the map is

λ 7→ (1, εn, ε2n, . . . , εn−1
n ) .

Now chS1(λ) = ec1(λ)S1 = e0 = 1, since c1(λ)S1 ∈ H2
S1(S1/Zn) = 0. This means that,

if we want to have an isomorphism

K∗
S1(S1/Zn) ∼−→ H∗

S1(S1/Zn)(1) ⊕H∗
S1(S1/Zn)(εn) ⊕ · · · ⊕H∗

S1(S1/Zn)(εn−1
n ) ,

we need to send λ not to (chS1(λ), . . . , chS1(λ)) = (1, . . . , 1), but to

(chS1(λ), t∗εn
chS1(λ), . . . , t∗

εn−1
n

chS1(λ)) = (1, εn, ε2n, . . . , εn−1
n ) .

We will define this translation t∗εch(−)S1 of the Chern character later, but at least we

know that, when X = S1/Zn, t∗εchS1(λ) should equal ε.

So, if X = S1/Zn, one checks easily that (see Definition 3.2) Xα = X if α is an n’th

root of unity, and Xα = ∅ otherwise. This means that, if we define a sheaf K over C×

such that the stalk at α is Kα = HO∗
S1(X), this will be a skyscraper sheaf with nonzero

stalks only at the n’th roots of unity. At an n’th root of unity α, Kα = C[u]/(u) ⊗C[u]

OC,0 = OC,0/(u) = C. Thus ΓK = C ⊕ · · · ⊕ C, n copies, and “chS1”, the twisted

equivariant Chern character map mentioned above is an isomorphism K∗
S1(S1/Zn) ∼−→

ΓK.

This points to the general strategy we will take. Consider X a finite S1-CW complex.

Define a coherent sheaf K∗
S1(X)hol over C× in the same way we defined E∗

S1(X)hol over

E = C/Λ in Section 3. The results of that section apply also to K∗
S1(X)hol, including

the simpler description 3.10 and the existence of the algebraic version. We simply have

to make Λ mean not a lattice in C, but the subgroup 2πiZ ⊂ C. There is one problem

though: GAGA is not valid over C×, since C× is not a projective variety. But luckily we

notice that K∗
S1(X)hol has a natural extension over CP 1. This can be seen more easily

using the simpler description 3.10, which uses only a finite cover of C/Λ. In this case

the sheaf is trivial over the U0, the complement of the special points, so we can use the
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same gluing maps φαβ to extend the sheaf at 0 and ∞. We will use the same notation

K∗
S1(X)hol for the sheaf extended over CP 1.

Now CP 1 is projective, so GAGA applies as in the end of Section 3 to allow us to

define what algebraic sections of K∗
S1(X)hol mean, on all Zariski opens of CP 1.

Definition 4.1. If U is a Zariski open in CP 1,

K∗
S1(X)alg(U) := {s ∈ K∗

S1(X)hol(U) | s is algebraic} .

This is a coherent algebraic sheaf over CP 1, but we can also use the same notation to

denote its restriction to C×.

Proposition 4.2. K∗
S1(X)alg(−) is an S1-equivariant cohomology theory with values in

the category of coherent algebraic sheaves of OC×-superalgebras. The sections over C×,

ΓK∗
S1(X)alg(−) is also an S1-equivariant cohomology theory, with values in the category

of C[λ±1]-superalgebras.

Proof. The first part of the proposition has the same proof as Proposition 3.9. For

the second part, notice that taking global sections over C× is an exact functor, due to

the vanishing of the higher sheaf cohomology groups over the affine variety C×. (See

Hartshorne [14], p. 215.) �

The next step is to provide a multiplicative map of S1-equivariant cohomology theories

K∗
S1(X)

chS1−→ ΓK∗
S1(X)alg .

Take X a finite S1-CW complex. Given a complex S1-vector bundle E → X, we

would like to associate a section in K∗
S1(X)alg. We are going to construct a section in

K∗
S1(X)hol, and then show that the section is algebraic. If α1, . . . , αr are the special

points corresponding to X (so Xαi 6= XS1
), we choose an open cover U0, U1, . . . , Ur as

in the discussion before Definition 3.10, with U0 = C× \ {α1, . . . , αr}.

Over U0 consider the section s0 = chS1(E|XS1 ), where E|XS1 is the restriction of the

bundle E to the fixed point subspace XS1
. E|XS1 splits as a complex S1-vector bundle
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into a direct sum

E|XS1 = E(m1)⊕ · · · ⊕ E(mp) .

E(mj) is a complex S1-vector bundle, say of rank rj , where g ∈ S1 acts by complex

multiplication with gmj . Since we are working over the space XS1
, which has a trivial

S1-action, we can calculate chS1(E|XS1 ). So let xi = wi +mju be the equivariant Chern

roots of the bundle E(mj), where wi are its ordinary (nonequivariant) Chern roots.

Then

chS1E(mj) =
rj∑

i=1

ewi+mju =
rj∑

i=1

ewiemju = chE(mj) · emju ,

where chE(mj) ∈ H∗(XS1
) is the ordinary Chern character of E(mj). So, using the

direct sum decomposition of E|XS1 ,

chS1(E|XS1 ) =
p∑

j=1

chE(mj) · emju .

Over C× we use the variable λ = eu given by the map C exp−→ C× = C/2πiZ, so

chS1(E|XS1 ) =
p∑

j=1

chE(mj) · λmj .

If α = αj is a special point, thus a primitive n’th root of unity for some n, we have to

see if chS1(E|XS1 ) glues via the sheaf map φj0 = t∗−α◦i∗⊗1 (see Definition 3.10) to some

section over Uj . Or, equivalently, we have to see if t∗αchS1(E|XS1 ), which is well-defined,

lifts via i∗ to an element in H∗
S1(Xα) ⊗C[u] OC,0. It is enough to take germs, since we

can always restrict the open cover.

Now, if α = eα̃,

t∗αchS1(E|XS1 ) =
p∑

j=1

rj∑
i=1

ewi+mju+mj α̃ ,

where xi = wi + mj are the equivariant Chern roots of E|XS1 . We know that enα̃ = 1,

so mj only matters modulo n: Write mj = qj · n + rj , 0 ≤ rj < n− 1; then emj α̃ = erj α̃.
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Hence

t∗αchS1(E|XS1 ) =
n−1∑
k=1

∑
i

exi+kα̃ =
n−1∑
k=1

∑
i

exi · αk ,

where xi are the equivariant Chern roots of E|XS1 .

Look at the bundle E|Xα . Since Xα is fixed by the action of Zn, we have the (fiberwise)

decomposition E|Xα = V (0) ⊕ V (1) ⊕ · · · ⊕ V (n − 1), corresponding to the irreducible

representations of Zn. V (k) is a complex S1-vector bundle over Xα, and its restriction

to XS1
decomposes into a direct sum of bundles of the form E(mj) with the numbers mj

having the same remainder modulo n. Then we have just proved the following “transfer

formula”:

Proposition 4.3. If i : XS1 → Xα is the inclusion, then

t∗αchS1(E|XS1 ) = i∗
n−1∑
k=1

chS1V (k) · αk .

Definition 4.4.

a) The translation by α of chS1(E|Xα) is defined as

t∗αchS1(E|Xα) :=
n−1∑
k=1

chS1V (k) · αk .

b) We have just showed that the sections t∗αchS1(E|Xα) and chS1(E|XS1 ) glue to a

global section in K∗
S1(X)hol over C×. Denote it by chS1(E). It is an object of

ΓK∗
S1(X)hol, where we understand by Γ sections over C×.

Proposition 4.5. chS1(E) is actually an algebraic map, i.e. it lies in ΓK∗
S1(X)alg.

Proof. Consider what happens when try to extend chS1(E) to a section in K∗
S1(X)hol

over the whole CP 1. On U0 we saw that chS1(E) is equal to

chS1(E|XS1 ) =
p∑

j=1

chE(mj) · λmj ,

with λ the complex variable on C× = Spec C[λ±1]. Clearly this extends as a meromor-

phic section over CP 1. But a global meromorphic section of K∗
S1(X)hol by GAGA has
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to be in fact rational. So the section chS1(E) over C× is holomorphic and rational,

therefore algebraic. �

Proposition 4.6. The map we have just defined

K∗
S1(X)

chS1−→ ΓK∗
S1(X)alg

is an algebra map.

Proof. It is immediate that chS1 is additive, because the usual Chern character is ad-

ditive.

For the multiplicativity part, we have to show that t∗αchS1(E⊗F )|Xα = t∗αchS1(E|Xα)·

t∗αchS1(F|Xα). From the decomposition into eigenspaces of the Zn-action, we can assume

that E|Xα = V (i) and F|Xα = W (j), with 0 ≤ i, j < n− 1.

On V ⊗W g ∈ S1 acts as g · (v ⊗ w) = giv ⊗ gjw = gi+jv ⊗ w, so V (i) ⊗W (j) =

(V ⊗W )(i+j). Then t∗αchS1(V (i)⊗W (j)) = t∗αchS1(V ⊗W )(i+j) = chS1(V ⊗W )αi+j =

chS1(V )chS1(W )αiαj = t∗αchS1V (i) · t∗αchS1W (j). �

Theorem 4.7. The twisted equivariant Chern character map

K∗
S1(−)

chS1−→ ΓK∗
S1(−)alg

is a multiplicative isomorphism of S1-cohomology theories.

Proof. Given what we know so far, it only remains to check the isomorphism part.

Because of Mayer–Vietoris it is enough to verify the isomorphism on the “equivariant

points” S1/H, H ⊆ S1 subgroup. If H = S1, S1/H = pt, and so K∗
S1(pt) = C[λ±1].

K∗
S1(pt) = O

alg
C× , the algebraic structure sheaf of C×. ΓK∗

S1(pt)alg = C[λ±1], and chS1 is

obviously an isomorphism, because it takes 1 to 1, and it is a map of C[λ±1]-modules

(coherent sheaves over C× correspond to finitely generated C[λ±1]-modules).

Now suppose X = S1/Zn. We saw before that K∗
S1(S1/Zn)hol is a skyscraper sheaf

with stalks = C at the n’th roots of unity. K∗
S1(S1/Zn)hol = K∗

S1(S1/Zn)alg, and

ΓK∗
S1(S1/Zn)alg = C ⊕ · · · ⊕ C, n copies. Take λ = S1 ×Zn C(1) → S1/Zn. If α is

an n’th root of unity, Xα = X. As a Zn-bundle, λ can be written as λ = λ(1). Then
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t∗αchS1(λ) = chS1(λ) · α1 = 1 · α = α. (Recall that chS1(λ) = ec1(λ)S1 = e0 = 1.) But we

showed before that the map

K∗
S1(S1/Zn) = C[Zn] ∼−→ C(1) ⊕ C(εn) ⊕ C(ε2n) ⊕ · · · ⊕ C(εn−1

n ) ,

λ 7→ (1, εn, . . . , εn−1
n ) gives a multiplicative isomorphism. So K∗

S1(S1/Zn)
chS1−→

ΓK∗
S1(S1/Zn)alg is an isomorphism of algebras. �

5. S1-equivariant elliptic pushforwards

While the construction of E∗
S1(X) depends only the elliptic curve E, the construction

of the elliptic pushforward fE
! involves an extra choice, that of a 2-division point on E.

This is because fE
! is defined using the Jacobi sine function s(x), which is associated to

an elliptic curve E with a specified 2-division point.

More precisely, if E = C/Λ, where Λ = Zω1 + Zω2 is a lattice in C with a specified

division point ω1/2, then there exists a meromorphic function s : C → C, which is

periodic to the “doubled” lattice Λ̃ = Zω1 + 2Zω2, and has simple zeroes at 0 + Λ̃,

ω2 + Λ̃, and simple poles at ω1/2 + Λ̃, ω1/2 + ω2 + Λ̃. This meromorphic function is

unique up to a scalar, which is fixed by requiring that limx→0 s(x)/x = 1.

The Jacobi sine s(x) is an elliptic function with respect to the “doubled” elliptic

curve Ẽ = C/Λ̃. Notice that the construction of Ẽ, given E and the 2-division point, is

canonical (does not depend on the choice of the lattice Λ). It is easy to check that s(x)

has the following additional properties:

Facts 5.1.

a) s(x) is odd, i.e. s(−x) = −s(x). Around zero, s can be expanded as a power

series s(x) = x + a3x
3 + a5x

5 + · · · .

b) s(x + ω1) = s(x); s(x + ω2) = −s(x).

c) s(x + ω1/2) = a/s(x), a 6= 0.

For the construction of S1-equivariant elliptic pushforwards we are going to follow

Grojnowski [13]. Let f : X → Y be an equivariant map between compact S1-manifolds
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so that the restrictions f : Xα → Y α are oriented maps. Then the Grojnowski pushfor-

ward of f is a map of sheaves

fE
! : E∗

S1(X)[f ] → E∗
S1(Y ) ,

where E∗
S1(X)[f ] is the sheaf E∗

S1(X) twisted by a 1-cocycle to be defined below.

The main technical ingredient in the construction of the (global i.e. sheafwise) elliptic

pushforward fE
! : E∗

S1(X)[f ] → E∗
S1(Y ) ,is the (local i.e. stalkwise) elliptic pushforward

fE
! : HO∗

S1(Xα)→ HO∗
S1(Y α). For this, we need to define the elliptic Thom class of an

oriented S1-vector bundle.

Let V be a 2n-dimensional oriented real vector bundle over a finite S1-CW complex X.

Classify its Borel construction VS1 → XS1 by mapping into BSO(2n), and get the map

fV : XS1 → BSO(2n). If Vuniv is the universal orientable vector bundle over BSO(2n),

we also have a map of pairs, also denoted by fV : (DVS1 , SVS1)→ (DVuniv, SVuniv). As

usual, DV and SV represent the disc and the sphere bundle of V , respectively.

But it is known that the pair (DVuniv, SVuniv) is homotopic to (BSO(2n), BSO(2n−

1)). Also, we know that

H∗BSO(2n) = C[p1, . . . , pn, e]/(e2 − pn) ,

where pj is the universal j’th Pontrjagin class, and e is the universal Euler class. From

the long exact sequence of the pair, it follows that H∗(BSO(2n), BSO(2n− 1)) can be

regarded as the ideal generated by e in H∗BSO(2n). The class e ∈ H∗(DVuniv, SVuniv) is

the universal Thom class, which we will denote by φuniv. Then the ordinary equivariant

Thom class of V is defined as the pullback class f∗V φuniv ∈ H∗
S1(DV, SV ), and we denote

it by φ(V )S1 .

Definition 5.2. Consider Q(x) = s(x)/x, where s(x) is the Jacobi sine. Since Q(x) is

even and holomorphic around zero, Proposition A.7 gives a class µQ(V )S1 ∈ HO∗
S1(X).

Then we define the equivariant elliptic Thom class of V to be the product µQ(V )S1 ·

φ(V )S1 in H∗∗
S1(DV, SV ), and denote it by φE(V )S1. (One can also say that φE(V )S1 =
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s(x1) . . . s(xn), while φ(V )S1 = x1 . . . xn, where x1, . . . , xn are the equivariant Chern

rootsof V .)

Proposition 5.3. If V → X is an even dimensional real oriented S1-vector bundle,

and X is a finite S1-CW complex, then φE(V )S1 actually lies in HO∗
S1(DV, SV ).

Proof. The only difficult part, namely that µQ(V )S1 is holomorphic, is proved in the

Appendix, in Proposition A.5. So we only need to know that the cup product

H∗
S1(X)⊗H∗

S1(DV, SV )→ H∗
S1(DV, SV )

extends by tensoring with OC,0 over C[u] to a map

HO∗
S1(X)⊗HO∗

S1(DV, SV )→ HO∗
S1(DV, SV ) .

�

Because Q(x) = s(x)/x is an invertible power series around zero, it follows that

multiplication by the equivariant elliptic Thom class φE(V )S1 gives an isomorphism

HO∗
S1(X) ∼−→ HO∗

S1(DV, SV ), which is the Thom isomorphism in HO-theory.

Corollary 5.4. If f : X → Y is an S1-equivariant oriented map between compact

S1-manifolds, then there is a functorial elliptic pushforward

fE
! : HO∗

S1(X)→ HO∗
S1(Y ) .

In the case when Y is a point, fE
! (1) is the S1-equivariant elliptic genus of X.

Proof. Recall ([9]) that the ordinary pushforward is defined as the composition of three

maps, two of which are Thom isomorphisms, and the third is a natural one, so the first

statement follows from the previous corollary.

The second statement is an easy consequence of the topological Riemann–Roch the-

orem (see again [9]), and of the definition of the equivariant elliptic Thom class. �

Notice that, if Y is point, HO∗
S1(Y ) ∼= OC,0, so the S1-equivariant elliptic genus

of X is holomorphic around zero. Also, if we replace HO∗
S1(−) = H∗

S1(−) ⊗C[u] OC,0
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by HM∗
S1(−) = H∗

S1(−) ⊗C[u] M(C), where M(C) is the ring of global meromorphic

functions on C, the same proof as above shows that the S1-equivariant elliptic genus of

X is meromorphic in C. This proves PROPOSITION B stated in Section 2.

The local construction of elliptic pushforwards is thus completed. We want now to

assemble the pushforwards in a map of sheaves. The problem is that pushforwards do

not commute with pullbacks, i.e. if

Xα
f

Y α

Xβ

i

g
Y β

j

is a commutative diagram where f, g are oriented maps between S1-manifolds, and i, j

are the inclusions, then it is not true in general that j∗fE
! = gE

! i∗.

To see the extent to which this relation fails, consider eE
S1(Xα/Xβ) the S1-equivariant

Euler class of the normal bundle of the embedding Xβ ↪→ Xα, and similarly consider

eE
S1(Y α/Y β). Denote by

λαβ = eE
S1(Xα/Xβ)−1 · g∗eE

S1(Y α/Y β) ,

and assume for the moment that eE
S1(Xα/Xβ) is invertible, so that λαβ exists. Then we

have the following standard result:

Lemma 5.5.

j∗fE
! µα = gE

! (i∗µα · λαβ) .

Proposition 5.6. Let f : X → Y be an S1-map such that the induced maps f : Xα →

Y α and g : Xβ = XS1 → Y β = Y S1
are oriented. Let U be a small neighborhood of α

but not containing α. Then λαβ exists in H∗
S1(Xβ) ⊗C[u] OE(U − β), and the following
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diagram is commutative:

H∗
S1(Xα)⊗C[u] OE(U − α)

fE
!

i∗·λαβ

H∗
S1(Y α)⊗C[u] OE(U − α)

j∗

H∗
S1(Xβ)⊗C[u] OE(U − α)

gE
!

t∗β−α

H∗
S1(Y β)⊗C[u] OE(U − α)

t∗β−α

H∗
S1(Xβ)⊗C[u] OE(U − β)

gE
!

H∗
S1(Y β)⊗C[u] OE(U − β)

Here the notation “i∗ ·λαβ” means: apply i∗ first, and then multiply the result with λαβ.

Proof. Denote by W = the normal bundle of the embedding Xβ = XS1 → Xα. Let us

show that, if α /∈ U , then eE
S1(W ) is invertible in H∗

S1(Xβ)⊗C[u]OE(U−α). Denote by wi

the nonequivariant Chern roots of W , and by mi the corresponding rotation numbers of

W (i.e. the weights of the S1-action). Since Xβ = XS1
, mi 6= 0. Also, the S1-equivariant

Euler class of W is given by

eS1(W ) = (w1 + m1u) . . . (wr + mru) = m1 . . .mr(u + w1/m1) . . . (u + wr/mr) .

But wi are nilpotent, so eS1(W ) is invertible as long as u is invertible. Now α /∈ U

translates to 0 /∈ U−α, which implies that the image of u via the map C[u]→ OE(U−α)

is indeed invertible. To deduce now that eE
S1(W ), the elliptic S1-equivariant Euler class

of W , is also invertible, recall that eE
S1(W ) and eS1(W ) differ by a class defined using

the power series s(x)/x = 1 + a3x
2 + a5x

4 + · · · , which is invertible for U small enough.

So λαβ exists, and by the previous Lemma, the uppper part of our diagram is com-

mutative. The lower part is trivially commutative.

Now, while i∗ were essentially the gluing maps in the sheaf F = E∗
S1(X), we think of

the maps i∗ · λαβ as giving a twisted sheaf, denoted by F[f ]. F was obtained by gluing

the sheaves Fα over an adapted open cover (Uα)α∈E. The gluing maps φαβ were defined

in Section 3 as the composite of a few maps. �
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Definition 5.7. The twisted gluing functions φ
[f ]
αβ are defined as the composition of the

following three maps

H∗
S1(Xα)⊗C[u] OE(U − α)

i∗⊗1

H∗
S1(Xβ)⊗C[u] OE(U − α)

·λαβ

H∗
S1(Xβ)⊗C[u] OE(U − β)

t∗β−α

H∗
S1(Xβ)⊗C[u] OE(U − β) ,

where λαβ = eE
S1(Xα/Xβ)−1 · f∗eE

S1(Y α/Y β). For explanations regarding the third map,

read Remark 3.6. φ
[f ]
αβ satisfy the cocycle condition, because if β and γ are not special,

φ
[f ]
βγ = t∗γ−β, and as in the case of φαβ the cocycle condition reduces to t∗γ−βt∗β−α = t∗γ−α.

The sheaf E∗
S1(X)[f ] is now defined by gluing the same sheaves Fα, but using the new

functions φ
[f ]
αβ.

Proposition 5.8. If f : X → Y is a map of compact S1-manifolds such that the

restrictions f : Xα → Y α are oriented ∀α ∈ E, then the commutativity of the diagram

in Proposition 5.6 gives a map of coherent sheaves over E

fE
! : E∗

S1(X)[f ] → E∗
S1(Y ) .

This is the Grojnowski pushforward of f in E∗
S1(−). It is functorial in a certain

sense (see [13]), and is a map of E∗
S1(Y )-modules, i.e.

fE
! (µ · f∗ν) = fE

! µ · ν .

6. Rigidity of the elliptic genus

As in the beginning of the previous section, let E = C/Λ be a nonsingular elliptic

curve over C together with a 2-division point. We saw that we can associate to this
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data a double cover Ẽ of E, such that the Jacobi sine function s(x), which appears in

the definition of the elliptic pushforward, is an elliptic function with respect to Ẽ.

In this section we discuss the rigidity phenomenon in the context of equivariant elliptic

cohomology. If X is a compact spin S1-manifold, a theorem of Edmonds (see [10]) says

that the fixed point submanifolds XZn are oriented for all n ∈ N. XS1
is also oriented,

because the normal bundle of the embedding XS1
↪→ X has a complex structure. Since

Xα is oriented ∀α ∈ E, the map π : X → point satisfies the hypothesis of Proposition 5.8,

so we get a Grojnowski pushforward

πE
! : E∗

S1(X)[π] → E∗
S1(point) = OE .

We will see that the rigidity phenomenon amounts to finding a global (Thom) section

in the sheaf E∗
S1(X)[π]. Since s(x) is not a well-defined function on E, we cannot expect

to find such a global section. However, if we take the pullback of the sheaf E∗
S1(X)[π]

along the covering map Ẽ→ E, we’ll show that the new sheaf has global section.

Convention. From this point on, all the sheaves F will be considered over Ẽ, i.e. we

will replace them by the pullback of F via the map Ẽ→ E.

For our purposes, however, we need a more general version of E∗
S1(X)[π].

Proposition 6.1. Let V be a spin S1-vector bundle over the finite S1-CW complex X.

Let n ∈ N. Then V Zn and V S1
are oriented, and there exist oriented vector bundles

V/V S1
and V Zn/V S1

over XS1
and V/V Zn over XZn such that

V|XZn = V Zn ⊕ V/V Zn ;V|XS1 = V S1 ⊕ V/V S1
;V Zn

|XS1 = V S1 ⊕ V Zn/V S1

as oriented bundles.

Proof. The decompositions of these three restriction bundles come from the fact that

the groups Zn in the first case, and S1 in the other two cases act on the fibers and

decompose them as representations into a trivial and nontrivial part.

Now we define orientations for the different bundles involved. Zn preserves the spin

structure of V , so we can apply Lemma 10.3 from [6], and deduce that V Zn is oriented. (It



34

is interesting to notice that Bott & Taubes prove this result at the level of generality that

we need, although they only use it in the special case when X is an S1-manifold, and V =

TX.) V|XZn is oriented, so V/V Zn gets an induced orientation. V/V S1
has a complex

structure, because its rotation numbers are all nontrivial. However, for computational

reasons, we do not choose the complex structure on V/V S1
where all rotation numbers

are positive, but we choose a complex orientation depending on n: namely one for which

rotation numbers mj satisfy mj = nqj + rj with 0 ≤ rj ≤ n
2 ; if rj = 0 or rj = n

2 , we

can always arrange mj > 0 (thus fixing the complex structure), but for 0 < rj < n
2 the

choice of mj is forced on us, and we may have mj < 0. Since V/V S1
is oriented, V S1

gets an induced orientation. Now V Zn

|XS1 is oriented, because V Zn is; so V Zn/V S1
gets

an induced orientation. �

Definition 6.2. As in Definition 5.7, we define φ
[V ]
αβ as the composition of three maps,

where the second one is multiplication by λαβ = eE(V α/V β)−1. (V α/V β is oriented as

in the previous Proposition.) φ
[V ]
αβ satisfies the cocycle condition, so by gluing the sheaves

Fα using φ
[V ]
αβ , we obtain a new sheaf which we denote by E∗

S1(X)[V ].

Notice that, if we take the map π : X → point as above, for V = TX we have

E∗
S1(X)[V ] = E∗

S1(X)[f ]. We now proceed to prove THEOREM C.

Theorem 6.3. If V → X is a spin S1-vector bundle over a finite S1-CW complex,

then the element 1 in the stalk of E∗
S1(X)[V ] at zero extends to a global section, called

the Thom section.

Proof. To simplify notation, we are going to identify E with C/Λ, where Λ = Zω1 +Zω2

is a lattice in C. It is a good idea to think of points in E rather as points in C, and

of E∗
S1(X) as the pullback on C via C → C/Λ. Then we call α ∈ C a division point if

there is an integer n > 0 such that nα ∈ Λ. The smallest such n is called the order of α.

Now E∗
S1(X)[V ] was obtained by gluing the sheaves Fα along the adapted open cover

(Uα)α∈E. So to give a global section µ of E∗
S1(X)[V ] is the same as to give global

sections µα of Fα such that they glue, i.e. φ
[V ]
αβ µα = µβ for any α and β with Uα ∩Uβ 6=

∅. From Definition 6.2, to give µ is the same as to give µα ∈ HO∗
S1(Xα) so that
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t∗β−α(i∗µα · eE
S1(V α/V β)−1) = µβ , or i∗µα · eE

S1(V α/V β)−1 = t∗β−αµβ (i the inclusion

Xβ ↪→ Xα). Because µ is supposed to globalize 1, we know that µ0 = 1. This implies

that µβ = t∗βeE
S1(V/V β)−1 for β in a small neighborhood of 0 ∈ C.

In fact, it turns out that this formula for µβ is valid for all β ∈ C, as long as β is not

special. This means we have to check that µβ = t∗βeE
S1(V/V β)−1 exists in HO∗

S1(Xβ)

as long as β is not special. β not special means Xβ = XS1
. Then consider the bundle

V/V S1
. Because V S1

is fixed by the S1-action, V/V S1
decomposes into a direct sum

V (m1)⊕V (m2)⊕ · · ·⊕V (mr). mj are the weights of the S1-action, and they are called

rotation numbers. We can choose all mj positive, which gives a complex structure on

V/V S1
, where g ∈ S1 acts on V (m) by complex multiplication with gm. Then

µβ = t∗βeE
S1(V/V β)−1 =

∏
i

s(xi + mjβ)−1 ,

where xi are the equivariant Chern roots of V/V S1
(see Definition A.3 in the Appendix).

This expression for µβ exists in HO∗
S1(Xβ) long as s(mjβ) 6= 0. Suppose s(mjβ) = 0.

Then mjβ ∈ Λ, so β is a division point, say of order n. It follows that n divides mj ,

which implies XZn 6= XS1
. But Xβ = XZn , since β has order n, so Xβ 6= XS1

i.e. β is

special, contradiction.

The only problem is what happens at a special point α ∈ C, say of order n. We have

to find a class µα ∈ HO∗
S1(Xα) such that φ

[V ]
αβ µα = µβ, i.e. t∗β−α(i∗µα ·eE

S1(V α/V β)−1) =

t∗βeE
S1(V/V β)−1. Equivalently, we want a class µα such that i∗µα = t∗αeE

S1(V/V β)−1 ·

eE
S1(V α/V β), i.e. we want to lift the class t∗αeE

S1(V/V β)−1 · eE
S1(V α/V β) from HO∗

S1(Xβ)

to HO∗
S1(Xα). If we can do that, we are done, because the class (µα)α∈C is a global

section in E∗
S1(X)[V ], and it extends µ0 = 1 from the stalk at zero. So it only remains

to prove the following lemma, which is a generalization of the transfer formula of Bott

& Taubes. �

Lemma 6.4. Let α be a special point of order n, and V → X a spin S1-vector bundle.

Let i : XS1 → XZn be the inclusion map. Then there exists a class µα ∈ HO∗
S1(XZn)

such that

i∗µα = t∗αeE
S1(V/V S1

)−1 · eE
S1(V Zn/V S1

) .
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Proof. The main difficulty arises from the fact that XS1
may have different connected

components, and so may XZn . Otherwise, it is easy to lift the class t∗αeE
S1(V/V S1

)−1 ·

eE
S1(V Zn/V S1

) from XS1
to XZn if we do not worry about signs. Indeed, we might

get different signs if we have several connected components of XS1
inside a connected

component of XZn ; then the class µα on XZn would not be well defined. This is where

the spin structure of V will make sure that the different signs are equal.

Fix N a connected component of XS1
. Also, let P be the connected component of

XZn which contains N . Denote by i : N ↪→ P . We will use the same notation for V Zn

and V S1
when we restrict them to P and N respectively. The action of Zn on P is

trivial, so we get a fiberwise decomposition of V|P by the different representations of Zn:

(1) V|P = V Zn ⊕ V/V Zn = V Zn ⊕
⊕

0<k< n
2

V (k)⊕ V (
n

2
) .

Here V Zn and V (n
2 ) are real vector spaces, and V (k) has a complex structure for which

a generator g = e2πi/n ∈ Zn acts by complex multiplication with gk. V (n
2 ) = 0 if n is

odd. Denote by V (K) =
⊕

0<k< n
2

V (k). Then we have the following decomposition

(2) V/V S1
= V Zn/V S1 ⊕ V (K)|NV/V Zn ⊕ V (

n

2
)|N .

The orientations are chosen as follows: V is oriented by its spin structure. V Zn , V S1
,

V Zn/V S1
, V/V S1

have orientations as described in Proposition 6.1.

• If V (n
2 ) 6= 0, choose the complex orientation of V (K) described above.

• If V (n
2 ) = 0, then V (K) = V/V Zn , which is already oriented, so choose this

orientation for V (K).

All bundles appearing in 2 also have orientations coming from their complex structure

(they have nonzero rotation numbers). As a notational rule, we are going to use the

subscript “or” to indicate the “correct” orientation on the given vector space, i.e. the

orientation which is induced from the spin structure on V as in Proposition 6.1. When

we omit the subscript “or”, we assume the bundle has the correct orientation. The sub-

script “cx” will indicate that we chose a complex structure on the given vector space.
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This is only intended to make calculations easier. Here is a table with the bundles of

interest:

bundle with the bundle with the sign difference between

correct orientation complex orientation the two orientations

(V/V S1
)or (V/V S1

)cx (−1)σ

(V Zn/V S1
)or (V Zn/V S1

)cx (−1)σ(0)

V (K)or V (K)cx (−1)σ(K)

i∗(V (n
2 )or) (i∗V (n

2 ))cx (−1)σ(n
2
)

From the decomposition in (2) under the correct and the complex orientations, we

deduce that

(3) (−1)σ = (−1)σ(0)(−1)σ(K)(−1)σ(n
2
) .

Now we want to show that there exists a class µP ∈ HO∗
S1(P ) such that

(4) i∗µP = t∗αeE
S1(V/V S1

)−1
|N · e

E
S1(V Zn/V S1

)|N .

From the table we deduce the following formula

(5) t∗αeE
S1(V/V S1

)−1
|N · (−1)σt∗αeE

S1((V/V S1
)cx)−1

|N

Now we calculate t∗αeE
S1((V/V S1

)cx)−1
|N . Since the bundle V/V S1

is complex over N ,

which is a connected space with a trivial S1-action, we can associate the weights of

the S1-action: m1, . . . ,mr, which are also called complex rotation numbers of the S1-

action. They need not be distinct. We write mj = qj ·n + rj , with 0 ≤ rj < n. Now the

rotation numbers fall into classes with respect to their remainder modulo n. Define for

all 0 ≤ k ≤ n
2

Ik = {j ∈ 1, . . . , r | rj = k or n− k} .
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Ik contains exactly the rotation numbers corresponding to the k’th term in the decom-

position of (V/V S1
)cx with respect to the Zn-action. We get the following formula:

t∗αeE
S1((V/V S1

)cx)−1 =∏
j∈I0

s(xj + mjα)−1 ·
∏

0<k<n/2

j∈Ik

s(xj + mjα)−1 ·
∏

j∈In/2

s(xj + mjα)−1(6)

Before we analyze each term in the above formula, recall that mj = qj · n + rj , with

0 ≤ rj < n.

a) j ∈ I0: Here we chose the complex structure (V Zn/V S1
)cx such that all mj > 0.

Then, since s(xj + mjα) = s(xj + qjnα) = εqjs(xj), we have:
∏

j∈I0
s(xj + mjα)−1 =

ε
∑

I0
qj ·

∏
I0

s(xj)−1 = ε
∑

I0
qj · eE

S1(V Zn/V S1
)−1
cx = ε

∑
I0

qj · (−1)σ(0) · eE
S1(V Zn/V S1

)−1
or .

So we get eventually

(7)
∏
j∈I0

s(xj + mjα)−1 = ε
∑

I0
qj · (−1)σ(0) · eE

S1(V Zn/V S1
)−1
or .

b) j ∈ Ik, 0 ≤ k ≤ n
2 . The complex structure on V (k) is such that g = e2πi/n ∈ Zn

acts by complex multiplication with gk. Notice that in Porposition 6.1 we defined the

complex structure on V/V S1
so that for j ∈ Ik, mj = nqj +k. g acts as gmj = gk, so the

complex structures on V (K) and i∗V (K) are compatible. We have s(xj + m + jα) =

s(xj + qjnα + kα) = εqjs(xj + kα).

Consider µk the equivariant class on P corresponding to the complex vector bundle

V (k) with its chosen complex orientation, and the convergent power series s(x + kα)−1.

Then i∗µk =
∏

Ik
s(xj + kα)−1. Define µK =

∏
0<k< n

2
= µk. We obtain s(xj + mjα) =

s(xj + qjnα + kα) = εqjs(xj + kα), which implies

(8)
∏

k,j∈Ik

s(xj + mjα)−1 = ε
∑

k,Ik
qj · i∗µK .

c) j ∈ In/2. The complex structure on i∗V (n
2 ) is the one for which all mj > 0. The

rotation numbers satisfy mj = qjn+ n
2 , hence s(xj +mjα) = εqjs(xj + n

2 α). Now consider

µn
2

the equivariant characteristic class on P corresponding to the real vector bundle V (n
2 )
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with its correct orientation, and the convergent power series Q(x) = s(x + n
2 α)−1. Q(x)

satisfies Q(−x) = s(−x + n
2 α)−1 = −s(x− n

2 α)−1 = −εs(x + n
2 α)−1 = (−ε)Q(x), hence,

according to Lemma A.8, i∗µn
2

= (−ε)σ(n
2
) ∏

j∈Ik
s(xj + n

2 α)−1, where this latter class

is calculated using the complex structure on i∗V (n
2 ). Finally we obtain

(9)
∏

j∈In/2

s(xj + mjα)−1 = ε
∑

In/2
qj · (−ε)σ(n

2
) · i∗µn

2
.

Now, putting together equations (3)–(9), and defining µP := µK · µfracn2, we have

proved that t∗αeE
S1(V//V S1

)−1 = εσ(N) · eE
S1(V Zn/V S1

)−1 · i∗µP , or

(10) t∗αeE
S1(V/V S1

)−1 · eE
S1(V Zn/V S1

) = εσ(N) · i∗µP ,

where

σ(N) =
∑
I0

qj +
∑
k,Ik

qj +
∑
In/2

qj + σ(K) + σ(
n

2
) .

Notice that σ(N) is described in terms of rotation numbers mj of the S1-vector bundle

(V/V S1
)cx. What if we consider instead m∗

j , the rotation numbers of (V/V S1
)or? First,

m∗
j are the same as mj up to a sign (and a permutation). Write m∗

j = q∗j n + r∗j ,

0 ≤ r∗j ≤ n
2 . We have the following cases:

a) j ∈ I0. If m∗
j = −mj , then q∗j = −qj , and the parity of σ(N) doesn’t change.

b) j ∈ Ik, 0 ≤ k ≤ n
2 . Then we cannot have m∗

j = −mj , because we chose

0 ≤ rj , r
∗
j ≤ n

2

c) j ∈ In/2. If m∗
j = −mj , then m∗

j = −mj = −qjn − n
2 = −(qj + 1)n + n

2 , so

q∗j = −(qj + 1), and the parity of σ(N) changes.

Since the orientations of (V/V S1
)cx and (V/V S1

)or differ by a parity of σ(0)+σ(K)+

σ(n
2 ), we get

σ(N) =
∑
I0

q∗j +
∑
k,Ik

q∗j +
∑
In/2

q∗j .
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In the next lemma we will show that, for N and Ñ two different connected components

of XS1
inside P , σ(N) and σ(Ñ are congruent modulo 2, so the class εσ(N) · µP is well-

defined (independent of N). Now define

µα :=
∑
P

εσ(N) · µP ∈ HO∗
S1(XZn) = ⊕P HO∗

S1(P ) .

This is a well-defined class, and since we have equation (10), Lemma 6.4 is proved. �

Lemma 6.5. In the conditions of the previous lemma, σ(N) and σ(Ñ) are congruent

modulo 2.

Proof. The proof follows Bott & Taubes [6]. (Again they use the level of generality that

we need.) Denote by S2(n) the 2-sphere with the S1-action which rotates S2 n times

around the north-south axis as we go once around S1. Denote by N+ and N− its North

and South poles, respectively. Consider a path in P which connects N with Ñ , and

touches N or Ñ only at its endpoints. By rotating this path with the S1-action, we

obtain a subspace of P which is close to being an embedded S2(n). Even if it is not,

we can still map equivariantly S2(n) onto this rotated path. Now we can pull back the

bundles from P to S2(n) (with their correct orientations). The rotation numbers are

the same, since the North and the South poles are fixed by the S1-action, as are the

endpoints of the path.

Therefore we have translated the problem to the case when we have the 2-sphere S2(n)

and corresponding bundles over it, and we are trying to prove that σ(N+) ≡ σ(N−)

modulo 2. The only problem would be that we are not using the whole of V , but

only V/V S1
. However, the difference between these two bundles is V S1

, whose rotation

numbers are all zero, so they do not influence the result.

Now Lemma 9.2 of [6] says that any even-dimensional oriented real vector bundle

W over S2(n) has a complex structure. In particular, the pullbacks of V S1
, V (K),

and V (n
2 ) have complex structure, and the rotation numbers can be chosen to be the

m∗
j described above. Say the rotation numbers at the South pole are m̃∗

j with the

obvious notation conventions. Then Lemma 9.1 of [6] says that, up to a permutation,
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m∗
j−m̃∗

j = n(q∗j− q̃∗j ), and
∑

q∗j ≡
∑

q̃∗j modulo 2. But this means that σ(N+) ≡ σ(N−)

modulo 2, i.e. σ(N) ≡ σ(Ñ) modulo 2. �

Corollary 6.6. (The Rigidity theorem of Witten) If X is a spin manifold with an S1-

action, then the equivariant elliptic genus of X is rigid i.e. it is a constant power series.

Proof. By the usual trick of lifting the S1-action to a double cover of S1, we can make

the S1-action preserve the spin structure. Then we will say that X is a spin S1-manifold.

At the beginning of this Section, we say that if X is a compact spin S1-manifold, i.e.

the map π : X → point is spin, then we have the Grojnowski pushforward, which is a

map of sheaves

πE
! : E∗

S1(X)[π] → E∗
S1(point) = OE .

The elliptic pushforward πE
! , if we consider it at the level of stalks at 0 ∈ E, is nothing

but the elliptic pushforward in HO∗
S1-theory, as described in Corollary 5.4. So consider

the element 1 in the stalk at 0 of the sheaf E∗
S1(X)[π] = E∗

S1(X)[TX].

From Theorem 6.3, since TX is spin, 1 extends to a global section of E∗
S1(X)[TX].

Denote this global section by boldface 1. Because πE
! is a map of sheaves, it follows

that πE
! (1) is a global section of E∗

S1(point) = OE, i.e. a global holomorphic function on

the elliptic curve E. But any such function has to be constant. This means that πE
! (1),

which is the equivariant elliptic genus of X, extends to πE
! (1), which is constant. This

is precisely equivalent to the elliptic genus being rigid. �

The extra generality we had in Theorem 6.3 allows us now to extend the Rigidity

theorem to families of elliptic genera. This was stated as THEOREM D in Section 2.

Theorem 6.7. (Rigidity for families) Let F → E
π−→ B be an S1-equivariant fibration

such that the fibers are spin in a compatible way, i.e. the projection map π is spin

oriented. Then the elliptic genus of the family, which is πE
! (1) ∈ H∗∗

S1(B), is constant as

a rational function in u (i.e. if we invert the generator u of C[[u]], over which H∗∗
S1(B)

is a module).
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Proof. We know that the map

πE
! : E∗

S1(E)[π] → E∗
S1(B)

when regarded at the level of stalks at zero is the usual equivariant elliptic pushforward

in HO∗
S1(−). Now πE

! (1) ∈ HO∗
S1(B) is the elliptic genus of the family. We have

E∗
S1(E)[π] ∼= E∗

S1(E)[τ(F )], where τ(F )→ E is the bundle of tangents along the fiber.

Since τ(F ) is spin, Theorem 6.3 allows us to extend 1 to the Thom section 1. Since

πE
! is a map of sheaves, it follows that πE

! (1), which is the elliptic genus of the family,

extends to a global section in E∗
S1(B). So, if i : BS1

↪→ B is the inclusion of the fixed

point submanifold in B, i∗πE
! (1) gives a global section in E∗

S1(BS1
). Now this latter

sheaf is trivial as a sheaf of OE-modules, so any global section is constant. But i∗ is an

isomorphism in HO∗
S1(−) if we invert u. �

We saw in the previous section that, if f : X → Y is an S1-map of compact S1-

manifolds such that the restrictions f : Xα → Y α are oriented maps, we have the

Grojnowski pushforward

fE
! : E∗

S1(X)[f ] → E∗
S1(Y ) .

Also, in some cases, for example when f is a spin S1-fibration, we saw that E∗
S1(X)[f ]

admits a Thom section. This raises the question if we can describe E∗
S1(X)[f ] as a E∗

S1

of a Thom space. It turns out that, up to a line bundle over E (which is itself E∗
S1 of a

Thom space), this indeed happens:

Let f : X → Y be an S1-map as above. Embed X into an S1-representation W ,

i : X ↪→W . (W can be also thought as an S1-vector bundle over a point.) Look at the

embedding f × i : X ↪→ Y ×W . Denote by V = ν(f), the normal bundle of X in this

embedding (if we were not in the equivariant setup, ν(f) would be the stable normal

bundle to the map f).

Proposition 6.8. With the previous notations,

E∗
S1(X)[f ] ∼= E∗

S1(DV, SV )⊗E∗
S1(DW, SW )−1 .
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DV , SV are the disk and the sphere bundles of V , respectively.

Proof. From the embedding X ↪→ Y ×W , we have the following isomorphism of vector

bundles:

TX ⊕ V ∼= f∗TY ⊕W .

So, in terms of S1-equivariant elliptic Thom classes we have

eE
S1(V α/V β) = eE

S1(Xα/Xβ)−1 · f∗eE
S1(Y α/Y β) · eE

S1(Wα/W β) .

Multiplication by the equivariant elliptic Thom class φE
S1(V α) on each stalk gives the

following commutative diagram

H∗
S1(Xα)⊗C[u] OE(U − α)

i∗

·t∗αeE
S1 (V/V α)

H∗
S1(Xα)⊗C[u] OE(U − α)

i∗·eE
S1 (V α/V β)

H∗
S1(Xβ)⊗C[u] OE(U − α)

t∗β−α

·t∗αeE
S1 (V/V β)

H∗
S1(Xβ)⊗C[u] OE(U − α)

t∗β−α

H∗
S1(Xβ)⊗C[u] OE(U − β)

·t∗βeE
S1 (V/V β)

H∗
S1(Xβ)⊗C[u] OE(U − β) .

This gives an isomorphism of sheaves

E∗
S1(DV, SV ) ∼= E∗

S1(X)[f ] ⊗E∗
S1(DW, SW ) .

The latter sheaf E∗
S1(DW, SW ) has stalks HO∗

S1(DWα, SWα) ∼= HO∗
S1(point) = OC,0,

so it is invertible. In fact, we can identify it by the same method we used in Proposi-

tion 3.12. �

This suggests that we can define Gysin maps if we compose the Grojnowski pushfor-

ward with multiplication by a Thom section. They are well-defined and functorial again

up to a line bundle.



44

Appendix A. Equivariant characteristic classes

The results of this section are well-known, with the exception of the holomorphicity

result Proposition A.5.

Let V be a complex n-dimensional S1-equivariant vector bundle over an S1-CW

complex X. Then to any power series Q(x) ∈ C[[x]] starting with 1 we are going

to associate by Hirzebruch’s formalism (see [15]) a multiplicative characteristic class

µQ(V )S1 ∈ H∗∗
S1(X). (Recall that H∗∗

S1(X) is the completion of H∗
S1(X).)

Consider the Borel construction for both V and X: VS1 = V ×S1 ES1 → X×S1 ES1 =

XS1 . VS1 → XS1 is a complex vector bundle over a paracompact space, hence we have

a classifying map fV : XS1 → BU(n). We know that the image via f∗V of the universal

j’th Chern class cj ∈ H∗BU(n) = C[c1, . . . , cn] is the equivariant j’th Chern class of

V , cj(V )S1 . Now look at the product Q(x1)Q(x2) · · ·Q(xn). It is a power series in

x1, . . . , xn which is symmetric under permutations of the xj ’s, hence it can be expressed

as another power series in the elementary symmetric functions σj = σj(x1, . . . , xn):

Q(x1) · · ·Q(xn) = PQ(σ1, . . . , σn) .

Notice that PQ(c1, . . . , cn) lies not in H∗BU(n), but in its completion H∗∗BU(n).

The map f∗V extends to a map H∗∗BU(n)→ H∗∗(XS1).

Definition A.1. Given the power series Q(x) ∈ C[[x]] and the complex S1-vector bundle

V over X, there is a canonical complex equivariant characteristic class µQ(V )S1 ∈

H∗∗(XS1), given by

µQ(V )S1 := PQ(c1(V )S1 , . . . , cn(V )S1) = f∗V PQ(c1, . . . , cn) .

Remark A.2. If Tn ↪→ BU(n) is a maximal torus, then then H∗BTn = C[x1, . . . , xn],

and the xj ’s are called the universal Chern roots. The map H∗BU(n) → H∗BTn is

injective, and its image can be identified as the Weyl group invariants of H∗BTn. The

Weyl group of U(n) is the symmetric group on n letters, so H∗BU(n) can be identi-

fied as the subring of symmetric polynomials in C[x1, . . . , xn]. Similarly, H∗∗BU(n)
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is the subring of symmetric power series in C[[x1, . . . , xn]]. Under this interpreta-

tion, cj = σj(x1, . . . , xn). This allows us to identify Q(x1) · · ·Q(xn) with the element

PQ(c1, . . . , cn) ∈ H∗∗BU(n).

Definition A.3. We can write formally µQ(V )S1 = Q(x1) · · ·Q(xn). x1, . . . , xn are

called the equivariant Chern roots of V .

We want now to show that the class we have just constructed, µQ(V )S1 , is holomorphic

in a certain sense, provided Q(x) is the expansion of a holomorphic function around zero.

But first, let us state a classical lemma in the theory of symmetric functions.

Lemma A.4. Suppose Q(y1, . . . , yn) is a holomorphic (i.e. convergent) power series,

which is symmetric under permutations of the yj’s. Then the power series P such that

Q(y1, . . . , yn) = P (σ1(y1, . . . , yn), . . . , σn(y1, . . . , yn)) ,

is holomorphic.

We have mentioned above that µQ(V )S1 belongs to H∗∗
S1(X). This ring is equivariant

cohomology tensored with power series. It contains HO∗
S1(X) as a subring, correspond-

ing to the holomorphic power series.

Proposition A.5. If Q(x) is a convergent power series, then µQ(V )S1 is a holomorphic

class, i.e. it belongs to the subring HO∗
S1(X) of H∗∗

S1(X).

Proof. We have µQ(V )S1 = P (c1(V )S1 , . . . , cn(V )S1), where we write P for PQ.

Assume X has a trivial S1-action. It is easy to see that H∗
S1(X) = (H0(X)⊗C C[u])⊕

nilpotents. Hence we can write cj(E)S1 = fj + αj , with fj ∈ H0(X) ⊗C C[u], and αj

nilpotent in H∗
S1(X). We expand µQ(V )S1 in Taylor expansion in multiindex notation.

We make the following notations: λ = (λ1, · · · , λn) ∈ Nn, |λ| = λ1 + · · · + λn, and

αλ = αλ1
1 · · ·αλn

n . Now we consider the Taylor expansion of µQ(V )S1 in multiindex

notation:

µQ(V )S1 = P (. . . , cj(V )S1 , . . .) =
∑

λ

∂|λ|P

∂cλ
(. . . , fj , . . .) · αλ .
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This is a finite sum, since αj ’s are nilpotent. We want to show that µQ(V )S1 ∈ HO∗
S1(X).

αλ lies in HO∗
S1(X), since it lies even in H∗

S1(X). So we only have to show that
∂|λ|P
∂cλ (. . . , fj , . . .) lies in HO∗

S1(X).

But fj ∈ H0(X) ⊗C C[u] = C[u] ⊕ · · · ⊕ C[u], with one C[u] for each connected

component of X. If we fix one such component N , then the corresponding component

f
(N)
j lies in C[u]. According to Lemma A.4, P is holomorphic around (0, . . . , 0), hence

so is ∂|λ|P
∂cλ . Therefore ∂|λ|P

∂cλ (. . . , f (N)
j (u), . . .) is holomorphic in u around 0, i.e. it lies in

OC,0. Collecting the terms for the different connected components of X, we finally get

∂|λ|P

∂cλ
(. . . , fj , . . .) ∈ OC,0 ⊕ · · · ⊕ OC,0 = H0(X)⊗C OC,0 .

But H0(X)⊗C OC,0 ⊆ H∗(X)⊗C OC,0 = H∗
S1(X)⊗C[u] OC,0 = HO∗

S1(X), so we are done.

If the S1-action on X is not trivial, look at the following exact sequence associated

to the pair (X, XS1
):

0→ T ↪→ H∗
S1(X) i∗−→ H∗

S1(XS1
) δ−→ H∗+1

S1 (X, XS1
) ,

where T is the torsion submodule of H∗
S1(X). (The fact that T = ker i∗ follows from

the following arguments: on the one hand, ker i∗ is torsion, because of the localization

theorem; on the other hand, H∗
S1(XS1

) is free, hence all torsion in H∗
S1(X) maps to zero

via i∗.) Also, since T is a direct sum of modules of the form C[u]/(un), it is easy to see

that

T ⊗C[u] OC,0
∼= T ∼= T ⊗C[u] C[[u]] .

Now tensor the above exact sequence with OC,0 and C[[u]] over C[u]:

0 T HO∗
S1(X)

i∗

s

HO∗
S1(XS1

)
δ

t

HO∗+1
S1 (X, XS1

)

0 T HP ∗
S1(X)

i∗

HP ∗
S1(XS1

)
δ

HP ∗+1
S1 (X, XS1

) .
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We know α := µQ(V )S1 ∈ HP ∗
S1(X). Then β := i∗µQ(V )S1 = i∗α was showed previ-

ously to be in the image of t, i.e. β = tβ̃. δβ = δi∗α = 0, so δtβ̃ = 0, hence δβ̃ = 0. Thus

β̃ ∈ Im i∗, so there is an α̃ ∈ HO∗
S1(X) such that β̃ = i∗α̃. sα̃ might not equal α, but

i∗(α− α̃) = 0, so α− α̃ ∈ T . Consider α̃+(α− α̃) ∈ HO∗
S1(X). Now s(α̃+(α− α̃) = α,

which shows that indeed α ∈ Im s = HO∗
S1(X). �

There is a similar story when V is an oriented 2n-dimensional real S1-vector bundle

over a finite S1-CW complex X. We classify VS1 → XS1 by a map fV : XS1 → BSO(2n).

H∗BSO(2n) = C[p1, . . . , pn]/(e2− pn), where pj and e are the universal Pontrjagin and

Euler classes, respectively. The only problem now is that in order to define characteristic

classes over BSO(2n) we need the initial power series Q(x) ∈ C[[x]] to be either even or

odd:

Remark A.6. As in Remark A.2, if Tn ↪→ BSO(2n) is a maximal torus, then the

map H∗BSO(2n) → H∗BTn is injective, and its image can be identified as the Weyl

group invariants of H∗BTn. The Weyl group of SO(2n) is the semidirect product of the

symmetric group on n letters with Z2, so H∗BSO(2n) can be identified as the subring

of symmetric polynomials in C[x1, . . . , xn] which are invariant under an even number

of sign changes of the xj ’s. A similar statement holds for H∗∗BSO(2n). Under this

interpretation, pj = σj(x2
1, . . . , x

2
n) and e = x1 · · ·xn.

So, if we want Q(x1) · · ·Q(xn) to be interpreted as an element of H∗∗BSO(2n), we

need to make it invariant under an even number of sign changes. But this is clearly true

if Q(x) is either an even or an odd power series.

Let us be more precise:

a) Q(x) is even, i.e. Q(−x) = Q(x). Then there is another power series

S(x) such that Q(x) = S(x2), so Q(x1) · · ·Q(xn) = S(x2
1) · · ·S(x2

n) =

PS(. . . , σj(x2
1, . . . , x

2
n), . . .) = PS(. . . , pj , . . .).

b) Q(x) is odd, i.e. Q(−x) = −Q(x). Then there is another power series R(x)

such that Q(x) = xT (x2), so Q(x1) · · ·Q(xn) = x1 · · ·xnT (x2
1) · · ·T (x2

n) =

x1 · · ·xnPT (. . . , σj(x2
1, . . . , x

2
n), . . .) = e · PT (. . . , pj , . . .).
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Definition A.7. Given the power series Q(x) ∈ C[[x]] which is either even or odd,

and the real oriented S1-vector bundle V over X, there is a canonical real equi-

variant characteristic class µQ(V )S1 ∈ H∗∗
S1(X), defined by pulling back the element

Q(x1) · · ·Q(xn) ∈ H∗∗BSO(2n) via the classifying map fV : XS1 → BSO(2n).

Proposition A.5 can be adapted to show that, if Q(x) is a convergent power series,

µQ(V )S1 actually lies in HO∗
S1(X).

The next result is used in the proof of Lemma 6.4.

Lemma A.8. Let V be an orientable S1-equivariant even dimensional real vector bundle

over X. Suppose we are given two orientations of V , which we denote by Vor1 and Vor2.

Define σ = 0 if Vor1 = Vor2, and σ = 1 otherwise. Also, suppose Q(x) is a power series

such that Q(−x) = αQ(x), where α = ±1. Then

µQ(Vor1) = ασµQ(Vor2) .

Proof. a) If Q(−x) = Q(x), µQ(V ) is a power series in the equivariant Pontrjagin

classes pj(V )S1 . But Pontrjagin classes are independent of the orientation, so

µQ(Vor1) = µQ(Vor2).

b) If Q(−x) = −Q(x), then Q(x) = xQ̃(x), with Q̃(−x) = Q̃(x). Hence µQ(V ) =

eS1(V ) ·µQ̃(V ). e(V )S1 changes sign when orientation changes sign, while µQ̃(V )

is invariant, because of a).

�
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