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Abstract
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rency are martingales that converge to a well-defined limiting distribution, hence

are stable in the long run. This result is robust to allowing trading when investors
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1 Introduction

In recent years, a large number of cryptocurrencies has emerged. A cryptocurrency

is a type of electronic money for which the transaction log is based on a distributed

ledger technology such as blockchain.1 A blockchain is a growing chain of records,

called blocks, which are linked and secured using cryptography. Several protocols for

achieving blockchain consensus exist, the most important being Proof-of-Work (PoW)

and Proof-of-Stake (PoS). The PoW protocol requires agents to compete to update the

blockchain, by solving a computational puzzle so that success probabilities depend upon

raw computational power. In the PoS protocol, the blockchain is updated by a randomly

selected stakeholder, where the probability of an investor being drawn is equal to the

investor’s share, i.e., the fraction of coins that the investor owns.2

The PoS protocol involves essentially no direct costs to the stakeholders. However,

just as for the PoW protocol, the agent that updates the blockchain receives a coin re-

ward. This reward feature of PoS has led critics across academia and the cryptocurrency

press to argue that PoS induces wealth concentration. For example, Fanti, Kogan, Oh,

Ruan, Viswanath, and Wang (2019) argue that “PoS systems [lead] to a rich-get-richer

effect, causing dramatic concentration of wealth.” Similarly, one editorial in the cryp-

tocurrency press argues that “the PoS model creates a centralizing effect where the rich

will indefinitely get richer.”3 Thus, it natural to ask: what is the long term evolution of

investor shares in a cryptocurrency that uses a PoS protocol?

To answer this question, we consider a discrete-time infinite-horizon model with

several investors who can trade a risky asset called the cryptocurrency, with units called

coins. The PoS protocol requires that before each trading time t = 1, 2, . . ., one investor

is selected at random, with probability given by her investor share, i.e., by the fraction

of the total number of coins that she owns. Once selected, the investor receives new

1As of March 28, 2019, Cryptoslate lists 2128 cryptocurrencies, out of which 835 have their own
blockchain ledger and are sometimes called “coins,” while the rest are called “tokens.”

2Cryptoslate lists 402 “coins” with a PoS protocol, e.g., Nxt, BlackCoin, and Wave, while it lists
531 “coins” with a PoW protocol, e.g., Bitcoin and Ethereum. Some coins are hybrid and have both
PoW and PoS protocols, e.g., Peercoin. Irresberger, John, and Saleh (2020) provide further detail
regarding the prevalence of various protocols among public blockchains.

3“Proof of Work vs Proof of Stake,” CoinGeek, May 28, 2018.
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coins as a reward.

A key observation is that when all investors are buy-and-hold, i.e., when their trades

are zero, the evolution of their shares is equivalent to a Polya’s urn problem (see Pe-

mantle, 2007, and the references therein). Indeed, consider an urn with balls of different

colors, where the number of colors corresponds to the number of investors. At each

time t, a ball is extracted at random from the urn, which corresponds to an investor

being selected at random by the PoS protocol with probability given by her investor

share. The ball is put back into the urn, along with more balls of the same color, which

corresponds to the selected investor receiving additional coins. Thus, the evolution of

the fraction of balls of a given color in a Polya’s urn is the same as the evolution of

investor shares in our context.

Our first result, which is standard in Polya’s urn problems, is that the share of an

investor with a buy-and-hold strategy evolves according to a martingale. Intuitively, an

investor with a large initial share (i.e., who is “rich”) is more likely to receive the coin

reward via the PoS protocol, but if she is not selected, her share also decreases by a

larger amount. As a result, her share is not expected to increase or decrease, which is

precisely the martingale condition. As an investor share is bounded between 0 and 1,

it possesses a well-defined limiting distribution with a mean equal to its initial value.

This is the sense in which investor shares are stable in the long run.

Our second result is that, when all investors are buy-and-hold and the reward sched-

ule is constant (normalized to 1), the investor shares jointly approach a known distribu-

tion, called the Dirichlet distribution. In the case with only two investors, this reduces

to a beta distribution. This case is sufficient to analyze the share of a particular investor,

because we can consider the aggregate holdings of the other investors as belonging to a

single investor. Our analysis (see Section 3.3) shows that if the coin rewards do not grow

too fast, investor shares are stable in a stricter sense: they remain fairly close to the

initial value. Moreover, we show that “poor” investors (i.e., those who start with a lower

fraction of coins) end up with a more stable share distribution than “rich” investors.

Our third result is a trade irrelevance result that requires two additional assumptions:
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(i) investors are risk-neutral and (ii) investors exit the model at an integrable random

stopping time. Under these two assumptions, investors are indifferent between trading

and a buy-and-hold strategy. Intuitively, when an investor buys more coins there are

two effects on her utility. First, the purchase increases the probability that the investor

will receive a larger coin reward via the PoS protocol. At the same time, the additional

coins lose in value because of the dilution effect. In equilibrium, the two effects exactly

offset each other, and, as a result, the investor is indifferent between trading and not

trading. Moreover, with an infinitesimal trading cost, all investors would prefer not to

trade, and thus they would become “buy-and-hold” investors for which our first result

applies.

Our paper contributes to the literature on the decentralization of blockchains, which

mainly focuses on the PoW protocol and provides theoretical channels that drive PoW

blockchains toward extreme centralization. Arnosti and Weinberg (2018) model PoW

mining as a one-stage game in which miners simultaneously select hash-rates. They find

that asymmetries in hash-rate costs generate extreme concentration of mining power.

Alsabah and Capponi (2020) also establish extreme concentration of mining power aris-

ing but in a model that incorporates R&D investment. They demonstrate that miners

not investing sufficiently in R&D for mining equipment are driven out of the mining

market. Neither of the aforementioned concentration channels arise in a PoS setting.

The PoS analog of purchasing hash-rate is to purchase PoS coins, but PoS coin prices

do not vary across buyers within an efficient market, so asymmetric costs do not arise.

Moreover, R&D investment is not relevant for the PoS setting.

Our paper also contributes to the literature on the economics of the PoS protocol,

e.g., Irresberger (2018), Fanti et al. (2019), and Saleh (2020). Irresberger (2018) pro-

vides an empirical analysis of coin concentration for three cryptocurrencies. The PoS

protocols for these three cryptocurrencies vary in terms of their specific implementation,

but Irresberger (2018) finds that coin concentration, measured by the Herfindahl index,

does not deviate much from its starting value, barring sudden changes in network char-

acteristics. Irresberger (2018) also provides a simulation analysis indicating also that
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share concentration can be largely avoided in PoS blockchains. Saleh (2020) provides

conditions under which a PoS protocol generates consensus among the investors, and

finds that a modest reward schedule helps to generate that consensus expediently. Sim-

ilarly, Brown-Cohen, Narayanan, Psomas, and Weinberg (2018) demonstrate security

advantages from lower block rewards. Our results highlight further advantages for a

modest reward schedule, by focusing on stability in the wealth distribution.

Fanti et al. (2019) study the optimal reward function for a PoS cryptocurrency

according to a “fairness” criterion, i.e., they minimize the investor share variance over

a given horizon, subject to a constraint regarding the number of coins distributed over

that horizon. They show that a geometric reward is optimal in their context. Our

analysis (see Appendix B) confirms their result, but since we are interested in the limiting

evolution of investor shares, we show that beyond the given horizon, the geometric

reward produces a large and increasing variance of investor shares. This is not surprising,

as one should not expect exponentially increasing rewards to generate a stable share

distribution over the long run. By contrast, our results show that the widely used

constant reward function does generate stable share distributions in the limit.

Our results should not be interpreted as generally supportive of stake-based blockchain

governance proposals. Tsoukalas and Falk (2020) examine stake-based voting for the

purpose of crowd-sourcing on blockchain. In such a setting, there exists a potential

misalignment between the extent to which agents possess relevant information and the

extent to which agents hold stake. Tsoukalas and Falk (2020) show that this misalign-

ment may lead to sub-optimal outcomes. Moreover, even when agents have the ability

to endogenously acquire information, that ability does not lead to a first-best outcome

because agents do not internalize the benefits to other users from their own information

acquisition efforts. Our results apply only to the PoS protocol which is a special case

of stake-based blockchain governance. Since PoS protocols specify publicly verifiable

rules for updating the blockchain, asymmetric information has limited relevance for the

evaluation of PoS protocols.
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2 Environment

Time is discrete and infinite. There are two assets: (i) a risky cryptocurrency with

units called coins, and (ii) a 1-period-ahead risk-free asset. Trading in each asset takes

place at each date t ∈ N+ = {1, 2, 3, . . .}. The time before trading begins is denoted by

t = 0. The total supply of the cryptocurrency is distributed at t = 0 among a discrete

population of investors, indexed by a set I = {1, 2, . . . , I}, with I ≥ 2.

Investor Shares. Denote by ni,0 ∈ N the investor i’s initial endowment in coins,

and by ni,t the number of coins owned by i after trading at t. The “investor share” is

the fraction of coins that i owns at t ∈ N:

πi,t =
ni,t
Nt

, with Nt =
I∑
i=1

ni,t, (1)

where Nt is the total (outstanding) number of coins at t.

Proof-of-Stake Protocol. Before trading at t ∈ N+, investor i is selected at

random among the I investors with probability πi,t−1. Once selected, an investor receives

a deterministic reward of Rt ≥ 0 coins (not necessarily an integer).4 Denote by Si,t the

event of i being selected at t, which is assumed independent of all other random variables.

Define its indicator variable by 1Si,t , which is 1 if i is selected, or 0 otherwise. At each

t ∈ N+, define the filtration that keeps track of the awards of the PoS protocol as the

σ-algebra generated by the prices and indicator variables:

Ft = 〈Ps , 1Si,s 〉i∈{1,...,I}, s∈{1,...,t}. (2)

Trading and Prices. The price of the cryptocurrency is a exogenous stochastic

process Pt > 0, t ∈ N. At each t ∈ N+, the order of events is as follows: (i) Rt coins

are rewarded according to the PoS protocol, (ii) the price changes from Pt−1 to Pt, and

(iii) trading takes place at Pt.

4In general, reward schedules vary widely and include zero rewards (e.g., Nxt), constant rewards
(e.g., Blackcoin), decreasing rewards (e.g., Bitcoin), and increasing rewards (e.g., EOS).
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A trading strategy of investor i is a process νi = (νi,t)t∈N adapted to the filtration

Ft, such that for all t ∈ N+, the number of coins after trading, ni,t, belongs to [0, Nt],

where:

ni,t = n′i,t + νi,t, with n′i,t = ni,t−1 +Rt1Si,t . (3)

Define the total market capitalization of the cryptocurrency as:

Mt = NtPt, t ∈ N. (4)

3 Zero Trading

In this section, we analyze the case when at least one investor never trades any coins after

t = 0, i.e., her trading strategy satisfies νi,t = 0 for all t ∈ N+. We call such investors with

zero trades “buy-and-hold.” As the trades of all investors sum up to 0, i.e.,
∑I

j=1 νj,t =

0, the same is true about the trades of the non-buy-and-hold investors. Thus, if we

aggregate the coins of all the non-buy-and-hold investors, they behave collectively as

one buy-and-hold investor. In that case, we show that the investor shares are martingales

that converge jointly to a limiting distribution, which we compute in closed form.

3.1 One Investor

Consider a buy-and-hold investor i ∈ I = {1, 2, . . . , I}, who starts with an endowment

of ni,0 coins. Then, at each time t ∈ N+, the number of coins owned by investor i

changes only if she is selected by the PoS protocol. Equation (3) implies that:

ni,t = ni,t−1 +Rt1Si,t . (5)

This setup is equivalent to a Polya’s urn problem:5 Consider an urn with balls of I

different colors, and let nt,i be the number of balls of color i at t. At t a ball is extracted

at random from the urn (with probability πi,t−1 = ni,t−1/
∑I

j=1 nj,t−1), and it is put

5See Pemantle (2007) and the references therein.
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back into the urn, along with Rt ball of the same color. Note that Rt = 1 in the

original Polya’s urn problem, but the problem has since been adapted to include more

general numbers (see Pemantle, 2007). Thus, the number of balls of color i evolves as

in equation (5). A standard result in Polya’s urn problems is that the fraction of balls

of color i follows a martingale. We prove this result in the context of our Proof-of-Stake

model.

Proposition 1. Suppose investor i ∈ I never trades any coins. Then her share πi,t

follows a martingale. Moreover, this martingale process has a well-defined limiting dis-

tribution, πi,∞, whose mean, E(πi,∞), is equal to the initial share, πi,0.

To get intuition for this result, let Rt = 1 for all t.6 Suppose there are in total ten

investors, each holding initially 1 coin. Thus, at t = 0, the number of coins outstanding

is N0 = 10 and the investor shares are all 1
10

. At t = 1, one investor randomly receives

the coin, and the number of coins outstanding increases by 1, hence N1 = 11. Then,

with probability 0.1, investor i’s share increases by 9
10×11

(from 1
10

to 2
11

), while with

probability 0.9, investor i’s share decreases by 1
10×11

(from 1
10

to 1
11

), an amount that

is 9 times smaller.7 Thus, the change in investor i’s share has zero conditional mean,

which is the martingale condition.

3.2 Multiple Investors

We now assume that all investors are buy-and-hold. Proposition 1 then implies that all

investor shares are martingales. As all shares lie between 0 and 1, they are bounded

martingales, hence, according to a classical theorem by Doob (see Pemantle, 2007), the

investor shares converge in probability to a well-defined distribution on [0, 1]. The next

result, which is standard in Polya’s urn problems, identifies the limiting distribution as

the Dirichlet distribution under the hypothesis of a constant reward schedule.

6We prove Proposition 1 for any deterministic coin reward Rt, but the same proof works when the
coin reward Rt is random, as long as the event of being selected at time t is independent from Rt.

7See the proof of Proposition 1. Note that equation (A2) in Appendix A implies that investor i’s

share change at t is πi,t − πi,t−1 =
1Si,t

− 1
10

Nt
, and the probability of Si,t is 0.1.
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Let Γ(z) =
∫∞

0
xz−1 e−x dx be the Gamma function, which for positive integers is the

same as the factorial (i.e., Γ(n) = (n− 1)!). Recall that the Dirichlet distribution with

parameters (a1, . . . , aI) has support on the set
{

(x1, x2, . . . , xI) ∈ RI
+ |

∑I
i=1 xi = 1

}
and has density function:

f(x1, . . . , xI) = C
I∏
i=1

xai−1
i , with C =

Γ(
∑I

i=1 ai)∏I
i=1 Γ(ai)

, (6)

When I = 2, the Dirichlet density reduces to the beta density on [0, 1] with parameters

(a1, a2):

f(x) = C xa1−1(1− x)a2−1, with C =
Γ(a1 + a2)

Γ(a1)Γ(a2)
. (7)

When a1 = a2 = 1, the beta distribution on [0, 1] is the uniform distribution.

Proposition 2. Suppose there are no coin transactions among the I investors, and

the coin reward is Rt = 1. Then, the investor shares πi,t converge in distribution to a

Dirichlet distribution with parameters (n1,0, . . . , nI,0).

The intuition of Proposition 2 is based on the martingale result of Proposition 1. One

may think that investor shares are explosive. E.g., if investor i is selected at t, her share

increases, and therefore in the next period she is more likely to be selected, and this can

lead via a “snowballing” effect to larger and larger shares, such that her share converges

in probability to 1. This argument is wrong: A “richer” investor (i.e., an investor with

a larger share at t) is indeed more likely to be selected than a “poorer” investor, but

if the richer investor ends up not being selected, her share would drop by more than

the corresponding share decrease of a poorer investor. For a numeric example with two

investors with different initial shares, see the discussion after Corollary 1. Formally, i’s

coin share at t changes by:8

πi,t − πi,t−1 = Rt

1Si,t − πi,t−1

Nt

. (8)

Thus, i’s share increases by
1−πi,t−1

Nt
with probability πi,t−1, and decreases by

πi,t−1

Nt
with

8See the proof of Proposition 1 in Appendix A.
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probability 1 − πi,t−1. Moreover, as we show both numerically and analytically in Sec-

tion 3.3, if the initial number of coins is large relative to the coin reward, the limiting

Dirichlet distribution is concentrated around the initial shares.

3.3 Limiting Distribution and Stability

In this section, we examine the limiting distribution of investor shares from the perspec-

tive of a buy-and-hold investor. Thus far, we have considered an investor share to be

stable if it does not change on average. Proposition 1 shows that the investor shares

are martingales and thus are stable. Another way of defining stability is suggested by

Proposition 2, which describes the limiting distribution of investor shares. An investor

share is then stable in the stricter sense if the limiting distribution is tight around the

initial share. We show that when the number of coins outstanding is large relative to the

coin reward, investors shares are stable in the stricter sense as long as the coin reward

does not increase too fast.9

3.3.1 Constant Reward Schedules

We consider first the case of a constant coin reward schedule, with value normalized

to one (i.e., Rt = 1). Consider a buy-and-hold investor, called investor 1. Denote by

N = N0 the initial number of coins outstanding. Let π1 denote investor 1’s initial

share, and n1 = π1N her initial number of coins. As the aggregate trade is 0, we can

aggregate the other investors’ holdings and obtain another buy-and-hold investor, called

investor 2. Let π2 denote investor 2’s initial share, and n2 her initial number of coins.

Then, π2 = 1−π1 and n2 = π2N , which implies that the initial coin holdings and shares

of both investors are completely determined by π1 (the initial share of investor 1) and

N (the initial number of coins outstanding).

9It is not the aim of this paper to determine an optimal reward schedule, but rather to analyze the
concentration of coin shares by taking a reward schedule as given.
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Figure 1: Simulated Limiting Distribution of the Investor Share. Let N be the
total initial number of coins, and π1 investor 1’s initial share. The graphs depict the density of
investor 1’s share after 100,000 steps. Each graph is generated from 10,000 sample paths and
assumes a constant coin reward of 1 coin, i.e., Rt = 1 for all t ∈ N+. The figure is generated
using the R Statistical Software with a random seed of 100.
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Proposition 2 implies that the share of investor 1, π1,t, converges to a well-defined

limiting density, π1,∞, which is the beta distribution with parameters (n1, n2). An

implication of that result is that a larger initial number of coins N leads to a tighter

distribution π1,∞. Figure 1 illustrates this result by showing the finite-sample density of

investor 1’s share for a variety of initial coin numbers. Each simulation involves 100,000

steps and 10,000 sample paths, and we assume a constant reward schedule with Rt = 1

for all t. In all cases, the initial share is 0.5. Figure 1 shows that the density of 1’s

share depends on the initial coin number: a larger initial coin number induces a tighter

distribution around the initial share. As we move from the top left graph (with N = 2)

to the bottom right graph (with N = 2000), the coin share distribution tightens, but its

center remains equal to the initial coin share.

Corollary 1 helps us formalize this result.
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Corollary 1. Consider a buy-and hold investor with initial share π1, and let N be

the initial number of coins outstanding. The variance of the limiting distribution of

investor 1’s share is:

Var
(
π1,∞

)
=

π1(1− π1)

N + 1
, (9)

which is increasing in π1 if π1 < 0.5, and is decreasing in N .

Thus, as illustrated by Figure 1, when N increases, the variance of the limiting

distribution decreases. Moreover, in the limit when N approaches infinity, the variance

of the limiting distribution converges to zero, i.e., it becomes very tight around its mean.

This implies that investor 1’s share is stable in the stricter sense.

Corollary 1 is also useful in comparing investors with different initial shares. E.g.,

consider a 1%-investor, with π1 = 0.01, and a 10%-investor, with π1 = 0.1. Then, the

variance ratio of the limiting distribution of the two investors is:

Var
(
π1%

1,∞
)

Var
(
π10%

1,∞
) = 0.11. (10)

Thus, the investor shares are less stable for “richer” investors, in the sense that their

limiting distribution is less tight around its mean.10 The intuition why a “poorer”

investor has a more stable share follows from the discussion after Proposition 1. Suppose

initially there are N = 100 coins, and there are two investors: a 10%-investor (with 10

coins), and a 1% investor (with 1 coin). Then, for the 10%-investor, with probability

0.1 her share increases from 10
100

to 11
101

(by 90
10100

), and with probability 0.9 her share

decreases from 10
100

to 10
101

(by 10
10100

). For a 1%-investor, with probability 0.01 her share

increases from 1
100

to 2
101

(by 99
10100

), and with probability 0.99 her share decreases from

1
100

to 1
101

(by 1
10100

). While it is true that the share of the 1%-investor almost doubles

in rare cases (with 1% probability), most of the time (with 99% probability) her share

remains very close to the initial value. Thus, the share of the “poorer” investors is more

10Note that, according to Corollary 1, this result is true only if π1 < 0.5. If investor 1 is “super-rich”
(i.e., π1 ≥ 0.5) then her limiting distribution becomes tighter around its mean as she becomes richer.
In practice, however, even a large investor is unlikely to own more than 50% of all coins, so we restrict
ourselves to the case π1 < 0.5.
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stable in the long run.

3.3.2 General Reward Schedules

We now consider general reward schedules: non-increasing, in Proposition 3, and in-

creasing, in Proposition 4. We have already established that, regardless of the type of

reward schedule, investor shares are martingales and hence are stable. In this section, we

examine whether investor shares are stable in a stricter sense, i.e., whether eventual de-

viations from the mean are unlikely when the initial number of coins outstanding is very

large. Thus, investor 1’s share is stable in the stricter sense if the limiting distribution

π1,∞ satisfies lim
N→∞

P(|π1,∞ − π1| ≥ ε) = 0 for any ε > 0.11

Proposition 3. Suppose there are no coin transactions among the I investors, and the

coin reward is non-increasing, i.e., Rt+1 ≤ Rt for all t. Then, investor 1’s limiting share

distribution satisfies lim
N→∞

P(|π1,∞ − π1| ≥ ε) = 0 for any ε > 0.

Thus, the investor shares are stable in the stricter sense if the reward schedule is

non-increasing, e.g., if it is constant (already discussed in Section 3.3.1) or decreasing.

Proposition 3 also implies that the limiting distribution of investors’ shares depends

not only on the initial shares but also on the initial number of coins.12 To illustrate this

point, we consider a streak of 5 straight rewards for investor 1 under the following two

cases: (i) n1 = n2 = 1, and (ii) n1 = n2 = 1000. In each case, the initial shares are the

same: π1 = π2 = 0.5. For exposition, we let Rt = 1 for all t. In case (i), the streak

occurs with probability 1
2
× 2

3
× 3

4
× 4

5
× 5

6
= 1

6
. In case (ii), the same streak occurs with

probability 1
2
× 1001

2001
× 1002

2002
× 1003

2003
× 1004

2004
≈ 1

32
< 1

6
. We first note that the streak is roughly

5 times more likely in case (i) than in case (ii). Moreover, after the streak, investor 1

possesses over 85% of the coins in case (i), but still approximately 50% of the coins in

the second case. In general, when the initial coin number is low, as in case (i), streaks

11Another definition of stability is lim
N→∞

Var(π1,∞) = 0, which implies lim
N→∞

P
(
|π1,∞ − π1| ≥ ε

)
= 0

for any ε > 0 (see Lemma 6 in Appendix A). In Appendix A, we show that Propositions 3 and 4 are
true under this alternative notion of stability.

12The initial number of coins determine the initial shares, but not vice versa. Thus, our results
imply that the limiting share distribution depends not only on the initial shares, but also on the initial
numbers of coins.
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occur with higher probability and have more dramatic impact on the shares. Thus, the

limiting distribution is more spread out when the initial coin number is low.

In Proposition 4, we examine the stability of investor shares if the reward schedule

is an increasing functions of the number of coins outstanding.

Proposition 4. Suppose there are no coin transactions among the I investors, and the

coin reward is increasing with the number of coins outstanding such that Rt = ρNγ
t−1,

where ρ, γ > 0 are two constants. Then, investor 1’s limiting share distribution satisfies

lim
N→∞

P(|π1,∞ − π1| ≥ ε) = 0 for any ε > 0 if and only if γ < 1.

Thus, investor shares are stable in the stricter sense even when the reward schedule

is increasing in the number of coins outstanding, as long as this increase is not too fast

(i.e., as long as γ < 1). If, however, the increase is sufficiently fast (i.e., γ ≥ 1), then the

reward schedule exhibits exponential growth and the probability of large deviations from

the initial share does not vanish as the initial number of coins outstanding approaches

infinity.

Overall, Propositions 3 and 4 clarify the extent to which arbitrary PoS implementa-

tions generate stability of investor shares.

4 A Trading Irrelevance Result

In this section, we strengthen our results by showing that in equilibrium, investors should

be indifferent about how much they trade or whether they trade at all. This trading

irrelevance result is not obvious ex ante. E.g., one may argue that in this environment an

investor has an incentive to amass the cryptocurrency in order to increase her probability

of getting even more coins from the PoS protocol. We show, however, that this intuition

is incorrect, and that doing nothing is weakly preferred to hoarding.

Investor Preferences. To analyze the equilibrium behavior of investors, we need

to supplement the assumptions in Section 2 with a description of investor preferences.

We thus assume that all investors are risk-neutral and impatient, i.e., they discount

each period by multiplying their expected payoff with a constant parameter δ ∈ (0, 1],
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called the investor impatience. As in Biais, Bisière, Bouvard, and Casamatta (2019), we

assume that investor i incurs a liquidity shock at a random time τi > 0, when she must

sell all assets, consume the proceeds, and exit the model. The exit time τi is independent

of all other variables and satisfies E(τi) < ∞. With an abuse of notation, we augment

the filtration to include the liquidity shock time, i.e., we redefine Ft to be 〈Ft, τ1, ..., τI〉,

such that the investor can condition her strategy on the time of the liquidity shock.

Formally, investor i’s strategy is a triple
(
νi,t, bi,t, ci,t

)
t∈N+

of processes adapted to

the filtration Ft, where νi,t is the number of coins traded at t, bi,t is the end-of-period-t

holding of the risk-free asset, and ci,t is the consumption at t. If rt−1,t denotes the

1-period-ahead risk-free rate from t− 1 to t, then investor i’s strategy solves the maxi-

mization problem:

Ui = max
νi,t,bi,t,ci,t

E
( τi∑
t=1

δtci,t

)
such that:

ci,t + bi,t + νi,tPt = (1 + rt−1,t)bi,t−1,

0 ≤ n′i,t + νi,t ≤ Nt,

ci,τi = n′i,τiPτi + (1 + rτi−1,τi)bi,τi−1,

bi,τ = ni,τ = 0 for τ ≥ τi,

(11)

where n′i,t is the number of coins owned by i after the random coin reward but before

trading at t, and ni,t = n′i,t+νi,t is the number of coins owned by i after trading at t. The

first constraint, ci,t + bi,t + νi,tPt = (1 + rt−1,t)bi,t−1, is the standard budget constraint.

The second constraint, 0 ≤ ni,t ≤ Nt, is that investor shares are bounded by 0 and 1.

The third constraint, ci,τi = n′i,τiPτi + (1 + rτi−1,τi)bi,τi−1, is that i liquidates her holdings

at τi. The fourth constraint is that i stops trading after the exit time τi.

Proposition 5 describes the equilibrium utility of an investor. We assume the follow-

ing necessary equilibrium conditions for a risk-neutral economy:

rt,t+1 =
1

δ
− 1, (12)

Et(Mt+1) = (1 + rt,t+1)Mt, (13)
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where equation (12) determines the endogenous risk-free rate, while equation (13) arises

as an intratemporal condition across the risk-free asset and the cryptocurrency.

Proposition 5 (Trading Irrelevance). If the conditions (12) and (13) are satisfied, any

trading strategy νi = (νi,t)t∈N+ provides the same expected utility for investor i at t = 0:

Ui = ni,0P0. (14)

Proposition 5 establishes the main result of this section, that under certain condi-

tions investors are indifferent to how much they trade. Intuitively, when an investor

buys more coins at t, there are two effects on her utility: First, the purchase increases

the probability that the investor will receive a larger coin reward via the PoS proto-

col. At the same time, the additional coins lose in value because of the dilution effect.

In equilibrium, the two effects exactly offset each other, and, as a result, the investor

is indifferent between trading and not trading. Furthermore, if investors faced an in-

finitesimal trading cost, they would prefer not to trade, and thus become identical to

the buy-and-hold investors of Section 3.13

5 Conclusion

We have analyzed the evolution of investor shares in a model of a cryptocurrency for

which new coin issuance follows a PoS protocol. This problem closely parallels the

evolution of color shares in a Polya’s urn. As in that literature, the shares of coins

owned by buy-and-hold investors are bounded martingales, and therefore have a limiting

distribution. Thus, investor shares are stable in the long run. With a constant reward

normalized to one coin, the limiting share distribution for buy-and-hold investors can be

computed in closed-form: it is a Dirichlet distribution, and in the case of two investors,

a beta distribution. Further, we show that when coin rewards are not increasing too

fast, the investor shares are stable in a stricter sense: they remain fairly close to the

13In Appendix C, we show that trading irrelevance holds also in the presence of a mining cost.
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initial value. Moreover, “poor” investors (i.e., those who start with a lower fraction of

coins) end up with a more stable share distribution than “rich” investors.

By analyzing the optimal strategies of investors who are not necessarily buy-and-

hold, we obtain a trading irrelevance result: investors are indifferent between trading

and being buy-and-hold. Thus, our results regarding the evolution of shares for buy-

and-hold investors are robust to the case when trading is allowed.

Our results go counter to the intuition of some in the cryptocurrency press that

investors have an incentive to amass coins in order to increase the probability of getting

even more coins under the PoS protocol. In our framework, we show that this intuition

is incorrect, and that under plausible assumptions the PoS protocol does not lead to

wealth accumulation and the rich getting richer, but rather to stable investor shares.

Appendix A. Proofs of Results

Proof of Proposition 1. If t ∈ N+, the number of coins owned by i at t − 1 is

ni,t−1 = Nt−1πi,t−1. At t, investor i receives Rt coins if selected, i.e., if 1Si,t = 1.

Therefore, ni,t = ni,t−1 +Rt1Si,t , and i’s share evolves according to:

πi,t =
Nt−1πi,t−1 +Rt1Si,t

Nt

. (A1)

The total number of coins satisfies Nt = Nt−1 +Rt, therefore the investor share satisfies:

πi,t − πi,t−1 = Rt

1Si,t − πi,t−1

Nt

. (A2)

The event Si,t of i being selected at t has probability πi,t−1, and is independent from

everything else.14 The expected change in investor share based on the information

available at t− 1 is:

Et−1

(
πi,t − πi,t−1

)
= Et−1

(
Rt

Nt

)
Et−1

(
1Si,t − πi,t−1

)
= 0. (A3)

14The proof of this proposition can be extended to random Rt and Nt, as long as these variables are
independent from the event Si,t.
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This implies that πi,t is a martingale process. As it is also a bounded process, the

martingale convergence theorem implies that πi,t has a well-defined limit, which we

denote by πi,∞. Moreover, by the bounded convergence theorem, E(πi,∞) = E( lim
t→∞

πi,t) =

lim
t→∞

E(πi,t) = πi,0.

Proof of Proposition 2. The proof is standard: see Pemantle (2007) and the ref-

erences therein. Denote by ai = ni,0 the initial number of coins owned by i ∈ I =

{1, . . . , I}, and by mi,T the (random) number of coins received by i after T periods.

Clearly, ni,T = ai + mi,T . We need to compute the joint probability that mi,T equals

some integer mi. As 1 coin is gained in each period by one of the investors, we have∑I
i=1 mi,T = T . Denote the time indices when i receives 1 coin by ti,1 < ti,2 < . . . <

ti,mi ∈ {1, 2, . . . , T}. The joint probability of these sequences of times occurring is

I∏
i=1

( ai
Nti,1−1

ai + 1

Nti,2−1

· · · ai +mi − 1

Nti,mi−1

)
=

∏I
i=1

[
ai(ai + 1) · · · (ai +mi − 1)

]
N0 · · ·NT−1

=

∏I
i=1

(ai+mi−1)!
(ai−1)!

(N0+T−1)!
(N0−1)!

=

∏I
i=1

Γ(ai+mi)
Γ(ai)

Γ(N0+T )
Γ(N0)

.

(A4)

Note that this probability does not depend on the particular sequences of times ti,k,

hence the probability that mi,T = mi for i ∈ I is the term in (A4) multiplied by the

number of times in which we can partition T coins into I subsets with mi elements each.

This number is
(

T
m1,...,mI

)
= T !∏I

i=1mi!
= Γ(T+1)∏I

i=1 Γ(mi+1)
. We get

P(mi,T = mi) =

∏I
i=1

Γ(ai+mi)
Γ(ai)

Γ(N0+T )
Γ(N0)

Γ(T + 1)∏I
i=1 Γ(mi + 1)

= C
Γ(T + 1)

Γ(T +N0)

I∏
i=1

Γ(mi + ai)

Γ(mi + 1)
, (A5)

where C = Γ(N0)∏I
i=1 Γ(ai)

, as in (6), and N0 =
∑I

i=1 ai. Note that the formula (A5) assumes

that
∑I

i=1mi = T . Thus, if we want the formula to be true in general, we must also

include the term 1∑
mi=T

.

We introduce the following notation when n is large: xn ≈ yn, which by definition

means lim
n→∞

xn
yn

= 1. Stirling’s formula is n! = Γ(n + 1) ≈
√

2πn(n
e
)n, which implies

Γ(n+α)
Γ(n+β)

≈ nα−β. Using this approximation, equation (A5) implies P(mi,T = mi) ≈
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C
∏I
i=1m

ai−1
i

TN0−1 .

Consider I divisions of the interval [0, 1] with points of the form x
(m)
i = m

T
, m ∈

{0, 1, . . . , T}. For each of the I divisions, the distance between two consecutive points

is ∆xi = x
(m)
i − x(m−1)

i = 1
T

. Note that i’s share at T is πi,T =
a0+mi,t
N0+T

≈ mi,T
T

= x
(mi,T )
i .

Thus, setting πi,T = xi implies mi,T ≈ xiT . Therefore, the joint probability that i’s

share at t equals xi is

P(πi,T = xi) ≈ C

∏I
i=1(xiT )ai−1

TN0−1
1∑

xi=1
=

C

T I−1

I∏
i=1

xai−1
i 1∑

xi=1

≈ C ∆x1 · · ·∆xI−1

(
I−1∏
i=1

xai−1
i

)(
1−

I−1∑
i=1

xi

)aI−1

.

(A6)

We thus obtain the density function of the Dirichlet distribution, which finishes the

proof.

Proof of Corollary 1. Define n1 = π1N as the initial number of coins of investor 1,

and n2 = N − n1 = (1 − π1)N the remaining number of coins. Then, Proposition 2

implies that the limiting distribution of investor 1’s share is a beta distribution with

parameters n1 and n2. Its variance is then:

Var
(
π1,∞

)
=

n1n2

(n1 + n2)2(n1 + n2 + 1)
=

π1(1− π1)

N + 1
. (A7)

The rest of the proof is straightforward.

Before proving Propositions 3 and 4, we prove several useful lemmas.

Lemma 1. The conditional variance at t of investor 1’s share at t+ 1 is:

Vart(π1,t+1) =
(Rt+1

Nt+1

)2

π1,t(1− π1,t). (A8)

Proof. Equation (A1) implies that:

π1,t+1 =
Ntπ1,t

Nt+1

+
Rt+1

Nt+1

1S1,t+1 . (A9)
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As the coin reward Rt+1 is deterministic, conditional on the information at t we have:

Vart(π1,t+1) =
(Rt+1

Nt+1

)2

Vart
(
1S1,t+1

)
. (A10)

As Vart(1S1,t+1) = π1,t(1− π1,t), the proof of (A8) is complete.

Lemma 2. The unconditional variance of investor 1’s share at t+ 1 is:

Var(π1,t+1) = at+1π1,0(1− π1,0), (A11)

where the sequence at satisfies:

a1 =
(R1

N1

)2

, at+1 = at +
(Rt+1

Nt+1

)2

(1− at). (A12)

Proof. We proceed by induction. Lemma 1 establishes the base case t = 0. Let t ∈ N+.

A standard formula of conditional expectations implies:

Var(π1,t+1) = Var
(
Et(π1,t+1)

)
+ E
(
Vart(π1,t+1)

)
. (A13)

As π1,t is a martingale, Et(π1,t+1) = π1,t. Using the formula (A8) for Vart(π1,t+1), we

compute:

Var(π1,t+1) = Var(π1,t) +
(Rt+1

Nt+1

)2

E
(
π1,t(1− π1,t)

)
= Var(π1,t) +

(Rt+1

Nt+1

)2(
π1,0(1− π1,0)− Var(π1,t)

)
.

(A14)

By induction, Var(π1,t) = atπ1,0(1− π1,0), hence we obtain:

Var(π1,t+1) =

(
at +

(Rt+1

Nt+1

)2

(1− at)
)
π1,0(1− π1,0). (A15)

Thus, Var(π1,t+1) = at+1π1,0(1− π1,0), which completes the induction step.

Lemma 3. Let ν > 0 and θn ≥ 0 for all n ∈ N+ be some real constants. Define the
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sequence αn by:

α1 =
( θ1

ν + θ1

)2

, and αn+1 = αn +
( θn+1

ν +
∑n+1

k=1 θk

)2

(1− αn). (A16)

Then, for all n ∈ N+, αn ∈ [0, 1] and αn ≤ αn+1.

Proof.

By induction, we prove that αn ∈ [0, 1] and αn ≤ αn+1. As ν > 0 and θ1 ≥ 0,

the case n = 1 follows from α1 = ( θ1
ν+θ1

)2. We now assume the induction hypothesis.

Clearly, θn+1

ν+
∑n+1
k=1 θk

∈ [0, 1], therefore the induction hypothesis αn ∈ [0, 1] implies that

αn+1 = αn +
(

θn+1

ν+
∑n+1
k=1 θk

)2
(1 − αn) belongs to [0, 1]. Equation (A16) also implies that

αn ≤ αn+1, which completes the induction step.

Lemma 4. Let N > 0 and assume that the sequence Rt is positive and non-increasing,

i.e., Rt ≥ Rt+1 ≥ 0 for all t ∈ N. Define the sequence at by:

a1 =
( R1

N +R1

)2

, at+1 = at +
( Rt+1

N +
∑t+1

n=1Rn

)2

(1− at). (A17)

Then, at ≤ R1

N
for all t ∈ N+.

Proof. We extend the sequence at at t = 0 by a0 = 0. By summing up from n = 1 to

n = t+ 1 the differences an+1 − an computed from equation (A17), we obtain:

at+1 − a0 =
t+1∑
n=1

( Rn

N +
∑n

m=1Rm

)2

(1− an−1). (A18)

Lemma 3 implies that an ∈ [0, 1]. As a0 = 0, we obtain:

at+1 ≤
t+1∑
n=1

( Rn

N +
∑n

k=1Rk

)2

. (A19)

As Rt ≥ Rt+1 ≥ 0 for all t, we have:

Rt

N +
∑n

k=1Rk

− R1

N + tR1

=
N(Rt −R1) +R1

(∑t
k=1(Rt −Rk)

)(
N +

∑n
k=1Rk

)
(N + tR1)

≤ 0. (A20)
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Together, equations (A19) and (A20) imply:

at+1 ≤
t+1∑
n=1

( R1

N + nR1

)2

. (A21)

Let f(x) =
(

R1

N+xR1

)2
, which is a strictly decreasing function of x ∈ R+. Then, the right

hand side term in equation (A21) can be interpreted as a Riemann sum for the integral∫ t+1

0
f(x)dx. Therefore, we have:

at+1 ≤
∞∫

0

( R1

N +R1x

)2

dx =
R1

N
. (A22)

This completes the proof.

Lemma 5. Let ρ > 0 and γ ∈ [0, 1). For all t ∈ N+, let Rt = ρNγ
t−1 and Nt =

N +
∑t

n=1Rn. Define the sequence at as in equation (A12). Then, for all t ∈ N+,

at+1 ≤
ρ

1− γ
Nγ−1. (A23)

Proof. As in the proof of Lemma 4, we obtain (see equation (A19)):

at+1 ≤
t+1∑
n=1

(Rn

Nn

)2

. (A24)

If we define ∆Nn = Nn − Nn−1, we have ∆Nn = Rn, which is an increasing sequence.

As Rn+1 = ρNγ
n , we compute:

at+1 ≤
t+1∑
n=1

RnRn+1

N2
n

≤ ρ
t+1∑
n=1

∆Nn

N2−γ
n

. (A25)

Let g(x) = ρxγ−2, which is a strictly decreasing function of x ∈ R+. Then, the rightmost

term in equation (A25) can be interpreted as a lower Riemann sum for the integral
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∫ t+1

N
g(x)dx. Therefore, we have:

at+1 ≤ ρ

∫ ∞
N

dx

x2−γ ≤
ρ

1− γ
Nγ−1, (A26)

which completes the proof.

Lemma 6. The condition:

lim
N→∞

Var(π1,∞) = 0 (A27)

implies that for any ε > 0:

lim
N→∞

P
(
|π1,∞ − π1| ≥ ε

)
= 0. (A28)

Proof. Chebyshev’s inequality states that any random variable X with finite mean µ

and variance σ2 satisfies P
(
|X − µ| ≥ kσ

)
≤ 1

k2
. In our case, let X = π1,∞, and denote

its variance by σ2
1,∞. Fix ε > 0, and let k = ε

σ1,∞
. Chebyshev’s inequality then implies

that P
(
|π1,∞ − π1| ≥ ε

)
≤ σ2

1,∞
ε2

. As lim
N→∞

σ1,∞ = 0, condition (A28) follows.

Proof of Proposition 3. Denote by µ1,∞ and σ1,∞, respectively, the mean and stan-

dard deviation of the limiting distribution π1,∞. Lemma 2 implies that Var(π1,t+1) =

at+1π1(1−π1), where π1 is the initial share of investor 1. Lemma 4 implies that at+1 ≤ R1

N
,

where N is the initial number of coins outstanding (see equation (A22)). Therefore,

lim
N→∞

σ1,∞ = 0. Moreover, Proposition 1 implies that µ1,∞ = π1. Then, Lemma 6

completes the proof.

Proof of Proposition 4. We first consider the case γ ∈ [0, 1). Lemma 5 implies that

at+1 ≤ ρ
1−γN

γ−1. Using the same proof as for Proposition 3, one shows that for any

ε > 0, lim
N→∞

P
(
|π1,∞ − π1| ≥ ε

)
= 0.

Consider the case γ ≥ 1. Proposition 1 shows that there exists a well-defined random

variable π1,∞ = lim
t→∞

π1,t, and let µ1,∞ = π1 be its mean and σ1,∞ its standard deviation.

We show that there exists some ε > 0 such that:

lim
N→∞

P
(
|π1,∞ − π1| ≥ ε

)
> 0. (A29)
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Lemma 2 shows that at = Var(π1,t)

π1(1−π1)
, where at is the sequence in equation (A12). Let

a∞ = Var(π1,∞)

π1(1−π1)
. The bounded convergence then implies that a∞ = lim

t→∞
at.

The inequality γ ≥ 1 implies that the ratio Rt+1

Nt+1
=

ρNγ
t

Nt+ρN
γ
t

=
ρNγ−1

t

1+ρNγ−1
t

converges when

N →∞ to a number that is at least equal to ρ
1+ρ

. Lemma 3 implies that the sequence at

is weakly increasing and bounded by 0 and 1, hence a∞ ∈ [0, 1]. Equation (A12) implies

that at+1− at =
(
Rt+1

Nt+1

)2
(1− at). As at+1− at converges to 0, it follows that lim

N→∞
at = 1.

Thus, a∞ = 1, which implies that Var(π1,∞) = π1(1−π1).15 For any ε > 0, we compute:

π1(1− π1) = E
(
(π1,∞ − π1)2

)
= E

(
(π1,∞ − π1)21|π1,∞−π1|≥ε

)
+ E
(
(π1,∞ − π1)21|π1,∞−π1|<ε

)
≤ P

(
|π1,∞ − π1| > ε

)
+ ε2

(
1− P(|π1,∞ − π1| > ε)

)
,

(A30)

where for the last inequality we use the fact that |π1,∞−π1| < 1 almost surely, as investor

shares are bounded by 0 and 1. Choose a number ε ∈
(
0,
√
π1(1− π1)

)
. Rewriting

equation (A30), we obtain:

P(|π1,∞ − π1| > ε) ≥ π1(1− π1)− ε2

1− ε2
> 0. (A31)

Taking lim inf
N→∞

on both sides completes the proof.

Before proving Proposition 5, we prove a lemma that computes the expected utility

gain from coin issuance. Recall that, at t + 1 ∈ N+, the order of events is as follows:

(i) Rt+1 coins are rewarded to investor i with probability πi,t = ni,t/Nt, thus increasing

her ownership of coins from ni,t to n′i,t+1, (ii) the price changes exogenously from Pt to

Pt+1, and (iii) investor i trades νi,t+1 coins at Pt+1.

Lemma 7. Investor i’s expected utility gain from coin issuance at t+ 1 ∈ N+ satisfies:

Et
(
n′i,t+1Pt+1 − ni,tPt

)
= πi,t

(
Et(Mt+1)−Mt

)
. (A32)

Proof. Equation (3) implies that n′i,t+1 = ni,t +Rt+11Si,t+1
, where Si,t+1 is the event of

15Note that σ1,∞ > 0 is constant and therefore condition (A27) is not satisfied.
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i being selected at t+ 1, with probability πi,t = ni,t/Nt. The equality Nt+1 = Nt +Rt+1

then implies that Et(n
′
i,t+1) = ni,tNt+1/Nt. (Here we use that Rt+1 is deterministic.)

Equation (4) implies that Pt = Mt/Nt and Pt+1 = Mt+1/Nt+1. As the event Si,t+1 is

independent from Pt+1, we compute:

Et(n
′
i,t+1Pt+1) = ni,t Et(Mt+1)/Nt = πi,t Et(Mt+1). (A33)

Also, ni,tPt = πi,tMt, which together with (A33) proves (A32).

Proof of Proposition 5. For any trading strategy νi = (νi,t)t∈N+ , define a process

Πi,t by:

Πi,0 = ni,0P0, Πi,t = δtn′i,tPt −
t−1∑
s=1

δsνi,sPs if t ∈ N+. (A34)

Let t ∈ N. As ni,t = n′i,t + νi,t, we compute:

Πi,t+1 − Πi,t = δt+1n′i,t+1Pt+1 − δtni,tPt. (A35)

Equations (A33) and (A35) imply that:

Et(Πi,t+1)− Πi,t = πi,t

(
δt+1 Et(Mt+1)− δtMt

)
. (A36)

Equations (12) and (13) then imply that Πt is a martingale. Moreover, the domi-

nated convergence theorem implies that E(Πi,τi) = Πi,0 = ni,0Pi,0.16 Finally, the

budget constraint, ci,τi = n′i,τiPτi + (1 + rτi−1,τi)bi,τi−1 and bi,τi = 0 from (11) imply

E(
τi∑
t=1

δtci,t) = E(δτin′i,τiPτi −
τi−1∑
t=1

δtνi,tPt) = E(Πi,τi) = Πi,0 = ni,0Pi,0, which completes

the proof.

16Let Xi =
τi∑
t=0

δtNtPt. Then, |Πi,t| ≤ Xi for all t ∈ N, and E(|Xi|) = (1 + E(τi))N0P0 <∞. Thus,

Πi,0 = lim
t→∞

E(Πi,t∧τi) = E(Πi,τi).
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Appendix B. Reward Functions

Figure 2: Investor Share Distributions under Constant and Geometric Reward
Functions. For an initial total number of coins N = 100 and an initial share of investor 1
equal to π1 = 0.5, the plots show the density of investor 1’s share after T steps. Each graph
is generated from 10,000 sample paths. We select a geometric reward schedule that minimizes
investor share variance over T = 1000 steps. The figure is generated using the R Statistical
Software with a random seed of 100.
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Thus far in this paper, we have considered only the limiting distribution of investor

shares that arise from constant rewards. As constant rewards are widely used in practice,

our analysis is sufficient to address practical questions regarding the evolution of investor

shares in cryptocurrencies with a PoS protocol. Nevertheless, the theoretical literature
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has argued that other reward functions may produce less concentrated distributions

of investor shares. E.g., Fanti et al. (2019) show that a geometric reward function

minimizes investor share variance over a finite horizon, subject to a constraint regarding

the number of coins distributed over that horizon.

In this section, we compare the evolution of investor shares corresponding to both

constant and geometric reward functions. As we are interested in the limiting distri-

bution of investor shares, we consider the evolution of investor shares beyond the finite

horizon set in Fanti et al. (2019).

We thus define the geometric reward as the reward function that minimizes investor

share variance for a given horizon T̃ , and analyze the evolution of shares over T ≥ T̃ .

Fanti et al. (2019) show that the geometric reward in period t is of the form:

Rt = N ×
((

1 +
R̃

N

)t/T̃
−
(

1 +
R̃

N

)(t−1)/T̃
)
, (B1)

where N is the initial number of coins in circulation, T̃ is the number of periods, and

R̃ =
∑T̃

t=1 Rt is the free parameter that determines the total reward distributed over

the first T̃ periods.

Figure 2 depicts simulated investor share distributions for both geometric and con-

stant rewards over three horizons: T ∈ {1000, 10000, 25000}. The geometric reward is

computed as in equation (B1), for the following parameter values: N = 100, T̃ = 1000,

and R̃ = 1000.

Our results are consistent with Fanti et al. (2019) at a horizon T equal to the parame-

ter T̃ . Indeed, the geometric reward produces a lower variance than that of the constant

reward over that horizon. Nonetheless, the same geometric reward applied over longer

horizons (T = 10000 and T = 25000) produces a significantly higher variance than the

constant reward over the same horizons. Moreover, while the investor share variance of

the constant reward varies only modestly from T = 1000 to T = 25000, the investor

share variance of the geometric reward rises dramatically from T = 1000 to T = 25000.

Thus, while a geometric reward minimizes investor share variance over a finite horizon

subject to a requirement regarding the number of coins disbursed over that horizon,
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such a reward function generates large variances when applied over large horizons.

Determining the optimal reward function lies beyond the scope of our analysis.

Nakamoto (2008) proposes rewards within Bitcoin to achieve security, but PoS intro-

duces a fundamentally different context in which rewards may play a different role than

generating security. For example, Brown-Cohen et al. (2018) highlight that the “ab-

sence of rewards [...] achieves the same formal [security] guarantees” as having rewards

for particular extant PoS protocols. Similarly, Saleh (2020) demonstrates that smaller

rewards help PoS overcome the Nothing-at-Stake problem.

Determining the optimal reward function for a PoS protocol remains an active re-

search area. Our paper does not aim to contribute to that area. Instead, we highlight

that, contrary to conventional wisdom, the widely used constant reward function does

not induce wealth concentration, while a geometric reward function produces significant

wealth concentration in the limit.

Appendix C. Mining Costs

In this section, we generalize our results to the case when investors must pay an explicit

mining cost κ > 0 every time they get selected at t to validate a block. As in Section 4,

investor i’s strategy is a triple
(
νi,t, bi,t, ci,t

)
t∈N+

, where νi,t is the number of coins traded

at t, bi,t is the end-of-period-t holding of the risk-free asset, and ci,t is the consumption

at t. If rt−1,t denotes the 1-period-ahead risk-free rate from t− 1 to t, then investor i’s

strategy solves the maximization problem:

Ui = max
νi,t,bi,t,ci,t

E
( τi∑
t=1

δtci,t

)
such that:

ci,t + bi,t + νi,tPt + κ1Si,t = (1 + rt−1,t)bi,t−1,

0 ≤ n′i,t + νi,t ≤ Nt,

ci,τi = n′i,τiPτi + (1 + rτi−1,τi)bi,τi−1 − κ1Si,t ,

bi,τ = ni,τ = 0 for τ ≥ τi.

(C1)
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This is the same problem as in equation (11), except for the additional term κ1Si,t ,

which is the mining cost that is paid if investor i is selected at t.

Proposition 6 describes the equilibrium utility of an investor. We assume the follow-

ing necessary equilibrium conditions for a risk-neutral economy:

rt,t+1 =
1

δ
− 1, (C2)

Et(Mt+1)− κ = (1 + rt,t+1)Mt, (C3)

where equation (C2) determines the endogenous risk-free rate, while equation (C3) arises

as an intratemporal condition across the risk-free asset and the cryptocurrency. Note

that the cryptocurrency is a traded asset in a risk-neutral economy, and thus it must have

an expected return equal to the risk-free rate after mining costs. If the cryptocurrency

did not provide at least such an expected return after mining costs then investors would

not hold the asset in equilibrium. Vice versa, if the cryptocurrency provided a higher

expected return after mining costs then investors would have infinite demand for the

asset, thus unraveling the equilibrium.

Proposition 6 (Trading Irrelevance with Mining Costs). If the conditions (C2) and (C3)

are satisfied, any trading strategy νi = (νi,t)t∈N+ provides the same expected utility for

investor i at t = 0:

Ui = ni,0P0. (C4)

Proposition 6 shows that our irrelevance result arises even with mining costs. The

intuition for this result is similar to the intuition for Proposition 5. Mining costs do not

affect this intuition because prices adjust to account for the mining costs.

Proof of Proposition 6. For any trading strategy νi,t, define a process Π′i,t by:

Π′i,0 = ni,0P0, Π′i,t = δt(n′i,tPt − κ1Si,t)−
t−1∑
s=1

δs(νi,sPs + κ1Si,s). (C5)
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Let t ∈ N. As ni,t = n′i,t + νi,t, we compute:

Π′i,t+1 − Π′i,t = δt+1(n′i,t+1Pt+1 − κ1Si,t+1
)− δtni,tPt. (C6)

Equations (A33) and (A35) imply that:

Et(Π
′
i,t+1)− Π′i,t = πi,t

(
δt+1

(
Et(Mt+1)− κ

)
− δtMt

)
. (C7)

Equations (C2) and (C3) then imply that Πt is a martingale. Moreover, the domi-

nated convergence theorem implies that E(Π′i,τi) = Π′i,0 = ni,0Pi,0.17 Finally, the budget

constraint, ci,τi = n′i,τiPτi + (1 + rτi−1,τi)bi,τi−1 − κ1Si,τi and bi,τi = 0 from (C1) imply

E(
τi∑
t=1

δtci,t) = E(δτi(n′i,τiPτi−κ1Si,τi )−
τi−1∑
t=1

δt(νi,tPt+κ1Si,s)) = E(Π′i,τi) = Π′i,0 = ni,0Pi,0,

which completes the proof.
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