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Liquidity and Information in Limit Order Markets

Ioanid Roşu *

Abstract
How does informed trading affect liquidity in limit order markets, where traders can choose
between market orders (demanding liquidity) and limit orders (providing liquidity)? In
a dynamic model, informed trading overall helps liquidity: A higher share of informed
traders i) improves liquidity as proxied by the bid–ask spread and market resiliency, and
ii) has no effect on the price impact of orders. The model generates other testable implica-
tions, and suggests new measures of informed trading.

I. Introduction
Market liquidity is a central concept in finance, in particular in relation with

asset pricing.1 According to Bagehot (1971), illiquidity is caused by asymmet-
ric information, via the actions of liquidity providers. The liquidity provider, or
market maker, which Bagehot identifies as the “exchange specialist in the case of
listed securities and the over-the-counter dealer in the case of unlisted securities,”
sets prices and spreads so that on average he makes losses from traders who pos-
sess superior information, but compensates with gains from uninformed traders,
who are motivated by liquidity needs or simply trade on noise. Thus, the stronger
the asymmetric information between the informed traders and the market maker,
the larger the bid–ask spread needs to be so that the market maker at least breaks
even. A large theoretical literature has since made Bagehot’s intuition rigorous.2
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Research (NBER) microstructure meeting, 4th Central Bank Microstructure Workshop, and the 1st
Market Microstructure Many Viewpoints Conference in Paris.

1See Amihud and Mendelson (1986), Brennan and Subrahmanyam (1996), Easley, Hvidkjaer, and
O’Hara (2002), Pástor and Stambaugh (2003), and Acharya and Pedersen (2005).

2See Kyle (1985), Glosten and Milgrom (1985), or O’Hara (1995) and the references within.
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Following Bagehot (1971), most of the theoretical literature assumes that liq-
uidity providers do not to possess any superior fundamental information.3 More
recent evidence, however, has called into question this assumption. One reason
is that most financial exchanges around the world have become “limit order mar-
kets,” meaning that any investor (informed or not) can provide liquidity by post-
ing orders in a limit order book.4 Moreover, empirical evidence shows that there
is an important premium for liquidity provision in limit order markets, and that
informed traders do indeed use limit orders extensively.5 Despite the evidence,
the literature has been largely silent on the order choice problem of informed
traders, and, importantly, on how this choice affects market liquidity. The goal of
the present paper is to fill this gap.

To address these questions, consider a dynamic model of a limit order mar-
ket. Risk-neutral investors arrive randomly to the market and trade in one risky
asset. The asset’s fundamental value is time varying, and information about it is
costly to acquire and process.6 Informed investors learn the current value of the
asset, and decide whether to buy or sell 1 unit of the asset, and whether to trade
with a market order or a limit order. Limit orders can subsequently be modified or
cancelled without any cost.

The main result is that a larger fraction of informed traders overall improves
liquidity. This result is driven by two key features of the model: First, there is
competition among informed traders, in the sense that each informed trader must
take into account the future arrivals of other informed traders. Second, private
information is long-lived, as information about the fundamental value is revealed
to the public only via the order flow.7 Because of these features, a larger share
of informed traders produces a dynamic efficiency that can eventually overcome
the static increase in adverse selection. To understand in more detail the intuition
behind the main result, I briefly describe several key equilibrium results.

The first key result describes the optimal order choice of the informed trader.
This is essentially a threshold strategy: The informed trader (referred to in the pa-
per as “she”) submits either a market order or a limit order, depending on the mag-
nitude of her privately observed “mispricing,” which is the difference between
the fundamental value (privately observed) and the “public mean” (the public ex-
pectation of the fundamental value). An extreme mispricing causes the informed
trader to submit a market order, while a moderate mispricing causes a limit order.

3Notable exceptions are Chakravarty and Holden (1995), Kaniel and Liu (2006), Goettler, Parlour,
and Rajan (2009), and Brolley and Malinova (2017).

4Nowadays, most equity and derivative exchanges are either pure limit order markets (Euronext,
Helsinki, Hong Kong, Tokyo, Toronto); or hybrid markets, in which designated market makers must
compete with a limit order book (NYSE, Nasdaq, London). See Jain (2005).

5See Biais, Hillion, and Spatt (1995), Harris and Hasbrouck (1996), Griffiths, Smith, Turnbull,
and White (2000), Sandås (2001), Hollifield, Miller, and Sandås (2004), Anand, Chakravarty, and
Martell (2005), Menkhoff, Osler, and Schmeling (2010), Latza and Payne (2011), and Hautsch and
Huang (2012). Similar findings are reported by Bloomfield, O’Hara, and Saar (2005) in the context of
experimental asset markets.

6Because I am interested in long run liquidity effects, I assume that the asset value is not constant,
but follows a random walk. Thus, prices do not eventually reveal all the private information. In Goettler
et al. (2009), the fundamental value is also time varying, but follows a Poisson process.

7Goettler et al. (2009) obtain different results because in their model the private information is
short-lived (the fundamental value is revealed publicly after several periods).
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This result formalizes an intuition present, for example in Harris (1998),
Bloomfield et al. (2005), Hollifield et al. (2004), and Large (2009).

The second key result describes the information content of the order flow.
Because in equilibrium informed traders can submit both limit orders and market
orders, all types of order have “price impact” (defined as the change in public
mean caused by the order). Nevertheless, because market orders are associated
to more extreme mispricing, the price impact of a buy market order is larger in
magnitude (about 4 times larger in my model) than the price impact of a buy
limit order. In line with this prediction, Hautsch and Huang ((2012), p. 515) find
empirically that market orders have a permanent price impact of about 4 times
larger than limit orders of comparable size.

The third key result describes the equilibrium bid–ask spread, and identifies
a new component of this spread: the slippage component. I define “slippage” as
the tendency of an informed trader’s estimated mispricing to decay over time.8

Slippage is due to the future arrival of other informed traders who correct the mis-
pricing by submitting their orders. Thus, slippage induces an endogenous waiting
cost for the informed trader, called the “slippage cost.” In addition, the informed
trader suffers from an “adverse selection cost,” since at the time of order execu-
tion she is potentially less informed than the future informed traders.9 I define the
“decay cost” as the sum of the slippage cost and the adverse selection cost.

The decay cost generates a tradeoff between limit orders and market orders:
By trading with a limit order, an informed trader gains half the bid–ask spread, but
loses from the decay cost. By trading with a market order instead, the informed
trader loses half the bid–ask spread, but pays no decay cost. At the threshold mis-
pricing, the informed trader is indifferent between a market order and a limit order.
Hence, the decay cost corresponding to this threshold value is equal to the equi-
librium bid–ask spread. From the definition of the decay cost, the bid–ask spread
is therefore the sum of a “slippage component” and an “adverse selection compo-
nent.” To my knowledge, the slippage component is new to the literature. Huang
and Stoll (1997) decompose the bid–ask spread into order processing costs, ad-
verse selection costs, and inventory holding costs. In my model, I abstract away
from inventory issues and order processing costs, but recover the adverse selec-
tion component. In addition, however, by allowing informed traders to provide
liquidity, the phenomenon of slippage generates a new component of the bid–ask
spread.

The main result describes how liquidity is affected by the fraction, or share
of informed traders, henceforth called the “informed share.” Surprisingly, a larger
informed share overall has a positive effect on liquidity. More precisely, a larger

8According to Investopedia, “slippage happens when a trader gets a different [price] than expected
between the time he enters the trade and the time the trade is made” (February 22, 2019, available at:
https://www.investopedia.com/terms/s/slippage.asp). Thus, slippage can also occur if a large, possibly
uninformed market order “walks the book,” (i.e., if some parts of the order execute at a worse price).
In this paper, slippage applies only to limit orders submitted by informed traders, and it occurs even
when limit orders are for just 1 unit.

9This is because the informed trader acquires information only when she enters the market. If
instead she continuously observes the fundamental value, the adverse selection component is 0, but
the slippage cost is still positive, as competition with future informed traders gradually erodes her
initial information advantage.
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informed share has i) a negative effect on bid–ask spreads; ii) no effect on the price
impact; and iii) a strongly positive effect on market resiliency, which is defined in
Kyle (1985) as the speed with which prices recover from a random, uninformative
shock. Moreover, a larger informed share has a positive effect on market efficiency
by reducing the “public volatility.” The latter is defined as the publicly inferred
volatility of the fundamental value, hence its inverse is a measure of dynamic
efficiency: when the public volatility is small, the public has precise information
about the fundamental value.

To get intuition for the main result, note that a larger informed share implies
that the informed traders exert more pressure on prices to revert to the fundamen-
tal value. This explains the strong positive effect of the informed share on market
resiliency. Also, it explains the negative effect of the informed share on public
volatility: when there are more informed traders, the public eventually learns bet-
ter about the fundamental value, and the public volatility decreases. But the bid–
ask spread is equal to the decay cost corresponding to the threshold mispricing.
When the public volatility is smaller, the decay cost is also smaller because the
average mispricing tends to be smaller. Hence, a larger informed share generates
a smaller bid–ask spread.

To understand the neutral effect of the informed share on market depth, sup-
pose the informed share is small, and a buy market order arrives. There are two
opposite effects at play. First, when the informed share is small, it is unlikely that
the market order comes from an informed trader. This effect decreases the price
impact. But, second, if the buy market order does come from an informed trader,
she must have observed a fundamental value far above the public mean; other-
wise, knowing there is little competition from other informed traders, she would
have submitted a buy limit order. This effect increases the price impact. The two
effects exactly offset each other.10

The results described thus far are obtained in the “stationary equilibrium,” in
which the public volatility is constant over time (which in turn makes the bid–ask
spread and price impact also constant). In the stationary equilibrium, the natural
increase in uncertainty due to changes in the fundamental value is exactly offset
by the new information contained in the order flow. The final set of results arise
from the study of “nonstationary equilibria,” which can appear for instance after
an uncertainty shock (an unobserved shock to the fundamental value) induces a
temporary spike in public volatility.

Liquidity is resilient: after an uncertainty shock, the bid–ask spread and price
impact (as well as the public volatility) decrease over time to their values in the
stationary equilibrium. The bid–ask spread and price impact are both increasing
in the size of the uncertainty shock. The liquidity resiliency is larger when there
are more informed traders, as the order flow becomes more informative. Liquidity
resiliency is different from market resiliency, as the latter is the tendency of prices
to revert to the fundamental value after an uninformative shock.

I introduce a new measure, the “market-to-limit probability ratio,” which is
the defined as the probability the next order is a market order, divided by the
probability that the next order is a limit order. This number is equal to 1 in the

10This is proved rigorously in Proposition 1, and explained in the subsequent discussion.
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stationary equilibrium, but after an uncertainty shock the market-to-limit proba-
bility ratio drops to levels significantly less than 1, as the increase in the bid–ask
spread temporarily prompts the informed traders to submit more limit orders. The
connections among the market-to-limit probability ratio with the liquidity mea-
sures and the public volatility, as well as the expected evolution of the equilibrium
towards the stationary one, produce new testable implications of the model.

Overall, the theoretical model produces a rich set of implications regarding
the connection between the activity of informed traders and the level of liquid-
ity. The main result is that informed traders have on aggregate a positive effect,
by making the market more efficient and, at the same time, more liquid. A wel-
fare analysis in Section 2 in the Supplementary Material also shows that a larger
number of informed traders (caused for example by an exogenous decrease in
information costs) increases aggregate trader welfare. The model thus provides
useful tools to analyze informed trading, and its connection with liquidity, prices,
and welfare.

This paper is part of a growing theoretical literature on price formation in
limit order markets.11 Of central interest in this literature is how investors choose
between demanding liquidity via market orders and supplying liquidity via limit
orders.12 Several papers, such as Foucault et al. (2005) or Roşu (2009), study order
choice by assuming that investors have exogenous waiting costs. One advantage
of my model is that waiting costs arise endogenously in the case of an informed
investor: these are the aforementioned decay costs.

Goettler et al. (2009) is the first paper that solves a dynamic model of limit
order markets with asymmetric information. The focus of their paper is different,
however. While I am interested in the effect of informed trading on liquidity, Goet-
tler et al. analyze the interplay between information acquisition, order choice, and
volatility. They find that under picking off risks (which are absent in my model),
different volatility regimes affect traders’ order choice, and make the market act
as a volatility multiplier. Moreover, there are two important modeling differences.
First, in their model, private information is short-lived, because the fundamental
value is publicly revealed after several periods. This assumption reduces the ef-
fect of dynamic efficiency in their model, as informed traders cannot arrive more
quickly to make the market more efficient. By contrast, in my model, dynamic ef-
ficiency has a strong effect by having private information being incorporated over
the long run, and as a result the informed traders have an overall positive effect on
liquidity. Second, in their model traders do not continuously monitor the market,
which creates stale limit orders and picking off risks. In my model, there are no
stale orders since limit orders can be modified instantly.

My main result, that informed trading has a positive overall effect on liq-
uidity, is documented by several empirical papers, starting with Collin-Dufresne
and Fos (2015). They find that the bid–ask spread and realized price impact

11See Glosten (1994), Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel (2005),
Goettler, Parlour, and Rajan (2005, 2009), Back and Baruch (2007), Roşu (2009), Biais, Hombert,
and Weill (2014), Pagnotta (2013), and the survey by Parlour and Seppi (2008).

12For models of order choice without private information, see Cohen, Maier, Schwartz, and
Whitcomb (1981), Harris (1998), Foucault (1999), Parlour (1998), Goettler et al. (2005), and Roşu
(2009).

https://doi.org/10.1017/S0022109019000759
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . G
roupe H

EC , on 07 Sep 2020 at 07:06:21 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0022109019000759
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Roşu 1797

decrease in the presence of informed trading coming from corporate insiders.13

In my model, I obtain an improvement in the bid–ask spread, but not in the price
impact. This latter point might be due to the fact that my measure of price impact
is instantaneous, while their empirical measure is considered over a longer period,
and thus may be affected by market resiliency. Roşu (2019) extends the Glosten
and Milgrom (1985) model to allow a moving fundamental value, and finds that
the informed share has no effect on the bid–ask spread. In that paper, however,
the ask and bid prices are not limit order prices, but rather quote prices, set by
a risk-neutral specialist. As a result, the half bid–ask spread is the same as the
price impact of a buy order, which, as in the present paper, is not affected by the
informed share.

The paper is organized as follows: Section II describes the model. Section III
solves for the stationary equilibrium, in which the public volatility (as well as the
bid–ask spread and price impact) is constant. Section IV describes the properties
of the stationary equilibrium, including the various dimensions of liquidity and
information efficiency. Section V explores nonstationary equilibria of the model.
Section VI concludes. Proofs of the main results are in the Appendix and the
Supplementary Material. The Supplementary Material contains additional results
and robustness checks.

II. Model
The market consists of a single risky asset. Time is continuous, and traders

arrive randomly to the market. After deciding whether to acquire private infor-
mation regarding the fundamental value of the asset, traders can submit an order
to buy or sell 1 unit of the asset. Traders also choose the price at which they are
willing to transact. If an order does not execute, it can be subsequently modified
or cancelled. Information can be difficult to process, as is subsequently explained.

A. Trading and Prices
Trading occurs when a buy or sell order is executed against an order of the

opposite type. Each order is a limit order, as it specifies a quantity and a price
beyond which the trader is no longer willing to transact. The price can be any real
number. Limit orders are subject to price priority: Buy orders submitted at higher
prices and sell orders submitted at lower prices have priority. Limit orders sub-
mitted at the same price are subject to time priority: The earlier order is executed
first. If several orders arrive at the same time, priority is assigned randomly to
them.14

The “limit order book” is the collection of all outstanding limit orders (sub-
mitted but not yet executed or cancelled). In the book, limit orders form two
queues, based on order priority: the “ask queue” on the sell side, and the “bid
queue” on the buy side. The lowest price on the ask side is the “ask price,” or sim-
ply the ask. The highest price on the bid side is the “bid price,” or simply the bid.

13Their interpretation is based on Admati and Pfleiderer’s (1988) intuition that insiders trade more
aggressively in periods when they expect noise trading activity to increase. At those times, liquidity is
higher, despite the increase in adverse selection coming from informed trading.

14With Poisson arrivals, the probability of 2 or more traders arriving at the same time is 0.
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A marketable limit order is a buy limit order with a price above the ask, or a sell
limit order below the bid. A marketable limit order is executed immediately and
is henceforth called a “market order.”

B. Traders and Arrivals
Traders arrive to the market according to a Poisson process with parameter λ.

Immediately after arrival, a trader chooses whether to (a) submit a market order,
(b) submit a limit order, or (c) submit no order at all. Each order is for 1 unit of
the asset. After submission, a limit order can be either i) modified, which means
the limit price is changed (in which case time priority is lost), or ii) cancelled. As
soon as the order is executed or cancelled, or if no order is submitted, the trader
exits the model.

Traders are risk-neutral but their utility also includes a private valuation com-
ponent and a cost from waiting.15 Each trader has a type (u,r ), which consists of
a private valuation u for the asset and a waiting coefficient r . The private valua-
tion u can take 3 possible values, {−ū,0, ū}, where ū>0. A trader is a “natural
buyer” if u= ū, a “natural seller” if u=−ū, or “speculator” if u=0. At time t , the
instantaneous utility of a trader with private valuation u is:

(1)

vt − Pt + u, if trader buys at t ,
Pt − vt − u, if trader sells at t ,
0 if trader’s order does not execute at t ,

where vt is the fundamental value at t , and Pt is the transaction price at t . Traders
incur a waiting cost of the form r×τ , where τ is the expected waiting time, and
r is a constant coefficient. The waiting coefficient r can take 2 possible values,
{0, r̄}, where r̄>0. A trader is “patient” if r=0, or “impatient” if r= r̄ .

To simplify presentation, I assume that i) impatient natural buyers always
submit a buy market order, ii) impatient natural sellers always submit a sell mar-
ket order, and iii) impatient speculators do not submit any order. In Section 2 in
the Supplementary Material, I show that i)–iii) are equilibrium results if ū and r̄
are above certain thresholds.16 Since traders who submit no order exit the model
immediately, I replace iii) by the assumption that all speculators are patient.

Natural buyers and sellers (traders with valuation ū or −ū) arrive randomly
to the market according to an independent Poisson process with parameter λu .
They are equally likely to have positive or negative private valuation, and equally
likely to be patient or impatient. Patient speculators arrive randomly to the market
according to an independent Poisson process with parameter λi . The total trading
activity is λ=λu

+λi . The “informed share” is defined as the ratio:

(2) ρ =
λi

λi + λu
.

15The private valuation can arise from liquidity or hedging needs, or from bias regarding the asset
(optimism or pessimism). The waiting cost can arise from trading horizon/deadlines, or from uncer-
tainty regarding future order execution.

16In particular, I show that it is not profitable for a sufficiently impatient speculator to acquire infor-
mation. Ex post (i.e., after seeing the signal), such a speculator might observe an extreme mispricing
that could be exploited without waiting, and would therefore justify the information cost, but ex ante
such signals are rare and therefore do not justify the cost.
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Thus, ρ is the fraction of traders who are speculators, and 1−ρ is the fraction of
traders who are natural buyers or sellers (patient or impatient).

C. Information
At any time t , the asset has a fundamental value vt , also called common

value or full-information price. The asset value follows a diffusion process dvt=

σvdBt , where Bt is a standard Brownian motion, and the “fundamental volatility”
parameter σv is a positive constant. Because traders arrive to the market according
to a Poisson process, inter-arrival times are exponentially distributed with mean
1/λ. For simplicity of notation, throughout the paper I work in event time rather
than calendar time: if a trader arrives at t , the next trader arrives at t+1.17 The
discrete version of the fundamental value process in event time is:

(3) vt = vt−1+ σIεt , with σI =
σv
√
λ

and εt ∼ N (0,1),

where σI is the “inter-arrival volatility,” and εt has the standard normal
distribution.

By paying an information acquisition cost, a trader learns the fundamental
value at the time of arrival.18 To simplify presentation, I assume that all patient
speculators acquire information, and that no other traders acquire information;
this is proved as an equilibrium result in Section 3 in the Supplementary Material.
In what follows, I refer to the patient speculators as “informed traders,” and to the
natural buyers and sellers as “uninformed traders.”

All traders observe the history of the game. The history consists of the whole
order flow: submissions, executions, modifications, and cancellations. The evo-
lution of the limit order book and the transaction prices are part of this public
information. A trader’s type (private valuation and waiting coefficient) is private
information for each trader. The fundamental value at the time of arrival is private
information for each informed trader.

D. Equilibrium Concept
The model represents a stochastic game, in which Nature moves by drawing

randomly new traders at each time t ∈N={0,1,2, ...}. After traders arrive and
decide whether to become informed or not, they engage in a trading game and at
each time maximize their expected utility given their information set. Even though
the arrivals occur at discrete points in time, traders can later modify their orders at
any time in between. The game is therefore set in continuous time, and I use the
framework of Bergin and MacLeod (1993) in which traders can react instantly.

The equilibrium concept is the Markov perfect equilibrium (MPE), as de-
fined for instance in Fudenberg and Tirole (1991). As a refinement of the perfect
Bayesian equilibrium (PBE) concept, an MPE is defined by a “game assessment,”

17This use of event time has been justified empirically for instance by Hasbrouck (1993). Equiva-
lently, I set the model in discrete time, in which case t+1 is replaced by t+ 1

λ
.

18Learning only at arrival is consistent with the assumption below that the informed trader who
submits a limit order must use an uninformed trader (broker) to update the limit order until it is
executed.
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which is the collection of a strategy profile and a belief system such that i) at
every stage of the game, strategies are optimal given the beliefs, and the beliefs
are obtained from equilibrium strategies and observed actions using Bayes’ rule,
and ii) the game assessment is conditional on a set of state variables which are
payoff-relevant. The latter condition implies that in an MPE there are no ad-hoc
punishments to support the equilibrium.

E. Information Processing
Solving the aforementioned model is very challenging if traders can do full

Bayesian updating. This is because each trader’s inference problem involves an
infinite number of state variables, which are the moments of the probability den-
sity that describes the trader’s belief about the fundamental value. As new orders
arrive, the belief must be updated based the information contained in each order
type. But because informed traders use threshold strategies (see Theorem 1), the
update of the density changes its shape in ways which are difficult to quantify
precisely.

The modeling approach is to introduce frictions in information processing
such that the traders solve a simplified inference problem.19 These frictions are
based on the principle that it is more difficult to process i) private rather than
public information, ii) conditional rather than unconditional information, and
iii) higher rather than lower moments of a distribution. But rather than explic-
itly introducing information processing costs, I directly specify what information
traders can process.

When updating the belief density, an uninformed trader can compute with-
out cost i) the first moment of the posterior belief conditional on order type,
and ii) the second moment of the posterior belief conditional on order ar-
rival, but unconditional of order type.20 Uninformed traders cannot compute
higher moments, hence I assume that their posterior beliefs are always normally
distributed.

To avoid different beliefs among uninformed traders, I assume that the initial
belief of an uninformed trader is such that after submitting a limit order in the
direction of his private valuation, his posterior belief coincides with the posterior
belief of the other uninformed traders.21 Thus, the uninformed traders waiting in
the order book have the same normally distributed belief, the “public density.” Just
before trading at t , I denote the public density by ψt , and its mean and standard
deviation are, respectively, the “public mean” µt and the “public volatility” σt .

19Given the difficulty of the traders’ inference problem and the fact that information acquisition is
costly in the model, it is plausible to assume that information processing is costly as well.

20Formally, condition ii) means that the uninformed trader correctly computes the average posterior
variance conditional on an order being submitted (ignoring, e.g., whether the order submitted is market
or limit), and then updates the posterior variance to this same value regardless of the order type.
This assumption is necessary because the market and limit orders have different posterior standard
deviations (see Footnote 50). This difference approaches 0 when the informed share ρ is small, and
has a maximum possible value of about 13%.

21This assumption reconciles the divergence in beliefs that private knowledge about the own type
can create. For example, an uninformed trader who submits a limit order privately knows that his
order is uninformed, but the other uninformed traders do not know and may update their beliefs. See
the proof of Lemma 3 in the Appendix for a formal discussion.
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Private information is much more difficult to process, therefore I assume that
an informed trader who chooses to submit a limit order must subsequently use an
uninformed trader (who acts as a broker) to update the order.22

For tractability, I assume that an informed trader receives a penalty ω if after
observing the fundamental value she chooses not to trade.23 This assumption is
equivalent to the informed trader receiving a private benefit ω if she submits an
order to the market, which intuitively can arise from “learning by trading.” Be-
cause ω indicates a commitment to trade by the informed investor, it is called the
“commitment parameter.” In Section 5.2 in the Supplementary Material, I show
that this assumption is necessary only if the number of informed traders is above
a threshold.

F. Robustness
The model described thus far can be solved essentially in closed form. It

can be used therefore as a benchmark model to study the robustness of the equi-
librium results. In Section 5 in the Supplementary Material, I study the effect of
relaxing some of the assumptions that are made for tractability. I then verify that
the equilibrium is not significantly affected by relaxing these assumptions.

III. Equilibrium
The simplifying assumptions in Section II.E imply that we can consider

MPEs in which the only relevant state variables are the public mean and the pub-
lic volatility, corresponding to the first two moments of the uniformed traders’
posterior belief about the asset value.

In this section, I describe an MPE in which the public volatility is con-
stant and equal to the parameter V defined in equation (7) below. Moreover, in
Section V below, I examine nonstationary equilibria corresponding to different
initial public volatility, and show that all of these equilibria converge to the sta-
tionary equilibrium of this section (Result 3). In the rest of the paper, therefore, I
refer to the equilibrium in this section as the (unique) stationary equilibrium.

In Section III.A, I describe intuitively the stationary equilibrium, as well as
the role played by several key assumptions. In Section III.B, I introduce the nota-
tion used throughout the paper. In Section III.C, I describe the optimal strategies
of the informed and uninformed traders, their resulting expected utility, and I ex-
amine the equilibrium limit order book and its evolution in time.

A. Intuition and Discussion
I first provide a brief description of the stationary equilibrium, and then ex-

plain how it relates to the traders’ strategies. In equilibrium, the public volatility
is a constant V , and the bid–ask spread is also a constant S. (For a definition of

22This simplifying assumption is justified by two arguments. First, private information processing
is indeed difficult: An informed trader must learn not just how the public density evolves, but must also
use her signal to form a private belief about the asset value (she only observes the asset value once).
Second, even if she could properly update her private belief, while waiting in the book she might not
want to deviate from the uninformed strategy, as this would reveal information to the public.

23This assumption in needed to avoid no-order regions for the informed trader, which can occur
when her perceived mispricing is close to 0.
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these constants, see Section III.B.) Before the arrival of the first trader at time
t=0, there is a countably infinite number of traders in the queue at the ask price
µ0+

S
2 , and at the bid price µ0−

S
2 , where µ0 is the initial public mean.24 The ar-

rival of a buy market order (BMO) shifts the public mean, the ask price, and the
bid price by a constant 1. The BMO executes the first sell limit order (SLO) at
the ask, and the ask and bid queues are shifted by 1. The arrival of a buy limit
order (BLO) shifts the public mean, the ask price, and the bid price by a constant
γ1, where γ ≈0.2554. The BLO is submitted at the new ask price, such that it
becomes the first in the bid queue, and the ask and bid queues are shifted by γ1.
The shifts in the ask and bid queues are done such that the traders never switch
their relative positions in the queue. The arrivals of a sell market order (SMO)
and a sell limit order (SLO) have similar effects, but with a negative sign. Except
for these shifts, traders never cancel or modify their limit orders. All limit orders
execute with probability one.

At each integer time t=0,1, . . ., a new trader arrives, who is either informed
with probability ρ, or uninformed with probability 1−ρ. All informed traders are
patient, while the uninformed traders are, with equal probability, either buyers or
sellers, patient or impatient. By assumption, the impatient traders always submit
market orders, and thus provide a source of profit for the patient traders (informed
or uninformed) who submit limit orders.25

The strategy of the patient uninformed traders is simple. Suppose a patient
natural buyer (with positive private valuation and zero waiting costs) arrives to
the market. He then submits a buy limit order (BLO), after which he waits for his
order to be executed, and in the meantime he modifies his bid to account for the
information contained in the order flow. This modification is done such that the
traders do not switch their relative positions in the queue.26 The bid and ask queues
consist each of a countably infinite number of buyers and sellers, respectively, as
all these traders have zero waiting costs.27 The patient natural buyer chooses a
BLO for two reasons: i) his private valuation is positive, hence he prefers a buy

24As all orders are for 1 unit, the traders who are not the first in the queue can have their limit
orders above the ask or below the bid, as long as the relative positions in the queue do not change.
Nevertheless, the equilibrium shape of the limit order book can be fixed if one imposes an infinitesimal
cost of modifying limit orders: see the discussion about Figure 2 below.

25In Section 2 in the Supplementary Material, I show that the impatient traders always submit
market orders for sufficiently large values of ū (private valuation) and r̄ (waiting cost). Also, I show
that impatient informed traders optimally do not participate in the market.

26Switching positions in the queue does not matter for uninformed traders, as they have zero wait-
ing costs. The same goes for the informed traders, because by assumption they must hire an unin-
formed trader (broker) to handle their orders. In principle, however, an informed trader could realize
that her average information advantage decreases over time because of the future arrival of competing
informed traders. Thus, she could instruct her broker to jump ahead in the queue in order to ensure a
faster order execution. To prevent this behavior, I impose the out-of-equilibrium belief that jumping
ahead in the queue can come only from an informed trader.

27I conjecture that the main results in this paper remain robust to having small positive waiting
costs, but the solution of such a model would be much more complicated. Indeed, as seen in models of
the limit order book with symmetric information but positive waiting costs, such as Roşu (2009), the
numbers of limit orders on each side of the book become additional state variables. In that case, it is
plausible that the patient traders start submitting market orders in states when their queue size exceed
a particular value, as their expected waiting cost becomes too high.
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order to a sell order, ii) his waiting costs are 0, hence he prefers a limit order to a
market order.28

To understand the strategy of informed traders, it is enough to describe their
initial order choice, as subsequently their orders are handled by an uninformed
trader.29 This optimal choice problem is difficult to solve. To understand why,
consider an informed trader who arrives and observes the asset value, or equiva-
lently the “mispricing,” which is the difference between the asset value and the
public mean. Then, in order to decide what order to submit, she must be able to
estimate for instance the payoff of a BLO. This is a complex problem, because
she must take an average over all future order flow sequences that lead to the ex-
ecution of her BLO. It turns out, however, that this payoff can be described easily
if one can compute a certain function of 2 variables called the “information func-
tion” (see Definition 1 below). This function can be estimated only numerically,
but otherwise the main formulas in the paper are given in closed form.

I then show that the informed trader’s choice is based on a threshold strat-
egy. For instance, if she observes a mispricing above a threshold, she optimally
submits a BMO; if the mispricing is below the threshold (but positive), she opti-
mally submits a BLO. With a BMO she loses half the bid–ask spread, but trades
immediately. With a BLO she gains half the bid–ask spread, but she expects to
lose because her information advantage (the mispricing) decays over time. In-
deed, the informed traders who arrive later observe more recent instances of the
asset value, and hence reduce the mispricing by their trading.30 Not surprisingly,
a limit order’s decay cost is larger when the mispricing is larger. The benefit of a
limit order relative to a market order, however, does not depend on the observed
mispricing, and is equal to the bid–ask spread. Thus, at the threshold mispric-
ing, the informed trader is indifferent between BMO and BLO. Moreover, the
equilibrium bid–ask spread is equal to the expected decay cost incurred by the
informed trader at the threshold mispricing. The exact value for the threshold is
determined by a “dynamic market clearing” condition: all types of orders must
be equally likely ex ante. This condition is true exogenously for the uninformed
traders, and hence in a stationary equilibrium the informed traders must follow
it as well.31

The threshold argument above has two important consequences: First, all
orders have information content. In particular, a buy limit order has a positive
impact on the public mean: If the market sees a BLO, it comes with positive

28One also needs to show that, relative to a market order, the benefits of a limit order (the bid–ask
spread) are larger than the costs (adverse selection when the BLO is executed by a sell market order,
and the initial price impact of the BLO). See the proof of Theorem 1 and equation (A-38).

29See Footnote 22 for a justification of this assumption.
30This information advantage decay arises from the assumption that informed traders observe the

asset value only once, when they arrive. I have not been able to solve a model in which the informed
traders continuously learn about the asset value. But even in such a model, it is plausible that traders
who wait in the book would imitate the behavior of the uninformed traders (see the second part of
Footnote 22), and would thus be adversely selected later by informed market orders. This would not
a problem, though, if the limit order traders received enough compensation from uninformed market
orders and from a sufficiently large bid–ask spread.

31In a previous version of this paper (available upon request), I show that the results in the paper
are robust if the uninformed limit-to-market order ratio is exogenously chosen different from 1.
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probability from an informed trader who observed an asset value above the public
mean (but below the threshold). Second, a buy market order has an even stronger
effect, as the asset value must have been above the threshold.

An important variable in the model is the public volatility, which measures
how uncertain the uninformed traders are about the current asset value. There are
two opposite forces operating on the public volatility: First, the order flow carries
information, and this reduces the public volatility. Second, the asset value diffuses
over time, and this increases the public volatility. In a stationary equilibrium, the
two effects exactly offset each other, and the public volatility remains constant.32

A key fact behind many results is the relation between the informed share and
the public volatility. A larger informed share implies that the order flow is more
informative about the asset value, and thus generates a smaller public volatility
(better public knowledge of the asset value).

Note that in the model, the bid–ask spread is determined by the informed
traders. Indeed, these traders have 0 private valuation, and choose the spread
that compensates them for their information decay cost. The patient uninformed
traders are not marginal: their private valuation is sufficiently high, and thus they
are always willing to trade with limit orders. Note also that the informed traders
face adverse selection from future informed traders, hence the bid–ask spread has
an adverse selection component.

Finally, I briefly discuss the case in which the informed share ρ is close to 1.
Then, there are relatively few uninformed traders (their share is 1−ρ), and even
fewer impatient uninformed traders (their share is 1−ρ

2 ). But these traders always
submit market orders, and are therefore the source of profit for limit order traders.
As a result, the expected profit of an informed trader who submits a limit order is
small, although it is still positive, and thus an equilibrium still exists.33 Note that
when ρ is close to 1, the adverse selection is not infinite: the order flow coming
from informed traders generates public information, in such a way that the public
volatility and the bid–ask spread are bounded. In fact, both these variables are
decreasing in the informed share, as more informed traders generate better public
information.

B. Notation and Parameters
The exogenous parameters in the model are: the fundamental volatility σv,

the informed trading activity λi , the uninformed trading activity λu , the pri-
vate valuation parameter ū, the impatience parameter r̄ , and the commitment

32A key simplifying assumption is that information processing is costly, and as a result uninformed
traders always perceive the public density as normal. With perfect Bayesian updating, however, the
informed trader’s threshold strategy leads to non-normal distributions. In Section 5.1 in the Supple-
mentary Material, I examine perfect Bayesian updating, and find that the departure from normality is
small, especially for the average public density. I thus conjecture that the main results remain true on
average under perfect Bayesian updating.

33This is true unconditionally, before the asset value is observed. Conditionally, however, it is
possible that an informed trader who observes an asset value only slightly above the public mean,
might prefer not to trade with a BLO. This is where the assumption of a commitment parameter ω
comes in: to avoid a penalty for not trading, she now prefers to submit a BLO. In Section 5.2 in the
Supplementary Material, I show that the commitment parameter is necessary only if the informed
share is above a threshold, approximately equal to 0.156.
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parameter ω. I define other parameters: the trading activity λ=λu
+λi , the in-

formed share ρ=λi/(λi
+λu), and the inter-arrival volatility σI =σv/

√
λ.

Let φ( · ;m,s) be the normal density with mean m and standard deviation s,
φ( · )=φ( · ;0,1) the standard normal density, and8( · ) its cumulative density. Let
1X be the indicator function which equals 1 if X is true and 0 if X is false.

I next define 4 numeric parameters that are used extensively throughout the
paper. The first 3 are:

α = 8−1
(

3
4

)
≈ 0.6745, β =

1
4φ(α)

≈ 0.7867,(4)

γ =
φ(0)−φ(α)

φ(α)
≈ 0.2554,

where φ( · ) is the standard normal density, and 8( · ) is its cumulative density.
In Definition 1, I introduce the fourth numeric parameter, the “information

function.” Formally, this is a function I = I (ρ,w, j) defined on (0,1)×R×N+,
but I show below that it has an interpretation in the model. To that end, I refer to
the elements of the set {BMO,BLO,SLO,SMO} as “orders,” even though this is
just an abstract set with 4 elements.

Definition 1. Let ρ∈ (0,1), w∈R, j ∈N+. For each order
O∈{BMO,BLO,SLO,SMO}, define, respectively, δO∈

{
ρ

β
,γ ρ

β
,−γ ρ

β
,− ρ

β

}
, iO∈

{(α,∞), (0,α), (−α,0), (−∞,−α)}, and jO∈{0,+1,0,−1}. If g is a density over
R, and GO=

∫
z∈iO

g(z)dz, define the scalar πg,O and the density fg,O by:

πg,O =
1− ρ

4
+ ρGO,(5)

fg,O(x) =

∫ (1− ρ
4
+ ρ1z∈iO

)
g(z)φ

(
x; z− δO,ρ

√
1+ γ 2

2β2

)
dz

πg,O
.

If T ∈N+, a sequence of orders Q= (O0,O1, . . . ,OT ) is called a “ j-execution se-
quence” if j+

∑T
t=1 jOt =0, but for any T ′=0,1, . . . , T −1, j+

∑T ′

t=1 jOt 6=0. For
any j-execution sequence Q= (O0,O1, . . . ,OT ), and any density g1 over R, define
P(Q)=

∏T
t=1 Pt and ν(Q)=νT+1−

ρ

β
, where one recursively defines Pt=πgt ,Ot ,

gt+1= fgt ,Ot , and νt+1=E(gt+1) (t=1, . . . , T ). Let Q j be the set of all j-execution
sequences of the form Q= (BLO,O1, . . . ,OT ) for some T ∈N+. Then, the infor-
mation function is:

I (ρ,w, j) =
∑

Q∈Q j

P(Q)ν(Q), with(6)

g1 = N
(
w− γ

ρ

β
,ρ2 1+ γ 2

2β2

)
.
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Moreover, define J (ρ,w, j) as in (6), but with ν(Q)=1. If j=1, omit the depen-
dence on j , and write I (ρ,w)= I (ρ,w,1) and J (ρ,w)= J (ρ,w,1).

Before discussing the information function, I introduce several more param-
eters:

1 =

√
2

1+γ 2

σv
√
λ
= impact parameter,(7)

V = βρ−11, = volatility parameter,
S =

(
α− I (ρ,α)

)
V = spread parameter.

I briefly explain how the information function I is interpreted in the model.
Consider an informed trader who arrives at t=0 and observes an asset value v0.
Suppose that at t=0, the informed trader submits a BLO such that this order has
initial rank j0∈N+ in the bid queue, after which she follows the strategy of an un-
informed trader (described in Corollary 4 below). This implies that she patiently
waits in the queue until a sequence of orders O1,O2, . . . ,OT finally executes her
BLO. Note that execution occurs at T only if OT =SMO. Just before trading at t ,
the uninformed traders regard the asset value vt as distributed by the normal den-
sity ψt (the public density), with mean µt (the public mean) and volatility σt (the
public volatility). In the stationary equilibrium of this section, the public volatility
is constant and equal to the parameter V from (7). It is therefore convenient to
normalize variables by V . I define the “signal” at t as the normalized mispricing
just before trading at t :

(8) wt =
vt −µt

V
.

Thus, for the uninformed traders, the distribution of wt in the stationary equilib-
rium remains the same at all times, namely the standard normal distribution.

The arguments of I (ρ,w, j) are interpreted as follows: First, ρ represents the
informed share. Second, w represents the initial signal w0=

v0−µ0
V , before the in-

formed trader submits the BLO at t=0. Third, j represents the rank j0∈N+ in
the bid queue of her BLO. The symbols used in Definition 1 are interpreted as
follows: First, gt is the posterior density of the signal wt before trading at t , con-
ditional on observing the sequence of orders O0=BLO,O1, . . . ,Ot−1. The mean
of gt is νt=E(gt ), and Pt is the probability of an order Ot being submitted at t .
The rank of the informed trader’s BLO in the bid queue after trading at t is jt . An
execution sequence is a sequence of orders Q= (O0=BLO,O1, . . . ,OT =SMO)
such that the last order (SMO) executes the initial BLO, which translates into the
final rank jT being 0. Next, P(Q) is the ex ante probability of a particular exe-
cution sequence Q= (O0,O1, . . . ,OT ), and ν(Q)=νT+1−

ρ

β
is the expected signal

wT after the execution at T .34

Thus, the information function I (ρ,w, j) is interpreted as the expected sig-
nal wT immediately after the BLO is executed at T by an SMO, where the

34The expected signal wT after T is similar to the expected signal wT+1 before T +1 (which is
νT+1), except that the public means at T and T +1 differ by the price impact of an SMO, which is
−1. Thus, ν(Q)=νT+1−

1

V =νT+1−
ρ

β
. For more details, see the proof of Lemma 2 in the Appendix.
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expectation is taken over all possible order sequences that eventually execute the
BLO. Proposition 2 below shows that this interpretation of I is indeed correct.35

Despite the interpretation of the information function within the model, the
definition itself is completely independent of this interpretation, and therefore I
can be thought as a parameter. Even though it does not have a closed form expres-
sion, it can be estimated with good precision using a numerical Monte Carlo pro-
cedure described in detail in Section 4 in the Supplementary Material. The next
numerical result describes several properties of the information function which
are used in Theorem 1.

Result 1. For all ρ∈ (0,1), the functions I (ρ,w), w− I (ρ,w) and I (ρ,w)−
I (ρ,−w) are strictly increasing in w, and satisfy the inequality:

(9) max
( ρ(1+ γ )

β
,−2I (ρ,0)− 2

ργ

β

)
< α− I (ρ,α).

Moreover, i) I (ρ,w, j) decreases in j if w>0; and ii) J is constant and equal to
1.

C. Results
To describe an MPE, I need to specify the state variables on which the

traders’ strategies depend. The public state variables are: the public density, deter-
mined by its first two moments (the public mean and the public volatility), and the
limit order book, determined by the ask and bid queues. The private state variable
is the asset value, observed by each informed trader when arriving to the market.

I define the initial state of the system, an instant before t=0. If V is the
volatility parameter from (7), the initial public density is N (0, V 2), with public
mean equal to 0, and public volatility equal to V . If S is the spread parameter
from (7), the ask price is S/2, the bid price is −S/2, while the initial order book
has countably infinitely many limit orders on each side (see the middle graph in
Figure 2).

Theorem 1 shows that there exists an MPE of the model if the conditions
stated in Result 1 above are satisfied. These conditions are verified numerically in
Section 4 in the Supplementary Material.

Theorem 1. Suppose the information function I satisfies analytically the condi-
tions from Result 1, and the investor preference parameters satisfy ū≥ S

2 and
ω≥γ1. Then, there exists a stationary MPE of the game.

I describe the main properties of the equilibrium in the Corollaries 1–4 be-
low. Corollary 1 describes the evolution of the public mean, bid price, and ask
price. Corollary 2 describes the initial order submission strategy of the informed
trader. Corollary 3 shows that all types of orders are equally likely. Corollary 4
describes the initial strategy of the uninformed traders, and the subsequent equi-
librium behavior of all types of traders in the limit order book.

35The function J (ρ,w, j) is interpreted as the probability that the initial BLO (which has initial
rank j in the bid queue) is eventually executed. Numerically, J is identically equal to 1, indicating
that the BLO is executed almost surely. Thus, there is no need to consider J as another parameter.
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Corollary 1. In equilibrium, the public volatility and the bid–ask spread are con-
stant and equal, respectively, to the parameters V and S from (7). If the public
mean is µt , the ask price is µt+ S/2, while the bid price is µt− S/2.

The public mean changes only when a new order arrives. Let γ ≈0.2554 be
as in equation (4). If an order arrives at t , the public mean changes from µt to
i) µt+1 if the order is BMO, ii) µt+γ1 if the order is BLO, iii) µt−γ1 if the
order is SLO, and iv) µt−1 if the order is SMO.

The first part of Corollary 1, that the public volatility and the bid–ask spread
are constant over time, follows from the stationarity of the equilibrium. I postpone
this discussion until after Corollary 3.

To get intuition for the second part of Corollary 1, recall that the public mean
is the expected asset value given the public information (the information of the
uninformed traders). A new order affects the public mean because each type of
order contains private information. For instance, according to Corollary 2 below,
an informed trader submits a BMO for extreme signals (i.e., wt larger than α≈
0.6745); and a BLO for positive moderate signals (i.e., wt lies in (0,α)). This
implies that BMO increases the public mean by some amount (1), while a BLO
increases the public mean by a smaller amount (γ1≈0.25541).

Thus, the key to understanding the equilibrium is the strategy of the informed
trader, which is described in the next result.

Corollary 2. Suppose an informed trader arrives at t≥0, and observes a signal
wt=

vt−µt
V . Then, she submits a i) BMO if wt ∈ (α,∞), ii) BLO if wt ∈ (0,α),

iii) SLO if wt ∈ (−α,0), or iv) SMO if wt ∈ (−∞,−α). Depending on the order
submitted, her expected utility is:

U I
BLO =

S
2
+ V I (ρ,wt ), U I

SLO =
S
2
+ V I (ρ,−wt ),(10)

U I
BMO = −

S
2
+ V wt , U I

SMO = −
S
2
− V wt .

To understand this result, suppose the informed trader gets a positive signal
wt . Then, her main choice is between submitting a BMO and a BLO. By submit-
ting a BMO, she gains from her signal (wt ), but loses half of the bid–ask spread
(S/2) because she has to pay the ask price, which is higher than the public mean
by S/2 (see Corollary 1). By submitting a BLO instead, equation (10) implies that
the informed trader gains half of the bid–ask spread, and also benefits from her
signal via the information function I (ρ,w).

The information function increases in w at a lower rate than w itself. For-
mally, this follows from Result 1, according to which w− I (ρ,w) is increasing
in w. Intuitively, this is because an informed trader who observes a large signal
wt knows that other informed traders are also likely to receive positive signals in
the future, and therefore are more likely to submit buy orders. This bias towards
buy orders therefore pushes up the public mean in the future. In other words, the
informed trader with a BLO expects to buy at a higher price in the future while
she waits in the book. The stronger her signal, the stronger the bias, and therefore
the stronger the relative penalty from submitting a BLO compared to a BMO.
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A more detailed discussion of this phenomenon, which is called “slippage,” is left
for Section IV.

Because the function w− I (ρ,w) is increasing in w, the payoff difference
between BMO and BLO is increasing in w. Therefore, for some threshold α,
the informed trader prefers BMO for wt >α, and BLO for wt ∈ (0,α). Intuitively,
with an extreme signal the informed trader should use a market order, while with
a moderate signal the informed trader should use a limit order. At the threshold
w=α (which occurs with 0 probability), the informed trader is indifferent be-
tween BMO and BLO. The threshold α=8−1(3/4) is given by equation (4), and
satisfies the property that for a variable w with the standard normal distribution,
the probability that w∈ (α,∞) is equal to the probability that w∈ (0,α) and is
equal to 1/4. This corresponds to the fact that all order types (BMO, BLO, SLO,
SMO) are equally likely, with probability 1/4 (see Corollary 3 below).

Figure 1 illustrates the equilibrium order choice of the informed trader.
The threshold between BMO and BLO is given by wt=α, or equivalently by
vt=µt+αV . The normal curve in the figure represents the public density, which
is the public belief about the asset value. The 4 regions under the curve and above
the horizontal axis have an area equal to 1/4, which reflects the fact that the in-
formed trader submits each of the 4 order types with the same ex ante probability.
Because the 4 types of orders are also equally likely for an uninformed trader,36,
and because there are no cancellations in equilibrium, it follows that the 4 types

FIGURE 1
The Order Choice of the Informed Trader

Figure 1 shows the public densityψt ∼N (µt ,V 2) (i.e., the density of the asset value vt conditional on all public information
until t ), whereµt is the public mean at t , and V is the volatility parameter from equation (7). The 4 intervals on the horizontal
axis describe the 4 types of orders that an informed trader chooses in equilibrium after observing vt : buy market order
(BMO), buy limit order (BLO), sell limit order (SLO), and sell market order (SMO). The parameter α≈0.6745 is as in
equation (4).

SMO

t – Vαμ
t + Vαμ

t
μ

SLO BLO BMO

vt

36Indeed, the 4 types of uninformed traders arrive with equal probability, and the patient natural
buyers submit BLO and the patient natural sellers submit SLO (see Corollary 4), while the impatient
natural buyers submit BMO and the impatient natural sellers submit SMO.
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of orders are equally likely in equilibrium given public information. I state this
result in the next corollary.

Corollary 3. Conditional on public information, all order types (BMO, BLO,
SLO, and SMO) are equally likely in equilibrium, with probability 1/4.

I call this equilibrium property “dynamic market clearing.” It is equivalent to
the following two properties: i) buy and sell orders are equally likely, and ii) mar-
ket and limit orders are equally likely. It is the second property that is key for
the intuition regarding dynamic market clearing. Suppose for instance that market
orders were more likely than limit orders. Since every market order is executed
against a limit order, the limit order book would become thinner over time, and
therefore the equilibrium would not be stationary. Thus, dynamic market clearing
occurs because the equilibrium in Theorem 1 is stationary. In Section V, I analyze
nonstationary equilibria of the model, and find that the dynamic market clearing
condition no longer holds.

The next corollary describes the initial order submission decision of the un-
informed traders, as well as their subsequent strategy once they submit a limit
order. One only needs to understand the patient uninformed traders, since the im-
patient traders always submit market orders. Also, because the informed traders
are essentially uninformed after the initial order choice, the subsequent equilib-
rium behavior of the informed and uninformed traders coincides.

Corollary 4. Consider a patient uninformed trader with private valuation u larger
in absolute value than 1− S/2. Then, he submits a BLO if he is a natural buyer,
and an SLO if he is a natural seller. In both cases, his expected utility is:

(11) UU
=

S
2
−1+ ū.

After the initial limit order is submitted, the uninformed trader modifies his order
along with the public mean, as in Corollary 1. If an informed trader chooses to
submit a limit order, her subsequent behavior mimics the behavior of an unin-
formed trader. Traders in the limit order book modify their orders such that their
relative rank in the ask or bid queue is preserved.

The intuition behind Corollary 4 is straightforward. A patient natural buyer
who submits a BLO gains half of the bid–ask spread (S/2), as well as his private
valuation (ū), but loses from the adverse selection of the SMO that eventually
executes his order (according to Corollary 1, the price impact of an SMO is −1).
Hence, as long as his private valuation is large enough to make his expected utility
in (11) positive, he optimally submits a BLO. After submitting the initial order,
the uninformed trader simply modifies his order according to the evolution of the
public mean, because he is risk-neutral and updates his estimate of the asset value
according to the public mean.

Moreover, limit order traders preserve their relative position in the ask or bid
queues. Indeed, uninformed traders have zero waiting costs, and therefore have no
incentive to change their position in the queue. By contrast, if they were allowed,
informed traders would prefer to jump ahead in the queue, because (if nothing else
changed) this would reduce the expected decay in their information advantage
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(see Section C). Nevertheless, this behavior cannot occur in equilibrium. To see
this, suppose a trader were to jump ahead in the bid queue. This out-of-equilibrium
behavior would be interpreted immediately as coming from an informed trader
with positive information. This new information would then increase the public
mean, and reduce the informed trader’s information advantage. The reduction in
expected payoff would then prevent the trader from deviating in the first place.

Normally, without additional assumptions one should not expect the equilib-
rium limit order book in the model to have a well defined shape. Indeed, trading
is for only 1 unit, and without any modification cost the exact position of limit or-
ders away from the bid and ask does not matter. However, the equilibrium shape
of the limit order book can be fixed if I impose an infinitesimal cost of modifying
limit orders. Suppose that when a limit order is executed at the ask, there is an
infinitesimal modification cost for all the remaining limit orders on the ask side
(and similarly for the bid side).

The resulting equilibrium limit order book is described in Figure 2. The mid-
dle graph describes the typical shape of the limit order book just before trading
at t . For simplicity, the public mean is set at µt=0. The left and right graphs,
respectively, describe the effect of a BLO or a BMO on the limit order book.
To understand the assumption about the infinitesimal modification cost, suppose
a BMO arrives at date t , when the limit order book is as in the middle graph.
Then, the SLO of trader S1 is executed, and trader S2 becomes the first in the ask

FIGURE 2
Effect of Order Flow on the Limit Order Book

Figure 2 shows the equilibrium shape of the limit order book (LOB) just before trading at t (middle graph), as well as the
shape of the book at t +1 after a buy limit order BLO (left graph) or a buy market order BMO (right graph). For simplicity,
the public mean is set to µt =0, so that before trading at t +1, the public mean becomes µt+1=1 after BMO, or µt+1=γ1
after BLO. The parameter γ≈0.2554 is as in equation (4), and 1 is as in equation (7).

LOBt+1

(S3) S/2 + 2Δ + γΔ

(S2) S/2 + Δ + γΔ

(B1) –S/2 – Δ + γΔ

(B2) –S/2 – 2Δ + γΔ

(B2) –S/2 – 3Δ + γΔ

(S1) S/2 + γΔ

(Bnew) –S/2 + γΔ

LOBt+1

BLOt BMOt

LOBt

t+1 = γΔμ

(S3) S/2 + 2Δ

(S2) S/2 + Δ

(B2) –S/2 – Δ

(B3) –S/2 – 2Δ

(S1) S/2

(B1) –S/2

t = 0μ

(S3) S/2 + 2Δ

(S2) S/2 + Δ

(B3) –S/2 – Δ

(B4) –S/2 – 2Δ

(B2) –S/2

(B1) –S/2 + Δ

t = 0μ
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queue. An instant later, S2 should immediately modify his SLO at µt+ S/2+1,
and therefore, with an infinitesimal modification cost, S2 would prefer to have his
order at that price already.

IV. Market Quality and Informed Trading
In this section, I consider several measures of market quality and analyze

how they are affected by the informed share, which is the fraction of order flow
generated by the informed traders. As measures of market quality, I consider the
information efficiency, as well as three measures of liquidity: the price impact,
the bid–ask spread, and the market resiliency. In the process, I also study the
information content of the different types of orders.

A. Information Efficiency
In general, a market is efficient at processing information if pricing errors are

small. In the model, the pricing error is the difference between the fundamental
value v and the public mean µ, and the standard deviation of the pricing error is
the public volatility. According to Corollary 1, in equilibrium the public volatility
is constant and equal to the parameter V =βρ−11. I thus propose the following
measure of information efficiency:

(12)
1

V 2
=

ρ2

β212
, with 1 =

√
2

1+γ 2

σv
√
λ

,

and β, γ are defined in (4). Note that when the market is informationally efficient,
the public volatility is small, and therefore the proposed measure is large.

Because β and1 are independent of ρ, the information efficiency is increas-
ing in the informed share ρ.37 It follows that information efficiency is increasing
with the informed share. This shows that when there are more informed traders
(ρ is large), the order flow is more informative, hence the market is more efficient
at processing information. An interesting aspect of the increase in information
efficiency is that it arises from the dynamic nature of the equilibrium. In a static
equilibrium (see Glosten and Milgrom 1985), the opposite happens: When there
are more informed traders the adverse selection is larger, and therefore the market
is less informationally efficient. This intuition is discussed in more detail below,
after Proposition 1.

The public volatility V can be used to estimate in practice the informed share.
The problem is that it depends on other parameters of the model, such as the fun-
damental volatility σv and the total trading activity λ. To remove this dependence,
I consider the ratio of the inter-arrival volatility (σI =σv/

√
λ) to the public volatil-

ity (V ), which is:

(13)
σI

V
= ρ

√
1+ γ 2

2β2
≈ 0.9277 ρ < 1.

The ratio σI/V provides a clean estimate of the informed share ρ, in the sense that
the ratio does not depend on additional parameters. The inter-arrival volatility σI

37The fact that 1 is independent of ρ is obvious from its formula. The economic interpretation of
this fact, however, is not obvious, and I discuss it in Proposition 1 and the paragraphs that follow it.
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is in principle observable, as the price variance between order arrivals. The public
volatility is not observable directly, but it can be proxied by the dispersion of
financial analysts’ estimates. Since (as I show in Section C), the bid–ask spread
S is decreasing in the informed share ρ, a testable implication of equation (13)
is that stocks with a lower ratio of inter-arrival volatility to public volatility have
larger bid–ask spreads.

B. Price Impact
I define the price impact of an order as the effect of 1 additional unit

of trading on the transaction price. Since all trades in the model are for 1
unit, the marginal price impact measure is the same as the effect of 1 unit
on the public mean.38 Because there are 4 types of orders, each order type
O∈{BMO,BLO,SLO,SMO} has a different price impact, which I denote by1O.
Corollary 1 implies the following result.

Proposition 1. The price impact 1O of any order O∈{BMO,BLO,SLO,SMO}
is:

(14) 1BMO = 1, 1SMO = −1, 1BLO = γ1, 1SLO = − γ1,

where γ ≈0.2554 is as in equation (4), and 1=
√

2
1+γ 2

σv√
λ
≈1.3702 σv√

λ
is as in

equation (7). In particular, 1O does not depend on the informed share ρ. More-
over, the variance of the price impact is equal to the inter-arrival variance σ 2

I =
σ 2
v

λ
,

i.e.,

(15) Var
(
1O

)
=

1+ γ 2

2
12

=
σ 2
v

λ
.

The reason why all order types have price impact is given by the usual ad-
verse selection argument. Indeed, when setting the public mean, the uninformed
traders take into account the information contained in the order flow. For instance,
if a BMO is submitted at t , then with positive probability it comes from an in-
formed trader with a large signalwt=

vt−µt
V ∈ (α,∞). Then, the public mean should

increase (by1). Similarly, if a BLO is submitted at t , then with positive probabil-
ity it comes from an informed trader with a moderate signal, wt ∈ (0,α). Then, the
public mean should increase as well, although by a smaller amount (by γ1).

A surprising implication of Proposition 1 is that the informed share ρ has
no effect on 1. To give intuition for this result, note that there are two opposite
effects of the informed share on 1. Suppose the informed share is small, and a
buy market order arrives. The first effect is the usual “adverse selection effect”
(see for instance Glosten and Milgrom (1985)): because ρ is small, it is unlikely
that the market order comes from an informed trader. This reduces the adverse
selection coming from informed traders, and therefore decreases the price impact.
But there is a second effect, the “dynamic efficiency effect”: if the buy market

38Alternatively, given the equilibrium shape of the limit order book (see Figure 2), one can also
define the “instantaneous” price impact of a multi-unit market order, even though such orders are not
part of the model. Then, as the size of the market order increases, each additional unit trades at a price
changed by 1. This shows that the two definitions are consistent.
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order does come from an informed trader, she must have observed an asset value
far above the public mean; otherwise, knowing there is little competition from the
other informed traders, she would have submitted a buy limit order.39 This effect
increases the price impact.

Intuitively, the fact that the two effects exactly cancel each other follows
from the equilibrium being stationary. Indeed, in Section 7 in the Supplementary
Material, I show more generally that in a stationary equilibrium the change in
asset value and the change in public mean must have the same variance. In the
present context, this translates to Var(vt+1−vt )=Var(µt+1−µt ). But the variance
of the asset value change is the inter-arrival variance σ 2

I , which does not depend
on the informed share, while the variance of the public mean change is Var(1O),
which according to Proposition 1 is a constant multiple of12. Therefore, the price
impact 1 is independent of the informed share ρ.

Proposition 1 yields a testable implication of the model, namely that the ratio
of the price impact of a buy market order to the price impact of a buy limit order
is:

(16)
1BMO

1BLO
=

1
γ
≈ 3.9152,

which is close to 4. Interestingly, Hautsch and Huang ((2012), p. 515) find empir-
ically that market orders have a permanent price impact of about 4 times larger
than limit orders of comparable size.

C. Bid–Ask Spread
Another measure of liquidity is the bid–ask spread, which is by definition

the difference between the ask price and the bid price. Corollary 1 implies that
the equilibrium bid–ask spread is constant and is equal to the parameter S from
equation (7).

Corollary 5. The equilibrium bid–ask spread is constant over time, and is equal
to:

(17) S =
(
α− I (ρ,α)

)
V .

To get more intuition about the equilibrium bid–ask spread, I explain how the
information function I is interpreted in the model. Consider an informed trader
who arrives at t=0, observes a signal w= v0−µ0

V and submits a BLO (which is
not necessarily optimal). Assuming that subsequently all investors follow their
equilibrium strategies, the informed trader then forms an expectation about the
average asset value, based on all possible future order flow that executes her BLO
at a later random time T >0. The fact that the BLO is executed at T means that
i) the BLO is the first order in the bid queue before trading at T , and ii) an SMO
is submitted at T .

To state the next result, I introduce some notation. Let Et be the informed
trader’s expectation conditional on her information set before trading at t , Jt=

39Formally, when ρ is small, the informed trader’s threshold for the choice between BMO and BLO
is large. Indeed, Corollary 2 implies that the threshold signal is wt=α, or equivalently vt=µt+αV .
But, as discussed in Section IV.A, the public volatility V is decreasing in ρ.
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{w,O1, . . . ,Ot−1}, and let Ee be the informed trader’s expectation at t=0 over all
future “execution sequences,” (i.e., over order sequences O1, . . . ,OT that execute
the BLO at some T >0).40

Proposition 2. Consider an informed trader who observes at t=0 a signal w, and
submits a BLO, which is executed at a random time T >0. Let ρ∈ (0,1) be the
informed share. Then, the information function I satisfies:

(18) I (ρ,w) = EeET+1(wT ).

According to Proposition 2, I is the informed trader’s initial expectation of
the signal at execution (wT ) conditional on the execution sequence, including the
final SMO (hence the subscript “T +1” for the expectation in equation (18)).
Then, the difference w− I (ρ,w) can be interpreted as the signal decay between
the initial submission of the BLO until after its execution. It is therefore a cost
that the informed trader faces when submitting a BLO (relative to submitting a
BMO). I call (w− I (ρ,w)) V the “information decay cost,” or simply the “decay
cost.” Corollary 5 implies that the bid–ask spread S is precisely equal to the decay
cost at the threshold signal w=α.

Corollary 6. Let Decay Costw= (w− I (ρ,w)) V be the information decay cost
faced by an informed trader. Then, the equilibrium bid–ask spread S satisfies:

(19) S = Decay Costα.

The intuition for this result is as follows. If the informed trader submits a
BMO, she immediately captures her whole signal (w), but loses half of the bid–
ask spread (S/2). If she submits a BLO instead, she expects the future informed
traders to increase the public mean by also submitting buy orders, resulting in
a decrease of her future signal. In other words, she expects that by the execu-
tion time T the signal wT will decrease significantly. But this is exactly what the
information function I measures. Thus, if the informed trader submits a BLO,
she gains half of the bid–ask spread (S/2), but captures only part of the sig-
nal (I (ρ,w)). Hence, the relative payoff difference between BMO and BLO is
Decay Costw− S. Since at the threshold (w=α) the informed trader is indifferent
between BMO and BLO, it follows that the equilibrium bid–ask spread is equal
to the information decay cost at the threshold.

The next numerical result analyzes the connection between the bid–ask
spread and the informed share (see also Figure 3).

Result 2 (Part 1). The bid–ask spread S is decreasing in the informed share ρ.

The formula S= (α− I (ρ,α))V indicates that an increase in the informed
share has two opposite effects on the bid–ask spread. First, the bid–ask spread
is proportional to the public volatility V =βρ−11, and therefore more informed
traders cause a tighter public density and a negative effect on the bid–ask spread.
Second, the bid–ask spread is proportional to the term α− I (ρ,α), which turns out

40The expectation operator Ee is biased, because it is taken on a subset of all the possible future
order flow sequences. As a result, the law of iterated expectations does not hold. As shown below, this
bias is caused by the phenomenon of “slippage.”
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FIGURE 3
Components of the Bid–Ask Spread

Figure 3 shows the bid–ask spread (S ), as well as the slippage component (S s ) and the adverse selection component
(S a). On the horizontal axis is the informed share ρ=0.05,0.10, . . . ,0.95. The bid–ask spread and its components are
written in units of the impact parameter 1 from equation (7).
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to be increasing in the informed share. Intuitively, more informed traders cause
a faster rate of information decay, as the mispricing is corrected more quickly
over time. But the bid–ask represents a compensation for the decay cost (see
Corollary 6), hence more informed traders cause a quicker information decay and
a positive effect on the bid–ask spread. According to Result 2 (Part 1), the net
effect of the informed share on the bid–ask spread is negative, which is not sur-
prising, since the public volatility V is strongly decreasing in the informed share.

To get further intuition about the bid–ask spread, I decompose it into two
components. The first component, called the “slippage component,” corresponds
to the informed trader’s information decay from the initial submission of the BLO
until just before its execution by the final SMO. The second component, called the
“adverse selection component,” corresponds to the informed trader’s information
decay due to the final SMO. To define these components, I introduce two functions
similar to the information function I .

Definition 2. For ρ∈ (0,1) and w∈R, define the “slippage function” I s(ρ,w) in
the same way as the information function I (ρ,w) from Definition 1, except that
the expression ν(Q)=νT+1−

ρ

β
is replaced with ν(Q)=νT . Define the “adverse

selection function” as the difference I a
= I − I s . Define the “slippage component”

Ss and the “adverse selection component” Sa as follows:

(20) Ss
= (α− I s(ρ,α))V , Sa

= S− Ss
= (I s(ρ,α)− I (ρ,α)) V .
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Proposition 3 provides an interpretation of the functions I s and I a .

Proposition 3. In the context of Proposition 2, the slippage function I s and the
adverse selection function I a satisfy:

(21) I s(ρ,w) = EeET (wT ), I a(ρ,w) = Ee(ET+1(wT )−ET (wT )).

Recall that the information function I can be interpreted as the informed
trader’s initial expectation of the signal at execution (wT ) conditional on the exe-
cution sequence including the final SMO. By Proposition 3, the slippage function
I s is the same expectation, but conditional on the execution sequence without the
final SMO. The difference is the adverse selection that the informed trader faces
at T from the final SMO.

Similar to Corollary 6, the next result shows that both the components of the
bid–ask spread are equal to certain information decay costs. The slippage com-
ponent is equal to the information decay cost until the arrival of the final SMO,
while the adverse selection is equal to the information decay cost due to the final
SMO.

Corollary 7. Define the following cost functions: Slippage Costw= (w−
I s(ρ,w)) V , and Adverse Selection Costw=−I a(ρ,w) V . Then, the two compo-
nents of the bid–ask spread satisfy:

(22) Ss
= Slippage Costα, Sa

= Adverse Selection Costα.

The next numerical result shows how the components of the bid–ask spread
depend on the informed share ρ.

Result 2 (Part 2). Both components Ss and Sa are positive. As functions of the
informed share ρ, the slippage component Ss is decreasing in ρ, while Sa is in-
creasing in ρ.

Figure 3 shows the bid–ask spread and its components against the informed
share ρ. The bid–ask spread and its components are expressed in 1-units, mean-
ing that I consider the ratios S/1, Ss/1, and Sa/1. Using (7) and Definition 2, I
compute:

S
1
=

(
α− I (ρ,α)

)
βρ−1,

Ss

1
=

(
α− I s(ρ,α)

)
βρ−1,(23)

Sa

1
= −I a(ρ,α)βρ−1.

The normalization by 1 does not affect the inferences, because 1 is independent
of ρ (see Proposition 1). Note that all 3 terms in (23) contain the factor βρ−1

=
V
1

,
which is strongly decreasing in ρ. This is because, as discussed in Section IV.A,
the market is more informationally efficient when there are more informed traders,
which translates into the public volatility V being smaller. One may thus expect
that all 3 terms in (23) are decreasing in ρ. Result 2 (Part 2) shows that this is
indeed true for the bid–ask spread S and the slippage component Ss , but not for
the adverse selection component Sa .
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The adverse selection component of the bid–ask spread, Sa , reflects the fact
that the initial BLO is eventually executed by an SMO coming potentially from a
future informed trader, with superior information. Thus, as expected, adverse se-
lection increases when there are more future informed traders (i.e., Sa is increas-
ing in the informed share ρ). Moreover, Sa is close to 0 when the ρ approaches 0.
This is intuitive, since when there are few informed traders, there is little adverse
selection.41

The slippage component of the bid–ask spread, Ss , reflects the phenomenon
of “slippage,” which is the signal decay caused by competition with the other
informed traders. When there are more informed traders (the informed share ρ is
higher), more informed traders are likely to arrive in the future, and therefore the
rate at which slippage occurs is higher. The total amount of slippage, however,
is multiplied by the public volatility V (recall that signals are normalized by the
public volatility). Since the public volatility is strongly decreasing in the informed
share, the slippage component is actually decreasing in the informed share, as can
be seen in Figure 3.

The bid–ask spread S is the sum of the adverse selection component and
the slippage component. In Figure 3, the spread S is indeed decreasing in the
informed share ρ, although the overall effect is not as strong as the effect of ρ on
public volatility. When the informed share increases from ρ=0.05 to ρ=0.95,
the bid–ask spread decreases by about 25%. When the informed share ρ is small,
the adverse selection component is close to 0, and therefore most of the bid–ask
spread is determined by the slippage component.

Note that the slippage of limit orders can be interpreted as an endogenous
waiting cost for the informed trader who decides to submit a limit order. Indeed,
even though the actual waiting cost of a patient investor is 0, the informed in-
vestors’ expected payoff decreases gradually over time because of slippage.42

The bid–ask spread can be used to construct a clean empirical proxy for
the informed share ρ (which does not depend on other parameters such as the
fundamental volatility σv or trading activity λ). Using equation (7), I compute the
ratio of inter-arrival volatility σI =σv/

√
λ to the bid–ask spread S as follows:

(24)
σI

S
=

ρ

√
1+ γ 2

2β2

α− I (ρ,α)
.

By taking this ratio, the dependence of both σI and S on the other parameters of
the model is removed. The inter-arrival volatility σI does not depend on ρ, while

41In the model, informed traders only observe the asset value once, when they arrive to the market.
Alternatively, informed traders could be allowed to continuously observe the fundamental value. Then,
the adverse selection cost would be 0, as all informed traders would have the same information. I
conjecture, however, that the slippage cost would remain positive, as competition among the informed
traders would still impose a cost on the submission of limit orders.

42A larger informed share implies higher endogenous waiting costs for an informed trader, holding
the mispricing volatility constant. However, her mispricing volatility increases over time, as the in-
formed trader gradually becomes less informed. Therefore, the exact behavior of the average waiting
costs is ambiguous, and I leave this analysis for future research.
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Result 2 (Part 1) implies that S is decreasing in ρ. Therefore, the ratio σI/S is
increasing in ρ.

I summarize the effect of the informed share ρ on the first two liquidity
measures: i) the equilibrium price impact 1 is independent on ρ, while ii) the
equilibrium bid–ask spread S is decreasing in ρ. The reason for this difference is
that the price impact is determined by the uninformed traders, while the bid–ask
spread is determined by the informed traders. Indeed, the price impact is deter-
mined by the evolution of the public mean over time, which in turn is determined
by the uninformed traders. Furthermore, because the traders with limit orders in
the book behave identically whether they are informed or not (see Corollary 4), the
exact breakdown between informed and uninformed traders becomes irrelevant.
By contrast, the bid–ask spread is determined by the optimal order choice of the
informed traders, and their order submission strategy can be shown to be elastic
in the bid–ask spread. Thus, the share of informed traders affects the equilibrium
bid–ask spread.

D. Resiliency
The third dimension of liquidity considered is market resiliency. Kyle (1985)

defines resiliency as “the speed with which prices recover from a random, unin-
formative shock.” Because, as shown below, in the model the speed of price cor-
rection is nonlinear in the size of the shock, I define resiliency as the rate at which
a small uninformative shock is corrected, in the limit when the size of the shock
approaches 0.

More formally, I define resiliency from the point of view of an econometri-
cian who observes a small uninformative shock to the public mean. Before the
shock, the econometrician has the same belief about the asset value as the unin-
formed traders (the public density). Suppose at date t the public mean shifts down
by a small positive amount x , while the public volatility remains the same (V ).
The cause of this price shift is not made explicit, but one can imagine it as the
reaction to the arrival of some trades that the econometrician knows to be unin-
formed. Therefore the econometrician knows that the shock x is uninformative,
and expects the mispricing to be corrected. I then define resiliency as the rate at
which the mispricing is corrected, in the limit when the shift x approaches 0.43

Definition 3. Suppose before trading at t , the econometrician believes that the
asset value has a normal density vt∼N

(
µt+ x , V 2

)
, or equivalently perceives a

mispricing vt−µt∼N
(
x , V 2

)
, with x ∈R. Denote by f (x) the average mispricing

vt+1−µt+1 after observing the order at t . The “market resiliency coefficient” K is
defined by:

(25) K = 1− f ′(0).

Intuitively, if the order at t comes from an informed trader, she is more likely
to observe a positive mispricing, just as the econometrician does. Hence, she is

43Note that market resiliency is defined in the context of a stationary equilibrium, in which the
public volatility (the uncertainty about vt ) is constant and equal to V . In this sense, there is an average
mispricing which is never fully corrected: informed traders reduce the mispricing over time, but dif-
fusion in v restores the mispricing. Nevertheless, the definition of resiliency in this section is based on
the correction of an additional mispricing x by the informed traders.
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more likely to submit a buy order, which pushes up the public mean and reduces
the mispricing. Thus, the econometrician expects the forecast error to become
smaller on average, which for a positive shock x translates into 0< f (x)< x . If f
is linearized near x=0, one gets f (x)≈ f ′(0)x= (1−K )x . Hence, K is the rate
at which the mispricing x gets corrected when x is small, which is indeed the
definition of resiliency. Note that the mechanism behind resiliency is essentially
the same as the mechanism behind slippage: The existence of informed traders
corrects mispricings over time (resiliency), which generates a cost for an informed
trader who submits a limit order (slippage).

Proposition 4. The market resiliency coefficient equals:

(26) K =
2
(
γφ(0)+ (1− γ )φ(α)

)
β

ρ2
≈ 0.8606ρ2.

Proposition 4 implies that the market is more resilient when the informed
share is larger. This confirms the intuition that a larger share of informed traders
results in a faster correction of pricing errors. However, even if the informed share
ρ is very close to 1, there is an upper bound on how quickly the mispricing is cor-
rected. This is because each informed trader has a threshold strategy, and therefore
her information cannot be fully revealed.44

Market resiliency is related to information efficiency. Indeed, the market re-
siliency coefficient K from equation (26) is proportional to the information pre-
cision measure, 1/V 2. Thus, in the model, a larger share of informed traders ρ
causes the market to be both more resilient and more informationally efficient.

V. Nonstationary Equilibria
In the stationary equilibrium of Section III, the public volatility is constant

and equal to V . In this section, the public volatility can take a different initial value
than V . This could happen, for instance, if an uncertainty shock (an unobserved
shock to the fundamental value) suddenly pushes the public volatility above V .
Then, the equilibrium is fully determined by the initial value of the public density
σ0, or equivalently by the initial value of the “normalized public volatility,” which
is:

(27) θ0 =
σ0

V
.

I thus define a “nonstationary equilibrium” as an equilibrium for which the initial
normalized public volatility θ0 is different from 1.

A. Properties of Nonstationary Equilibria

In Definition 4 in the Appendix, I introduce several new parameters: α̃, β̃,
γ̃ , Ĩ , Ṽ , 1̃, S̃, which are all functions of 2 variables, ρ and θ . In addition, Ĩ is
also a function of a third variable, w. Intuitively, one thinks of ρ as the informed
share; of θ as the normalized public volatility, and of w as the signal, or nor-
malized asset value, (v−µ)/V . However, just like the corresponding parameters

44For example, after a BMO, the uninformed traders cannot infer the informed trader’s signal
wt=

vt−µt
V , they can only infer that her signal belongs to the interval (α,∞).
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from Section III.B (without the tilde above them), the new parameters are defined
completely formally.

Proposition 5 shows that for any initial normalized public volatility θ0 there
exists a nonstationary MPE of the model, as long as the conditions in Result IA.4
in the Supplementary Material (Section 5) are satisfied. I verify these conditions
numerically in Section 6 in the Supplementary Material, for θ sufficiently close
to 1. The next result also describes several properties of the equilibrium.

Proposition 5. Let θ0>0. If the conditions in Result IA.4 are satisfied, there exists
an MPE of the game in which the initial normalized public volatility is θ0. In
equilibrium, the normalized public volatility θt=σt/V evolves according to:

θ 2
t+1 = ρ2 1+ γ 2

2β2
+ θ 2

t(28)

−2ρ2θ 2
t


(
φ
( α̃t

θt

))2

1− ρ
4
+ ρ

(
1−8

( α̃
θt

)) +
(
φ
( 0
θt

)
−φ

( α̃t

θt

))2

1− ρ
4
+ ρ

(
8
( α̃
θt

)
−8(0)

)
 ,

where α̃t= α̃(ρ,θt ). Let γ̃t= γ̃ (ρ,θt ), 1̃t=1̃(ρ,θt ), and S̃t= S̃(ρ,θt ). Then, an or-
der arriving at t≥0 changes the public mean from µt to i) µt+1̃t if the order
is BMO, ii) µt+ γ̃t1̃t if the order is BLO, iii) µt− γ̃t1̃t if the order is SLO, and
iv) µt−1̃t if the order is SMO. At date t , the bid–ask spread is S̃t , the ask price
is µt+ S̃t/2, and the bid price is µt− S̃t/2.

In equilibrium, the bid–ask spread and the price impact of an order are no
longer constant. The next result, however, provides a linear combination that re-
mains constant over time. The result involves the parameters S and 1 from equa-
tion (7).

Corollary 8. The equilibrium bid–ask spread S̃t and price impact coefficient 1̃t

satisfy:

(29)
S̃t

2
− 1̃t =

S
2
−1.

Equation (29) is the indifference condition for the uninformed traders. Con-
sider an uninformed trader who is the first in the bid queue, and suppose that
his BLO is executed at date t by an SMO. Then, net of his private valuation, his
expected payoff is S̃t/2−1̃t , where S̃t/2 represents the difference between the
public mean and the bid price, and 1̃t represents the adverse selection loss from a
potentially informed SMO. If his expected payoff were not the same at t+1, then
the uninformed traders would have an incentive to modify their position in the bid
queue. The discussion thus far explains why the expected payoff S̃t/2−1̃t is con-
stant. That the constant is equal to S/2−1 is due to the fact that the equilibrium
converges to the stationary equilibrium of Section III. I state this as a numerical
result.

Result 3. As t becomes large, the public volatility σt approaches the parameter
V , the bid–ask spread S̃t approaches S, and the price impact coefficient 1̃t ap-
proaches 1.
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B. Market Quality in Nonstationary Equilibria
I now describe nonstationary equilibria in more detail, in particular regard-

ing the market quality measures introduced in Section IV: information efficiency,
price impact, bid–ask spread, and market resiliency. To obtain other testable pre-
dictions, I also analyze observable measures such as the limit-to-market impact
ratio (the price impact ratio of a limit order to a market order) and the market-to-
limit probability ratio (the probability ratio of the next order being a market order
or a limit order).

First, I analyze a measure that is specific to nonstationary equilibria: the
speed of convergence to the stationary equilibrium. Intuitively, this speed is re-
lated to the resiliency of certain market quality measures, such as public volatil-
ity, bid–ask spread, or price impact. Indeed, after an uncertainty shock that raises
the initial normalized public volatility θ above 1, Result 3 above shows that θ (as
well as the bid–ask spread and the price impact) reverts to its stationary value at
a certain rate. It is then perhaps not surprising that this speed of convergence is
closely connected to the previous measure of market (or price) resiliency, which
is the rate at which a mispricing is corrected.

Graph A of Figure 4 shows the evolution over time of the normalized public
volatility θt according to equation (28), starting from an initial value θ0=2. Each
curve in the graph corresponds to an informed share ρ ranging from 0.05 to 0.95.
One observes that in all cases the normalized public volatility indeed converges
to 1, and furthermore, that the speed of convergence is inversely related to the
informed share.

FIGURE 4
Dynamic Information Efficiency

Figure 4 shows the time evolution of two market quality measures in nonstationary equilibria. On the horizontal axis is
time. Each curve in each graph corresponds to a value of the informed share (ρ) ranging from 0.05 to 0.95 (Graph A
considers the subset where ρ ranges from 0.40 to 0.55). Graph A shows the normalized public volatility (θt ), which is the
public volatility (σt ) divided by its stationary value (V ); time on the horizontal axis is in logarithmic scale and is shifted by
1, such that time 1 corresponds to t =0 in the model; the initial normalized public volatility in all cases is θ0=2. Graph B
shows the bid–ask spread (S̃t ) in units of the impact parameter 1; the initial (non-normalized) public volatility in all cases
is σ0=21. In Graph B, the time scale is linear and starts from t =0, as in the model.
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More formally, I define the “recovery time” as the number of trading rounds
it takes for the normalized public volatility to revert within a neighborhood of 1
after a positive or negative shock. In Figure 4, I choose as the neighborhood of 1
the interval (1−ε,1+ε), with ε=10−4. Numerically, the recovery time appears
linear in the inverse informed share, 1/ρ2, regardless of the choice of neighbor-
hood or shock size. I report this fact as a numerical result.

Result 4. The recovery time after a shock to the normalized public volatility (θt=

σt/V ) is linear in the inverse squared informed share (1/ρ2).

This result confirms the previous intuition that informed traders make the
market more dynamically efficient. Indeed, when there are more informed traders
(the informed share is higher), a shock that moves the public volatility away from
its stationary value (θ=1) is followed by a quicker reversal to the stationary value,
and hence it requires a shorter recovery time. The quicker convergence occurs
because orders carry more information when the informed share is higher, since
the probability of each order being submitted by an informed trader is higher.

The inverse recovery time is thus a measure of information efficiency, and
Result 4 shows that this measure is linear in the squared informed share (ρ2). In
Section IV.A, another measure of information efficiency is the inverse stationary
public variance (1/V 2), which is also linear in the squared informed share.45 The
two measures share the same dynamic efficiency intuition, but the inverse recov-
ery time measure is more explicit in how dynamic efficiency is achieved.

I now discuss the bid–ask spread S̃= S̃(ρ,θ ) and the price impact coefficient
1̃=1̃(ρ,θ ). From the results of the previous section, the two measures are con-
nected by S̃/2−1̃= S/2−1.46 Thus, they have a similar evolution over time.
Moreover, as shown in Result 5 below, both are increasing functions of θ .

Graph B of Figure 4 shows the evolution over time of the bid–ask spread S̃t if
one starts with the same (non-normalized) public volatility σ0=21.47 Intuitively,
this graph shows the effect of an absolute uncertainty shock at t=0 on the bid–
ask spread S̃, and how that effect depends on the information share ρ. Initially, a
higher informed share makes the bid–ask spread S̃ jump to a higher value. This
is because there is more static adverse selection when there are more informed
traders. Over time, however, a higher informed share pushes the bid–ask spread
to a lower value, as the market is dynamically more efficient. Indeed, the bid–ask
spread S̃ converges over time to the stationary bid–ask spread S (see Result 3),
which is decreasing in the informed share ρ (see Result 2).

Because the price impact and bid–ask spread depend on the normalized pub-
lic volatility θ in the same way, I can focus on either of these measures. I thus
consider the price impact 1̃, or equivalently the “relative price impact co-
efficient,” which is 1̃ divided by its stationary value, the parameter 1.
Equation (A-42) in the Appendix then implies that the relative price impact

45By equation (12), the inverse stationary public variance is proportional to ρ2.
46More formally, Corollary 8 translates into S̃(ρ,θt )/2−1̃(ρ,θt )= S(ρ)/2−1(ρ). By setting θ0=

θ , it follows that S̃/2−1̃= S/2−1 for any θ >0 and ρ∈ (0,1).
47I only consider the values ρ=0.40–0.55 because I want θ0=σ0/V ∈ (1,1.5]. I require θ0>1

because I want a positive shock to the normalized public volatility, and I require θ0≤1.5 because the
numerical algorithm has only been made to work for 0.5≤θ0≤1.5.
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coefficient is:

(30)
1̃

1
=

β̃(ρ,θ )
β

θ.

Graph A of Figure 5 shows the dependence of the relative price impact coefficient
on both ρ and θ .48 Each curve in the graph corresponds to a value of the informed
share ρ ranging from 0.05 to 0.95. Note that in all cases the relative price impact
is increasing in θ . I report this fact as a numerical result. Since1 does not depend
on either ρ or θ , the next result is equally true for the price impact coefficient 1̃.
Also, equation (8) shows that the same is true for the bid–ask spread S̃.

FIGURE 5
Market Quality in Nonstationary Equilibria

Figure 5 shows three market quality measures in nonstationary equilibria. On the horizontal axis is the normalized public
volatility (θ), which is the public volatility (σ) divided by its stationary value (V ). Each curve in each graph corresponds
to a value of the informed share (ρ) ranging from 0.05 to 0.95. Graph A shows the relative price impact coefficient, which
is the price impact coefficient 1̃=1̃(ρ,θ) divided by its stationary value 1. Graph B shows the limit-to-market impact
ratio γ̃ , which is equal to the price impact of a limit order divided by the price impact of a market order (γ̃ 1̃/1̃); the
horizontal line corresponds to the equilibrium value γ≈0.2554 in the stationary equilibrium. Graph C shows the market-
to-limit probability ratio PMO

PLO
(ρ,θ), which is the probability the next order is a market order, divided by the probability that

the next order is a limit order. If the numerical procedure does not yield a unique value, the corresponding point in the
graph is omitted.
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Result 5. The price impact coefficient (1̃) and the bid–ask spread (S̃) are increas-
ing in the normalized public volatility (θ ).

Intuitively, when the normalized public volatility θ is larger, the uninformed
traders have imprecise knowledge about the fundamental value, and therefore the
adverse selection is stronger. That implies that the price impact of a buy market

48Figure 5 shows the results computed with the function I instead of Ĩ ; very similar results are
obtained by using instead the estimated function Ĩ . The numerical procedure used to solve for the
equilibrium is explained in Section 6 in the Supplementary Material. I impose the strict condition
that the solution to the first equation in (A-41) must be unique. When the threshold α̃ is close to 0,
this condition is not satisfied because of estimation errors. This explains why there are missing points
in Figure 5 when ρ is large and θ is small. Intuitively, this occurs because the increase in adverse
selection makes the indifference condition (29) for the uninformed traders harder to satisfy.
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order, 1̃, is larger, as confirmed by Result 5. The bid–ask spread, S̃, is also larger,
to compensate the uninformed traders for the increase in adverse selection. For-
mally, the bid–ask spread and price impact vary with θ in the same way, since
equation (29) implies that the difference S̃/2−1̃ is equal to S/2−1, which does
not depend on θ .

Putting together the previous results, it follows that after a positive shock in
the public volatility (or equivalently in θ ), the bid–ask spread S̃ initially increases,
to adjust for the higher value of θ , after which it decreases gradually to its station-
ary value S. The same effect occurs for the price impact 1̃. Thus, in the model,
the bid–ask spread and the price impact coefficient both display resiliency, in the
sense that they eventually recover to their stationary values after a shock in the
public volatility. I call this phenomenon “liquidity resiliency.”

Liquidity resiliency is different from market resiliency. As discussed in
Section D, market resiliency is defined as the recovery of prices after an unin-
formative shock. In the context of nonstationary equilibria, I obtain the following
result similar to Proposition 4.

Proposition 6. The equilibrium market resiliency coefficient K̃ = K̃ (ρ,θ ) satis-
fies:

(31) K̃ =
2ρ2

θ

γ̃ φ(0)+ (1− γ̃ )φ
( α̃
θ

)
β̃

.

Numerically, the market resiliency coefficient K̃ is increasing in the in-
formed share ρ, and decreasing in the normalized public volatility θ . The intuition
for why market resiliency is increasing in the informed share is the same as in the
stationary equilibrium. The new result is that market resiliency is decreasing in
the normalized public volatility. Intuitively, when the public volatility is large, the
informed traders become less aggressive and are more likely to submit limit or-
ders (as explained below). Therefore, it takes longer for the price to converge to
the fundamental value.

I introduce a new market of market quality, the “market-to-limit probability
ratio,” which is defined as the probability the next order is a market order, divided
by the probability that the next order is a limit order. In the stationary equilibrium
of Section III, this ratio is equal to 1 since all types of orders are equally likely
(see Corollary 3). In nonstationary equilibria, the market-to-limit probability ratio
varies with both the informed share and the normalized public volatility.

Proposition 7. The market-to-limit probability ratio is equal to:

(32)
PMO

PLO
=

1− ρ
4
+ ρ

(
1−8

( α̃
θ

))
1− ρ

4
+ ρ

(
8
( α̃
θ

)
−8(0)

) .
Graph C of Figure 5 shows the dependence of the market-to-limit probability

ratio on both ρ and θ . Each curve corresponds to a value of the informed share
ρ ranging from 0.05 to 0.95. In all cases, the market-to-limit probability ratio
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is decreasing in θ . Intuitively, as explained before, when the normalized public
volatility θ is larger, there is an increase in adverse selection for the uninformed
traders. This causes the bid–ask spread, as well as the price impact, to be larger.
But the increase in the bid–ask spread changes the informed traders’ tradeoff be-
tween market orders and limit orders, and makes limit orders more attractive.
Thus, the market-to-limit probability ratio is smaller when the public volatility is
larger. This result, along with the previous results regarding the resiliency of the
bid–ask spread and the price impact after a public volatility shock provide new
testable empirical implications.

Graph B of Figure 5 shows a related measure, the “limit-to-market impact
ratio” γ̃ , which is the ratio of the price impact of a buy limit order (γ̃ 1̃) to the
price impact of a buy market order (1̃). In all cases, the limit-to-market impact
ratio is increasing in θ . The intuition is based on the fact that limit orders are
relatively more likely when θ is larger, which implies that their price impact is
also larger. This result is however dependent on the public density being normal,
and thus might be considered less robust.

VI. Conclusion
I have presented a model of a limit order market with asymmetric informa-

tion, in which investors can choose between demanding liquidity (with a market
order) and providing liquidity (with a limit order). Despite the difficulty of the
problem, the model is tractable, and, except for an information function that must
be computed numerically, the results are obtained in closed form.

The main result is that informed trading, as proxied in the model by the
informed share, has an overall positive effect on liquidity, under its three di-
mensions: tightness (bid–ask spread), depth (price impact), and resiliency (the
speed at which pricing errors are corrected). In particular, a larger informed share
i) leads to a smaller bid–ask spread, ii) generates a stronger market resiliency, yet
iii) does not affect the price impact of 1 additional unit of trading. From the per-
spective of the informed trader, limit orders have a slippage cost, which measures
the erosion in information advantage due to the competition from future informed
traders. Slippage costs represent an endogenous waiting cost for informed traders,
and generate a new component of the bid–ask spread.

I also estimate the information content of order flow. In particular, because
in equilibrium informed traders also use limit orders (whereas in much of the
theoretical literature informed traders only use market orders), in the model limit
orders also have a nonzero price impact. Quantitatively, the price impact of a limit
order is roughly 1/4 of the price impact of a market order.

The results described thus far are true in the context of the stationary equilib-
rium, in which the public volatility is constant. If an uncertainty shock suddenly
increases the public volatility, the results predict that the public volatility (as well
as the bid–ask spread and price impact) decrease over time toward the stationary
equilibrium value, at a speed that is increasing in the informed share. I introduce a
new measure, the market-to-limit ratio, which measures the probability of a trader
to submit a market order relative to a limit order. After an uncertainty shock, the
market-to-limit ratio drops significantly below 1, as the increase in the bid–ask
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spread temporarily convinces the informed traders to submit more limit orders.
The connections among the market-to-limit ratio with the liquidity measures and
the public volatility, as well as the expected evolution of the equilibrium towards
the stationary one, produce new testable implications of the model.

The results show that informed trading has an important effect on liquidity,
especially under its resiliency aspect. But estimating market resiliency directly is
difficult, since that would involve having access to information that is not public.
Instead, the results regarding nonstationary equilibria suggest that one can use
an estimate of liquidity resiliency, which is observable as long as the uncertainty
shocks can be identified.

Yet another approach is to use rigidities such as stale prices as evidence of
low market resiliency, and study the connection with informed trading. I argue
that market resiliency is inversely related to the price delay measure of Hou and
Moskowitz (2005, in short HM05). HM05 find empirically that firms in which the
price responds with a delay to information command a large return premium.49

Interestingly, HM05 find that the delay premium has little relation with the PIN
measure of Easley et al. (2002), which is another measure of informed trading.
This suggests that the informed share in my model may in fact be measuring a
different aspect of informed trading than PIN. Since PIN is based on large imbal-
ances between buyers and sellers, I postulate that PIN is related to informed trad-
ing done by large traders, possibly corporate insiders. By contrast, the informed
share in my model may be more related to trading done by small informed traders
that are not necessarily insiders, and are just better informed than the public.

Overall, my theoretical model produces a rich set of implications regarding
the connection between the activity of informed traders and the level of liquidity.
Informed traders have on aggregate a positive effect, by making the market more
efficient and, at the same time, more liquid. A welfare analysis also shows that a
larger number of informed traders (caused for instance by an exogenous decrease
in information costs) increases aggregate trader welfare. The model thus provides
useful tools to analyze informed trading, and its connection with liquidity, prices,
and welfare.

Appendix. Proofs
Before proving Theorem 1, I explain how investors’ beliefs are updated after ob-

serving the order flow. For an order O={BMO,BLO,SLO,SMO}, define, respectively,
δO∈

{
ρ

β
,γ ρ

β
,−γ ρ

β
,− ρ

β

}
, and iO∈{(α,∞), (0,α), (−α,0), (−∞,−α)}. Let φ(·;m,s) be the

normal density with mean m and standard deviation s, φ(·) the standard normal density
(m=0, s=1), and8(·) the cumulative normal density. Denote the normalized inter-arrival
volatility by:

(A-1) σ̂I =
σI

V
= ρ

√
1+ γ 2

2β2
.

49Indeed, it is plausible that firms in which prices respond with a delay to information are also
firms for which prices move more slowly toward the fundamental value. It is true that HM05 consider
delay at weekly (or in some robustness checks at daily) frequency, while in my model it is more natural
to think of events as occurring at higher, intra-day frequencies. Then, my identification is correct if
delay at lower frequencies is correlated with delay at higher frequencies.
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Lemma 1. In the context of Theorem 1, consider a trader who, before trading at t , believes
that the signal wt=

vt−µt

V
= z has probability density function gt (z). Then, the following are

true:

(a) The probability of observing O at t is:

(A-2) PO =
1− ρ

4
+ ρ

∫
z∈iO

gt (z)dz.

After setting the order O at t , the posterior density of wt+1=
vt+1−µt+1

V
is:

(A-3) gt+1,O(x) =

∫ (1− ρ
4
+ ρ1z∈iO

)
gt (z)φ(x; z− δO, σ̂I )dz

PO
.

(b) Suppose gt is not necessarily normal, and has mean νt and standard deviation τt .
Define the “normalized price impact” δt+1,O as the change in the expectation of wt

after observing O at t . It satisfies:

(A-4) δt+1,O = E(wt |gt ,O)−E(wt |gt ) =

ρ

∫
iO

gt (z)(z− νt )dz

PO
.

Denote by νt+1,O and τt+1,O the mean and standard deviation, respectively, of the pos-
terior density gt+1,O(x). Let Vt+1,O=

1
PO

∫
gt (z)

(
1−ρ

4
+ρ1z∈iO

)((
z−νt

τt

)2
−1

)
dz. The

following formulas hold:

νt+1,O = νt − δO + δt+1,O, τ 2
t+1,O = τ 2

t (1+ Vt+1,O)+ σ̂I
2
− δ2

t+1,O,(A-5)

E(wt |gt ,O) = νt+1,O + δO = νt + δt+1,O.(A-6)

Let ν̄t+1=EO

(
νt+1,O

)
and τ̄ 2

t+1=EO

(
τ 2

t+1,O

)
, where EO represents the average over

O∈{BMO,BLO,SLO,SMO}, with weights PO. Then, EO(δt+1,O)=EO(Vt+1,O)=0,
and:

(A-7) ν̄t+1 = νt −EOδO, τ̄ 2
t+1 = τ 2

t + σ̂I
2
−EOδ

2
t+1,O.

(c) If gt=N
(
νt ,τ 2

t

)
is normal, denote by LO and HO the limits of the interval iO such

that iO= (LO, HO), and let `O=
LO−νt

τt
, hO=

HO−νt

τt
. Then,

PO =
1− ρ

4
+ ρ(8(hO)−8(`O)),(A-8)

νt+1,O = νt − δO + δt+1,O, τ 2
t+1,O = τ 2

t (1+ Vt+1,O)+ σ̂I
2
− δ2

t+1,O,

δt+1,O =
ρτt (φ(`O)−φ(hO))

PO
, Vt+1,O =

ρ(`Oφ(`O)− hOφ(hO))
PO

.

If one writes ν̄t+1 = f (νt ), then the derivative of f is:

(A-9) f ′(νt ) = 1−
ρ2

βτt

(
2γφ

(νt

τt

)
+ (1− γ )

(
φ
(α+ νt

τt

)
+φ

(α− νt

τt

)))
.

(d) If gt=N (0,1) is the standard normal density, with νt=0 and τt=1, then for all
orders O at t :

(A-10) PO =
1
4
, δt+1,O = δO, νt+1,O = 0, τ̄t+1 = 1.
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Hence, the normalized density gt has constant volatility.50

Proof. Conditional on observingwt=
vt−µt

V
= z, the probability of an order O at t is P(Ot=

O|wt= z)= (1−ρ) 1
4
+ρ1z∈iO . Indeed, if the trader at t is uninformed (with probability

1−ρ), he submits an order O with equal probability 1
4
; if the trader at t is informed (with

probability ρ), she submits an order O if and only if z∈ iO. Integrating over z, one obtains
PO=

1−ρ
4
+ρ

∫
z∈iO

gt (z)dz, which proves (A-2).
I now compute the density of the normalized asset value at t+1 after observing

an order O at t . Immediately after t the public mean moves to µt+1=µt+1O, where
1O∈{1,γ1,−γ1,−1}. Since 1

V
=

ρ

β
, note that δO=

1O
V
∈
{
ρ

β
,γ ρ

β
,−γ ρ

β
,− ρ

β

}
. If z=wt

and δv=
vt+1−vt

V
, write x=wt+1=

vt+1−(µt+1O )

V
=δv+ z−δO. But δv has a normal distribution

given by N
(
0, σ

2
I

V 2

)
=N (0, σ̂I

2), hence

P(wt+1 = x |Ot =O,wt = z) = P(δv = x − z+ δO)(A-11)

= φ(x − z+ δO;0, σ̂I ) = φ(x; z− δO, σ̂I ).

Compute also

P(wt+1 = x ,Ot =O|wt = z) = P(wt+1 = x |Ot =O,wt = z)P(Ot =O|wt = z)(A-12)

= φ(x; z− δO, σ̂I )
(

1− ρ
4
+ ρ1z∈iO

)
.

Thus, the posterior density is

gt+1,O(x) = P(wt+1 = x |wt ∼ gt (z),Ot =O)(A-13)

=

∫
P(wt+1 = x ,Ot =O|wt = z)gt (z)dz∫

P(Ot =O|wt = z)gt (z)dz

=

∫ (1− ρ
4
+ ρ1z∈iO

)
φ(x; z− δO, σ̂I )gt (z)dz

PO
.

This proves (A-3).
To prove part (b), start by computing as above

(A-14) P
(
wt = z|Ot =O

)
=

1− ρ
4
+ ρ1z∈iO

PO
.

Multiplying by z and integrating, one gets

(A-15) E(wt |gt ,O) =

∫
z
(

1− ρ
4
+ ρ1z∈iO

)
gt (z)dz

PO
,

and by subtracting νt=E(wt |gt ) one gets

(A-16) δt+1,O =

∫ (
1− ρ

4
+ ρ1z∈iO

)
(z− νt )gt (z)dz

PO
.

50One computes τt+1,BMO=τt+1,SMO=1+ρ α

β
−ρ2 1−γ 2

2β2 , and τt+1,BLO=τt+1,SLO=1−ρ α

β
+ρ2 1−γ 2

2β2 .

The average of τt+1,O is indeed τ̄t+1=1. Also, let D(ρ)=ρ α

β
−ρ2 1−γ 2

2β2 be the absolute deviation
of τt+1,O from 1. Then, D(0)=0, D(1)=0.1022, and D(ρ) attains a maximum value of 0.2433 at
ρ= 2αβ

1−γ 2 =0.5677. The posterior standard deviation τ 1/2
t+1,O= (1±D(ρ))1/2 has a maximum deviation

from 1 equal to 1− (1−0.2433)1/2
=0.1301. Note that D(ρ) is small when ρ is close to 0.
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But
∫

(z−νt )gt (z)dz=0, hence

(A-17) δt+1,O =

∫
ρ1z∈iO (z− νt )gt (z)dz

PO
,

which proves (A-4).
To compute the mean of gt+1,O(x), integrate the formula (A-3) over x , and obtain

(A-18) νt+1,O =

∫ (1− ρ
4
+ ρ1z∈iO

)
(z− δO)gt (z)dz

PO
.

This is similar to the formula for δt+1,O, except that νt is replaced by δO. One gets νt+1,O=

δt+1,O+νt−δO, which proves the first part of (A-5).
For the second part of (A-5), note that for any (not necessarily normal) distribution g

with mean ν and variance σ 2
I ,
∫

(x+a)2g(x)dx=σ 2
I + (ν+a)2. Then,∫

(x − νt + δO)2gt+1,O(x)dx = τ 2
t+1,O + (νt+1,O − νt + δO)2(A-19)

= τ 2
t+1,O + δ

2
t+1,O.

One integrates directly
∫

(x−νt+δO)2gt+1,O(x)dx by replacing gt+1,O(x) as in (A-3). Using
the formula

∫
(x−νt+δO)2φ(x; z−δO, σ̂I )dx= (z−νt )2

+ σ̂I
2, one obtains:

(A-20)
∫

(x − νt + δO)2gt+1,O(x)dx = σ̂I
2
+

∫
gt (z)

(1− ρ
4
+ ρ1z∈iO

)
(z− νt )2dz

PO
.

Putting together (A-19) and (A-20), one gets the desired formula for τ 2
t+1,O. Equation (A-6)

follows directly from (A-4) and (A-5). Finally, proving EO(δt+1,O)=0 and EO(Vt+1,O)=0
is straightforward, which also implies equation (A-7).

To prove part (c), first use (A-2) to compute PO=
1−ρ

4
+ρ

(
8(hO)−8(`O)

)
. To prove

the formula for δt+1,O, make the change of variable z ′= z−νt

τt
and denote by i ′O= (`O,hO).

Then,

(A-21) δt+1,O =

ρτt

∫
i ′O

φ(z ′)z ′dz

PO
=

ρτt (φ(`O)−φ(hO))
PO

.

A similar computation for Vt+1,O finishes the proof of (A-8). Finally,
(A-22)

ν̄t+1 = f (νt ) = νt −

∑
O

POδO = νt − ρ
∑
O

(8(hO)−8(`O))δO.

If one differentiates the endpoints of i ′O with respect to νt , one gets− 1
τt

in all cases, hence

(A-23) f ′(νt ) = 1− ρ
∑
O

(φ(hO)−φ(`O))
(
−

1
τt

)
δO.

Using δO∈
{
ρ

β
,γ ρ

β
,−γ ρ

β
,− ρ

β

}
, a straightforward calculation proves (A-9).

To prove part (d), substitute νt=0 and τt=1 in the formulas above. I only prove the
results for O=BMO and BLO, the proof for the other order types being symmetric. The
probability of a BMO is

(A-24) PBMO =
1− ρ

4
+ ρ

∫
∞

α

φ(z)dz =
1− ρ

4
+ ρ

1
4
=

1
4
.
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Roşu 1831

The probability of a BLO is

(A-25) PBLO =
1− ρ

4
+ ρ

∫ α

0

φ(z)dz =
1− ρ

4
+ ρ

1
4
=

1
4
.

The normalized price impact of a BMO is

(A-26) δt+1,BMO =

ρ

∫
∞

α

φ(z)zdz

PBMO

=
ρφ(α)

1/4
=

ρ

β
= δBMO.

The normalized price impact of a BLO is

δt+1,BLO =

ρ

∫ α

0

φ(z)zdz

PBLO

=
ρ(φ(0)−φ(α))

1/4
(A-27)

=
φ(0)−φ(α)

φ(α)
ρφ(α)

1/4
= γ

ρ

β
= δBLO.

By symmetry, it follows that δt+1,O=δO for all orders O∈{BMO,BLO,SLO,SMO}.
I now compute νt+1,O=νt−δO+δt+1,O=νt=0. Also, τ̄ 2

t+1=EO

(
τ 2

t+1,O

)
=EO

(
τ 2

t +

σ̂I
2
−δ2

O

)
. But EO(δ2

O)= 1
4

(
( ρ
β
)2
+ (γ ρ

β
)2
+ (−γ ρ

β
)2
+ (− ρ

β
)2
)
= σ̂I

2, hence τ̄ 2
t+1=τ

2
t + σ̂I

2
−

σ̂I
2
=τ 2

t , from which τ̄t+1=τt=1. Thus, the posterior mean is equal to 0 irrespective of the
order O at t , while the posterior variance is equal to 1 on average. This means that the
normalized density N (0,1) corresponds to a stationary equilibrium. �

In the next two lemmas, I describe the continuation payoff from submitting a BLO
for either a patient speculator (Lemma 2), or for an uninformed patient natural buyer
(Lemma 3), assuming that all investors follow their equilibrium strategies.

To state the next result, let the “execution probability function” J (ρ,w) be as in
Definition 1. Numerically, I verify that J is constant and equal to 1 (see Result 1), but
for the next lemma, no particular expression for J is necessary.

Lemma 2. In the context of Theorem 1, consider an informed trader who submits a BLO
at t after observing the signal wt=

vt−µt

V
. Then, if subsequently all traders follow the equi-

librium strategies, the continuation payoff of the informed trader is:

(A-28) U I
BLO =

S
2

J (ρ,wt )+ V I (ρ,wt ).

Proof. I simplify notation and assume that the initial BLO is submitted at t=0. Denote
by Q the set of all execution sequences Q= (O0=BLO,O1, . . . ,OT−1,OT =SMO) for the
initial BLO. Let Jt be the information set of the informed trader just before trading at t ,
which consists of the signal w0 observed at t=0, and the orders O0, . . ., Ot−1. Let Et be the
expectation operator conditional on Jt . At the execution time T , the bid price is µT − S/2,
therefore:

U I
BLO =

∑
Q∈Q

E0

(
vT −

(
µT −

s
2

)∣∣∣Q)P0(Q)(A-29)

=
S
2

∑
Q∈Q

P0(Q)+
∑
Q∈Q

e(Q)P0(Q),

where e(Q)=E0

(
vT −µT |Q

)
.

For t=1, . . . , T +1, let Pt be the probability of observing the order Ot at t conditional
on Jt , gt the density of wt before trading at t , and νt=Et (wt ) the mean of gt . I show that
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the sequence of probabilities (P1, . . . , PT ), densities (g1, . . . , gT+1), and means (ν1, . . . ,νT+1)
is indeed associated to the execution sequence Q, in the sense of Definition 1. From equa-
tions (A-2) and (A-3) in Lemma 1, it follows that Pt=πgt ,Ot and gt+1= fgt ,Ot , where π and
f are given by equation (5) in Definition 1.

Next, I show that P0(Q) coincides with P(Q) from Definition 1, where

(A-30) P(Q) =

T∏
t=1

Pt .

Indeed,

(A-31) P0(Q) = P(O1, . . . ,OT |O0) =
T∏

t=1

P(Ot |O0, . . . ,Ot−1) =
T∏

t=1

Pt = P(Q).

Since by definition J (ρ,w0)=
∑

Q∈Q P(Q), using (A-29) one obtains the first half
of (A-28).

It remains to prove that

(A-32)
∑
Q∈Q

e(Q)P(Q) = V I (ρ,w0).

First, I show that

(A-33) g1 = N
(
w0− γ

ρ

β
,
1+ γ 2

2β2

)
,

as specified in the definition of I . To see this, note that δO0=δBLO=γ
ρ

β
. Then,

(A-34) w1 = w0+
v1− v0

V
−
µ1−µ0

V
= w0+

v1− v0

V
− γ

ρ

β
.

Because v1−v0∼N (0,σ 2
I ), one has Var

(
v1−v0

V

)
=

σ 2
I

V 2 =ρ
2 1+γ 2

2β2 , where the last equality fol-

lows from (13). Since g1 is the density of w1, one obtains indeed g1=N
(
w0−γ

ρ

β
,ρ2 1+γ 2

2β2

)
.

Finally, I show that e(Q)=V ν(Q), where ν(Q)=νT+1−
ρ

β
. The executing order at

T is an SMO, therefore (A-6) implies that ET

(
wT |SMOT

)
=νT+1+δSMO=νT+1−

ρ

β
. Thus,

e(Q)=V E0ET

(
wT |SMOT

)
=V

(
νT+1−

ρ

β

)
.

For future reference, note that according to (A-6) one has the following
decomposition:

(A-35) νT+1−
ρ

β
= νT+1+ δSMOT = νT + δT+1,SMOT ,

where, as shown in (A-4), δT+1,SMOT is the normalized adverse selection from SMOT . �

Lemma 3. In the context of Theorem 1, consider a patient uninformed trader with private
valuation ū, who submits a BLO at t . Then, if subsequently all traders follow the equilib-
rium strategies, the continuation payoff of the uninformed trader is:

(A-36) UU
BLO = ū+

S
2
−1.

Proof. See Section 1 in the Supplementary Material. �

Verification of Result 1. See Section 4 in the Supplementary Material. �
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Proof of Theorem 1. The proof depends on the conditions in Result 1 being analytically
true. Thus, for all ρ∈ (0,1), it is assumed that:

I (ρ,w), w− I (ρ,w), and I (ρ,w)− I (ρ,−w) are strictly increasing in w,(A-37)

max
( ρ(1+ γ )

β
,−2I (ρ,0)− 2

ργ

β

)
< α− I (ρ,α),

I (ρ,w, j) decreases in j for all w > 0, and

J (ρ,w, j) = 1 for all w and j ≥ 1,

where I and J are as in Definition 1.
I next define an MPE of the game, by specifying a strategy profile and a belief system

that are compatible with each other. In addition, I specify a set of state variables that sum-
marizes the payoff-relevant information contained in each history of the game. As public
state variables, I choose: the public mean (µt ) and the public volatility (σt ), the ask price
(at ) and the bid price (bt ), as well as the bid and ask queues.51 As private state variable, I
choose the fundamental value (vt ), which is observed by the informed trader at the time of
her arrival (t).

Because I want the game in stationary equilibrium, I choose N (0, V 2) as the initial
public density (before trading at t=0). Moreover, the ask price is S/2, the bid price is
−S/2, with S as in (7), while the initial limit order book has countably many limit orders
on each side (see the middle graph in Figure 2).

To define the strategy profile S, I first describe the action of a new trader who arrives
at t . Then, I describe the reaction of the other traders remaining in the limit order book
to the new arrival at t . Finally, in Section 1 in the Supplementary Material, I describe
the reaction of the existing traders to any out-of-equilibrium deviation that might occur
from either the new trader or an existing trader. Recall that impatient traders are assumed
to automatically submit market orders. I therefore describe only the strategies of patient
traders, who can be informed (with private valuation 0), uninformed buyers (with private
valuation ū), or uninformed sellers (with private valuation −ū). The strategy profile S is
then given by the following set of rules:

(a) The uninformed buyer arriving at t submits a BLO at the price (µt+γ1)− S/2.

(b) The uninformed buyer arriving at t submits an SLO at the price (µt−γ1)+ S/2.

(c) The informed trader who observes an asset value vt when she arrives at t submits
an order O∈{BMO,BLO,SLO,SMO} whenever her signal vt−µt

V
lies, respectively,

in the interval iO∈{(α,∞), (0,α), (−α,0), (−∞,−α)}.

(d) After the initial order submission, all traders behave as described in (e) and (f).

(e) If a BMO is submitted at t , then an instant later the public mean is updated toµt+1,
the ask price to µt+1+ S/2, and the bid price to µt+1− S/2, and all other limit
traders shift their orders by 1 such that the relative ranks in the ask and bid queues
are preserved. After that, no other trader moves until t+1.
The reaction to an SMO at t is symmetric to the reaction to a BMO.

(f) If a BLO is submitted at t , then an instant later the public mean is updated to µt+

γ1, the ask price to µt+γ1+ S/2, and the bid price to µt+γ1− S/2, and all
other limit traders shift their orders by γ1 such that the relative ranks in the ask and
bid queues are preserved. After that, no other trader moves until t+1.
The reaction to an SLO at t is symmetric to the reaction to a BLO.

51Because in the model traders can submit orders only for 1 unit, the limit prices for orders other
than the first ones in the bid and ask queues are not relevant.
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For brevity, I leave the description of out-of-equilibrium moves S(g) and S(h) to
Section 1 in the Supplementary Material.

The belief system is described by the following rules: At t=0, the uninformed in-
vestors perceive the asset value distributed according to N (0, V 2). Subsequently, the un-
informed investors’ belief about the asset value (the public density) is updated using the
approximate Bayes’ rule described in Section II. At the time of arrival to the market, the
informed investor observes the asset value and can compute the average payoff of a limit or-
der based on updating her belief according to the exact Bayes’ rule. After the arrival, how-
ever, the informed trader cannot update her belief, and becomes essentially uninformed. In
the limit order book at t=0, all traders are uninformed with probability 1. At t≥0, each
new trader is believed to be informed with probability ρ by the other traders. Subsequently,
traders’ beliefs about the other investors’ types are updated according to the Bayes’ rule.

Because the strategy profile S defined above depends only on the current value of the
state variables, the strategies are indeed Markov. I now show that the strategy of each type
of investor is a best response to the other investors’ strategies.

Uninformed Traders
I consider a patient natural buyer (with private valuation ū and zero waiting costs). I

need to show that the strategy specified by S is optimal for this trader. Because the proof
is straightforward but tedious, I present only the intuition behind the results, and leave the
complete proof of this statement to Section 1 in the Supplementary Material.

Intuitively, it is clear that the patient natural buyer chooses a buy order, since with
a sell order he would lose the private valuation ū. Hence, the main choice is between a
BMO, a BLO, and NO (no order). Recall that a simplifying assumption in Section II is
that the uninformed trader starts with a prior belief at t such that after submitting his order
his posterior belief coincides with the public density. In the proof of Lemma 3 I compute
that his prior belief is vt∼N

(
µt+γ1, V 2

−σ 2
I

)
(see equation (IA.2) in Section 1 in the

Supplementary Material).
Then, Lemma 3 shows that the trader’s continuation payoff from submitting a BLO

is UU
BLO= S/2−1+ ū. If instead he submits a BMO, he gets UU

BMO=Et (vt )−at+ ū=
(µt+γ1)− (µt+ S/2)+ ū= ū+γ1− S/2. Finally, if he submits no order, he gets by con-
vention 0.

First, I note that BMO is preferred to NO, since ū≥ S/2. To compare BMO with
BLO, note that condition (A-37) implies α− I (ρ,α)> ρ

β
(1+γ ), which if one multiplies by

V =βρ−11 implies:

(A-38) S > 1(1+ γ ),

meaning that the relative benefit of a limit order (the bid–ask spread S) is larger than the
relative cost of a market order (the adverse selection 1 coming from the execution with a
market order, plus the price impact of a limit order γ1). One obtains UU

BLO>UU
BMO, therefore

the patient natural buyer optimally submits a BLO. The rest of the proof is in Section 1 in
the Supplementary Material.

Informed Traders
I prove that the strategy of an informed trader is as specified in S(c), S(e), and S(f).

Consider a (patient) informed trader who arrives at t and observes the asset value vt , or
equivalently the signal wt=

vt−µt

V
. The informed trader has the option to submit either

i) BMO, ii) SMO, iii) NO (no order), iv) BLO at b∗= (µt+γ1)− S/2, and later fol-
low S, or v) SLO at a∗= (µ−γ1)+ S/2, and later follow S. I show that the informed
trader submits O∈{SMO,SLO,BLO,BMO} whenever wt lies, respectively, in the inter-
val {(−∞,−α), (−α,0), (0,α), (α,∞)}; for this, I show that option iii) is eliminated by a
penalty for not trading that satisfies ω≥γ1. Then, if wt >0, I show that option iv) is less
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profitable if the BLO is submitted at a different price than b∗; symmetrically, if wt <0, I
show that option v) is less profitable if the SLO is submitted at a different price than a∗.
After submitting iv) or v), the informed trader behaves in the same way as the uninformed
buyer.

Let U I
O be the continuation payoff from submitting O and later following S. As in

the case of the uninformed buyer, I assume that the current limit order book has the ask
price at=µt+ S/2, and the bid price bt=µt− S/2. Let Û I

O=
U I
O
V

be the normalized payoff
from O; Ŝ= S

V
the normalized spread parameter; and ω̂= ω

V
the normalized commitment

parameter, which is a penalty for nontrading. From Lemma 2, Û I
BLO=

Ŝ
2

J (ρ,wt )+ I (ρ,wt ).
But, by condition (A-37), J (ρ,wt )=1, hence Û I

BLO=
Ŝ
2
+ I (ρ,wt ). Putting together all the

formulas, one obtains:

Û I
BMO = wt −

Ŝ
2

, Û I
SMO = −

Ŝ
2
−wt , Û I

NO = −ω̂,(A-39)

Û I
BLO =

Ŝ
2
+ I (ρ,wt ), Û I

SLO =
Ŝ
2
+ I (ρ,−wt ).

Denote by A(w)=w− I (ρ,w), B(w)=w− I (ρ,−w), D(w)= I (ρ,w)− I (ρ,−w); and
note that B(w)= A(w)+D(w). With these notations, one gets Û I

BMO− Û I
BLO= A(wt )−

Ŝ, Û I
BMO− Û I

SLO= B(wt )− Ŝ, Û I
BLO− Û I

SLO=D(wt ), Û I
BLO− Û I

SMO= Ŝ− B(−wt ), and Û I
SLO−

Û I
SMO= Ŝ− A(−wt ). From (A-37), it follows that A, D, and B= A+D are strictly increas-

ing in w, therefore all the payoff differences above are strictly increasing in wt . Note that
by the definition of S, one has A(α)=α− I (ρ,α)= Ŝ, therefore BMO is preferred to BLO
if and only if wt >α. Similarly, SMO is preferred to SLO if and only if wt <−α. Also,
D(0)=0, therefore BLO is preferred to SLO if and only if wt >0. Because all the payoff
differences are strictly increasing in wt , a straightforward analysis shows that indeed the
informed trader prefers O∈{BMO,BLO,SLO,SMO} wheneverwt lies, respectively, in the
interval iO∈{(α,∞), (0,α), (−α,0), (−∞,−α)}.

Next, I make sure that NO (“No Order”) is never optimal. For that, I use
equation (A-39) to compute the minimum payoff for each type of order. According to con-
dition (A-37), I is strictly increasing in w, therefore Û I

O is increasing in wt for BMO and
BLO, and decreasing inwt for SMO and SLO. Thus, it is sufficient to verify that Û I

BLO≥−ω̂

when wt=0. Since by assumption ω≥γ1, the formula V =βρ−11 implies ω̂≥ ργ

β
. Hence,

it is sufficient to verify that Ŝ
2
+ I (ρ,0)≥− ργ

β
. But this follows from condition (A-37),

which implies that α− I (ρ,α)>−2I (ρ,0)−2 ργ

β
.

I now show that the continuation payoff for the informed trader from submitting
his BLO at the equilibrium price b∗ is higher than the payoff obtained by choosing BLO
at either b>b∗ or b<b∗. I first rule out BLO at b>b∗. Based on the out-of-equilibrium
reaction S(h) described in Section 1 in the Supplementary Material, overshooting a bid is
interpreted as coming with probability 1 from an informed trader with a positive signal.
This leads to a positive shift in the public mean µt and therefore to a negative shift in
the informed trader’s signal wt=

vt−µt

V
. Condition (A-37) then implies that I (ρ,wt ) strictly

decreases, and along with it the informed trader’s expected payoff.
I also rule out BLO at b<b∗. Based on the out-of-equilibrium reaction S(h) described

in Section 1 in the Supplementary Material, this deviation does not bring any new in-
formation about the transgressor’s type, but prompts another trader in the bid queue to
immediately modify his BLO at b∗. The informed trader thus loses his first rank in the
bid queue, which according to Lemma 2 generates a normalized continuation payoff of
Ŝ
2

J (ρ,wt , j)+ I (ρ,wt , j), where j>1 is the informed trader’s new rank in the bid queue.52

52By condition (A-37), J=1.
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By condition (A-37), J (ρ,wt , j)=1 and I (ρ,wt , j) is decreasing in j , which implies that
the informed traders gets a smaller payoff than Ŝ

2
+ I (ρ,wt , j=1)= Û I

BLO. Hence, the in-
formed trader reduces his payoff by deviating from b=b∗.

Finally, after the initial order choice the strategy of the informed trader is the same as
for the uninformed trader, since they now have the same information set. �

Proof of Corollary 1. The corollary follows directly from the description of the equilib-
rium strategy profile S, and in particular from S(e) and S(f). �

Proof of Corollary 2. This corollary follows directly from the description of the equilib-
rium strategy profile S, and in particular from S(c). The formula for the expected utility of
the informed trader follows from equation (A-39). �

Proof of Corollary 3. As proved in Theorem 1, the public density at t is N (µt , V 2), which
implies that the normalized public density (the density of the signal wt=

vt−µt

V
) is standard

normal. Then, part (d) of Lemma 1 shows that all orders have probability equal to 1/4. �

Proof of Corollary 4. This corollary follows directly from the description of the equilib-
rium strategy profile S, and in particular from S(a) and S(b). The formula for the expected
utility of the uninformed trader follows from Lemma 3. �

Proof of Proposition 1. From Corollary 1, any order O∈{BMO,BLO,SLO,SMO}moves
the public mean µt by 1O∈{1,γ1,−γ1,−1}, respectively. Because each type of
order occurs with probability 1/4, and the public mean moves by an element of
{1,γ1,−γ1,−1}, it is simple to show that the variance of µt+1−µt is indeed equal
to 1+γ 2

2
12. �

Proof of Corollary 5. By Corollary 1, if the public mean is µ, at any time the ask price is
µ+ S/2, and the bid price is µ− S/2. This implies that the bid–ask spread is equal to the
parameter S=

(
α− I (ρ,α)

)
V from (7), and is therefore constant. �

Proof of Proposition 2. The proposition follows from the proof of Lemma 2 in the
Appendix. �

Proof of Corollary 6. By equation (7), S=
(
α− I (ρ,α)

)
V =Decay Costα . �

Proof of Proposition 3. Recall that the slippage function I s follows Definition 1, except
that ν(Q)=νT instead of ν(Q)=νT+1−

ρ

β
for the information function I . This proves the

formula I s(ρ,w)=EeET

(
wT ). The adverse selection function I − I s

= I a therefore follows
Definition 1, except that ν(Q)= (νT+1−

ρ

β
)−νT . But equation (A-35) implies νT+1−

ρ

β
=

νT +δT+1,SMOT . Hence, I a is defined using ν(Q)=δT+1,SMOT , which is the price impact of the
SMO at execution time T . But this is equal to ET+1(wT )−ET (wT ), which proves that indeed
I a(ρ,w)=Ee

(
ET+1(wT )−ET (wT )

)
. �

Proof of Corollary 7. By equation (20), the slippage component satisfies Ss
=
(
α−

I s(ρ,α)
)

V =Slippage Costα . Also, the adverse selection component satisfies Sa
=(

I s(ρ,α)− I (ρ,α)
)

V =−I a(ρ,w) V =Adverse Selection Costα . �

Verification of Result 2. See Section 4 in the Supplementary Material. �

Proof of Proposition 4. With the notation of Lemma 1 in this Appendix, consider a trader
that perceives the signal wt=

vt−µt

V
distributed according to the normalized density prior,

N (νt ,τ 2
t )=N (0,1). Denote by νt+1= f (νt ) the average posterior mean. Then, by setting

νt=0 and τt=1 in equation (A-9), one obtains the desired formula for the resiliency coef-
ficient K . �

I now define formally the parameters α̃, β̃, γ̃ , Ĩ , Ṽ , 1̃ and S̃ that are used in Section V.
Recall that φ( · ) is the standard normal density, and 8( · ) is its cumulative density.

https://doi.org/10.1017/S0022109019000759
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . G
roupe H

EC , on 07 Sep 2020 at 07:06:21 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0022109019000759
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Roşu 1837

Definition 4. Let ρ∈ (0,1), θ ∈ (0,∞), and w∈R. Define the functions Ĩ (ρ,w,θ ) and
J̃ (ρ,w,θ ) as in Definition 1, except that in the recursive step at t , instead of the numeric
parameters α, β, and γ , one uses the functions α̃(ρ,θt ), β̃(ρ,θt ), and γ̃ (ρ,θt ) defined below,
with θ0=θ , and:

θ 2
t+1 = ρ2 1+ γ 2

2β2
+ θ 2

t −(A-40)

2ρ2θ 2
t


(
φ
( α̃t

θt

))2

1− ρ
4
+ ρ

(
1−8

( α̃
θt

)) +
(
φ
( 0
θt

)
−φ

( α̃t

θt

))2

1− ρ
4
+ ρ

(
8
( α̃
θt

)
−8(0)

)
 ,

where α̃t= α̃(ρ,θt ).53 The functions α̃, β̃, and γ̃ are defined by the implicit equations:

α̃− Ĩ (ρ, α̃,θ )− 2
ρ θ φ

( α̃
θ

)
1− ρ

4
+ ρ

(
1−8

( α̃
θ

)) = α− I (ρ,α)− 2
ρ

β
,(A-41)

β̃ =

1− ρ
4
+ ρ

(
1−8

( α̃
θ

))
φ
( α̃
θ

) ,

γ̃ =

φ(0)−φ
( α̃
θ

)
φ
( α̃
θ

)
1− ρ

4
+ ρ

(
1−8

( α̃
θ

))
1− ρ

4
+ ρ

(
8
( α̃
θ

)
−8(0)

) .
Moreover, if V =V (ρ) as in equation (7), define Ṽ = Ṽ (ρ,θ ), 1̃=1̃(ρ,θ ), and S̃= S̃(ρ,θ )
by:

(A-42) Ṽ = θ V , 1̃ =
ρ

β̃
θ V , S̃ =

(
α̃− Ĩ (ρ, α̃,θ )

)
V .

Finally, the proofs of Propositions 5–7 and Corollary 8, as well as the verification of
Results 4–5 are left to the Supplementary Material.

Supplementary Material
Supplementary Material for this article is available at https://doi.org/10.1017/

S0022109019000759.
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