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Abstract

We give a functorial construction of a ratiors-equivariant cohomology theory from an elliptic cuArequipped
with suitable coordinate data. The elliptic curve may be recovered from the cohomology theory; indeed, the value of
the cohomology theory on the compactification ofarrepresentation is given by the sheaf conomology of a suitable
line bundle orA. This suggests the construction: by considering functions on the elliptic curve with specified poles
one may write down the representiityspectrum in the author’s algebraic model of ratiostabpectra [Greenlees,

Mem. Am. Math. Soc. 661 (1999) xii +289pp.].

The construction extends to give an equivalence of categories between the homotopy category of module
S1-spectra over the representing spectrum and a derived category of sheaves of modules over the structure shea
of A.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Two of the most important topological cohomology theories are associated to one-dimensional group
schemes: ordinary cohomology is associated to the additive groufKdhneory is associated to the
multiplicative group. This connection is most transparent in the equivariant context, and because the
group schemes are one-dimensional it is enough to consider a one-dimensional group of equivariance:
the circle groupr.

Beginning with ordinary cohomology, we use the Borel construction to define an equivariant theory for
T-spaceX by H{(X) = H*(ET x1X). The coefficient ringd} = H*(BT) = Z[x] inherits a coproduct
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fromthe mapBT x BT — BT classifying tensor product of line bundles, and the resulting Hopf algebra
represents the additive group.

This construction works equally well for any complex oriented theory. For instance if weeléstote
the natural representation of the circle group on the complex nuntb¢ingory of the Borel construction
has coefficient rindc °(BT) = Z[[y]] with y = 1 — z, and this represents the multiplicative formal group.
However, by working with the correct equivariant theory we may obtain the uncompleted version. Indeed,
the coefficient ringK% = Z[z, z~1] of Atiyah—Segal equivariar€-theory acquires a coproduct from the
group multiplicationT x T — T, and the resulting Hopf algebra represents the multiplicative group.

Elliptic cohomology was first definefll7,18] as a non-equivariant complex oriented cohomology
theory whose associated formal group is the completion of an elliptic curve around the identity. It is
therefore natural to hope for an equivariant cohomology theory giving the associated ellipticAcurve
without completion. It is the purpose of the present paper to construct such a theory over the rationals and
establish its basic properties. The most obvious new feature igtisatot affine, and one of our main
tasks is to elucidate the connection between the cohomology theory and the elliptic curve.

A programme to extend this work to higher dimensional abelian varieties and higher dimensional tori
is underway{10-13]

In concrete terms, the main purpose of this paper is to construct a rafieglivariant cohomology
theory EA’ () associated to any elliptic curneover aQ-algebra. The construction is compatible with
base change, and the properties of the cohomology theory when we work over a field may be summarized
as follows; we give full details in Section 10 below.

Theorem 1.1. For any elliptic curve A over a field of characteristid, there is a2-periodic multiplica-
tive, rational T-equivariant cohomology theor A% (). The value on the one point compactification
SW of a complex representation W @fwith W' = 0 is given as the sheaf cohomology of a line bun-
dle ¢(—D(W)). To describe thiswe write A[n] for the divisor of points of order dividing n in A. If
W =3, a,z", we consider the divisab(W) =, a,A[n], and the associated line bundig—D(W))

on A. The cohomology 6" is given by

EAL(S"y=H!(A; 0(~D(W)) fori=0,1
and the homology by

EAL,(S"y~H'(A; o(D(W)) fori=0,1.
In particular, the coefficient ring is

EA! =klu,u ™11 ® A(v),

where u(of degree2) is a generator ofH%(A; Q) (i.e., a nowhere zeroregular differentia) and t (of
degree—1) is a generator ofH1(A; 0).

Remark 1.2. The above properties do not quite determine the cohomology theory. The cohomology
theory depends on one auxiliary piece of dataoardinater, on A. This is a function vanishing to the

first order at the identity, whose zeroes and poles are all at points of finite order. The construction is
natural for isomorphisms of the data, k, z.). All three of the inputsA, k andz, can be recovered from

the cohomology of suitable spaces.
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Remark 1.3. For general spaces there is a Hasse long exact sequence describing how to calculate elliptic
cohomology. A precise statement is given in 15.3, but the idea is that, just as the arithmetic Hasse square
recovers global data from completions at various primesompatible in the rationalization, the Hasse
sequence recovers elliptic cohomology from Borel cohomologg-fiked points with coefficients in
completions of local rings at points of ordeF|, compatible with the cohomology of thefixed points

with coefficients in meromorphic functions.

The first version ofl-equivariant elliptic cohomology was constructed by Grojnowksi in 1284 He
was interested in implications for the representation theory of certain elliptic algebras: these implications
are the subject of the work of Ginzburg et[&]. and the context is explained furthe8]. For this purpose
it was sufficient to construct a theory on finite complexes taking values in analytic sheaves over the elliptic
curve. Later Ros(R1] used this sheaf-valued theory to give a proof of Witten’s rigidity theorem for the
equivariant Ochanine genus of a spin manifold with non-trivigction, and Ando—Basterra do the same
for the Witten genuf?]. Ando[1] has related the sheaf valued theory to the representation theory of loop
groups.

However, to exploit the theory fully, it is essential to have a theory defined on gehaydces and
T-spectra, and to have a conventional group-valued theory representett§lyetrunEA. This allows
one to use the full apparatus of equivariant stable homotopy theory. For example, twisted pushforward
maps are immediate consequences of Atiyah duality; in more concrete terms, it allows one to calculate
the theory on free loop spaces, and to describe algebras of operations. It is also likely to be useful in
constructing an integral version of the theory, and we hope it may also prove useful in the continuing
search for a geometric definition of elliptic cohomology. The theory we construct has these desirable
properties, whilst retaining a very close connection with the geometry of the underlying elliptic curve.

Returning to the geometry, a very appealing feature is that although our theory is group valued, the
original curve can still be recovered from the cohomology theory. It is also notable that the earlier
sheaf theoretic constructions work over larger rings and certainly require the coefficients to contain
roots of unity: the loss of information can be illustrated by comparing the rationalized representation
ring R(C,) = Q[z]/(z" — 1) (with components corresponding $abgroupof C,) to the complexified
representation ring, isomorphic to the character ring@apC) (with components corresponding to the
elementsf C,,).

Finally, the ingredients of the model are very natural invariants of the curve given by sheaves of functions
with specified poles at points of finite order: Definition 10.6 simply writes down the representing objectin
terms of these, and readers already familiar with elliptic curves and the md&lméy wish to look at
this immediately. In fact, the algebraic model8F gives a generic de Rham model for @equivariant
theories, and the models of elliptic conomology theories highlight this geometric structure. These higher
de Rham models should allow applications in the same spirit as those made for de Rham models of
ordinary cohomology ank-theory[15].

In fact, we are able to go beyond constructing a particular conomology tii&ty-) and establish an
equivalence between a derived category of sheaves over the elliptic curve and cohomology theories which
are modules oveE A’ (-). Because homotopy theory only sees points of finite order, we use the torsion
point topology on the elliptic curve consisting of complements of sets of points of finite order, which is
coarser than the Zariski topology, and becauSeemuivariant homotopy equivalence is an equivalence
in H-equivariant fixed points for all subgroupk the maps inverted in formin@tp(@f-mom are those
inducing isomorphisms aff *(A; 0 4(D(W))®¢(-)) for all representationg/with W = 0.
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Theorem 1.4. The representing obje@ A,, in the algebraic category may be taken to be a commutative
ring, and there is an equivalence

Dip(€'P-mod ~ Dy (E Ag-mod)

between derived categories of sheave® gfmodules on A and A,-modules. These categories both
have relative injective dimensidnso that maps are calculated by a short exact sequence from Hom and
Ext groups in an abelian categary

The corresponding’-spectrum EA is a ring up to homotgpnd the above equivalence classifies
homotopy EA-module spectra up to equivalence& asmodules up to isomorphism. Using the result
of [13], that EA can be realized as a strictly commutative ring spectrina right hand side may be
replaced the derived category of EA-modilespectra and morphisms of module spectra are thereby
also classified

This is proved in Section 21. Our construction directly models the representing ring sp&oirum
the author’s algebraic modefs of rational T-spectrd8]. We describe the abelian categao# in detail
in Section 4, but it can be viewed as a category of sheaves over the space of closed subgfoups of
[11]. The equivalence is obtained from functors at the level of abelian categories, and (Theorem 22.3)
Grojnowski's sheaf Gr@jX) associated to a compattmanifold X is obtained by applying the functor
to the function spectrurBA-module F (X, E A), and then changing to the analytic topology. Thus, for a
compactr-manifold X, there is a short exact sequence

0 — SHY(A; Groj(X)) — EA%(X) — H°(A; Groj(X)) — 0

relating the cohomology of Grojnowksi’'s sheaf A} (X).

By way of motivation, we will discuss the way thatTaequivariant cohomology theory is associated to
several other geometric objects. Perhaps most familiar is the complete case discussed in Section 2, where
the Borel theory for a complex oriented cohomology theory is associated to a formal group. Amongst
global groups, the additive and multiplicative ones are the simplest, and in Appendix A we describe how
they give rise to ordinary Borel cohomology and equivarkattheory; the behaviour of the construction
on the non-split torus is also notable.

We have divided the paper into six parts. Part 1 explains how equivariant conomology theories ought
to be related to group schemes. Part 2 provides prerequisites on rafi@tplivariant cohomology
theories. Part 3 provides prerequisites on elliptic curves. Part 4 is extremely short, and just contains the
construction. Part 5 describes some properties of the theory. Part 6 builds on the construction to give
an equivalence between a derived category of sheavesfaued a derived category daf-spectra. The
appendix re-examines equivaridg€itheory from the present point of view.

Historical note. Early versions of this paper were under joint authorship with M.J. Hopkins and I. Rosu.
This reflected the fundamental influence of their ideas, in the expectation that they would continue to be
part of the project. To the disappointment of all of us, circumstances prevented this, and the other authors
withdrew.

Rosu’s emphasis on the sheaf associated to a sf2igneas significant. When the author first heard it
at the 1997 Glasgow workshop on elliptic cohomology, he believed this would necessitate representing
elliptic conomology by sheaves of spectra. However it led Hopkins towards his vision that a result like the
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Theorem 1.1 proved here should be true. Work on the present paper began after a breathless conversatio
between the author and Hopkins in Oberwolfach at the 1998 Homotopietheorie meeting.
The present paper is Version 5.2 of the preprint.

Part 1. Equivariant conomology theories and group schemes

In Part 1 we describe how equivariant cohomology theories and group schemes are related in ideal
circumstances. We begin with the familiar example of formal groups and complex oriented theories, and
then explore how this correspondence should be extended.

2. Formal groups from complex oriented theories

The purpose of this section is to recall that any complex orientable cohomology tB&ohydeter-
mines a one-dimensional, commutative formal gr@pnd to explain how the cohomology of various
spaces can be described in terms of the geomet@. arhis is well known (see especial[@]) but it
introduces the geometric language, and motivates our main construction, evlgicithe rationalse-
verses the process by using this geometric data to construct the cohomology theory. Indeed, we will
show that the machinery §8] permits a construction of a 2-periodic ratiofakquivariant conomology
theory EG7 () from a one-dimensional group scherGeover aQ-algebra, functorial i with some
additional data. Furthermore, the construction is reversible in the sense tteat be recovered from
EG7(-). The most interesting case of this is whers an elliptic curve, but the affine case is treated in
Appendix A.

2.1. Geometry of formal groups

Before bringing the cohomology theory into the picture, we introduce the geometric language. When all
schemes are affine, the geometric language is equivalent to the ring theoretic language, and all geometric
statements can be given meaning by translating them to algebraic ones. It is traditional in topology to
stick to algebra, but to prepare for the case of an elliptic curve, we will use the geometric language.

A one-dimensional commutative formal group law over a ring a commutative and associative
coproduct on the complete topologidahlgebrak[[y]]. Equivalently, it is a complete topological Hopf
k-algebrat together with an elemente ¢ so thatt = k[[y]]. A topological Hopfk-algebra® for which
such ay exists is the ring of functions on a one-dimensional commutative formal g’IEOl]'me counit
0 — k, is viewed as evaluation of functions at the identity @, and the augmentation iddatonsists
of functions vanishing a&. The elemeny generates the idegland is known as aoordinateate.

We also need to discuss locally free sheavesver G, and in the present affine context these are
specified by th&-moduleM = I'# of global sections. In particular, line bundlesverG correspond to
modulesM which are submodules of the ring of rational functions and free of rank 1. Line bundles can
also be described in terms of the zeroes and poles of their generating section: we only need this in special
cases made explicit below. The generdtof the ¥-moduleM is a section oL, and as such it defines
a divisorD = D, — D_, whereD, is the subscheme @ wheref vanishes (with multiplicities), and
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_ is the subscheme @ wheref has poles (with multiplicities). This divisor determirlesand we write
L = 0(—D). For example,

M = I = (y) corresponds to'(—(e))
and
M = I1¢ = (y*) corresponds td/(—a(e)).

Next, we may consider thim]-series magin] : ¢ — ¢, which corresponds to the-fold sum map

: G — G. We write G[n] for the kernel ofn, and its rlng of functions i®/([n](y)). Hence, since
n y—[n](y) by definition,M = ([n](y)) corresponds t6(— Gln] ), andM = ( ([n](y))“ ) corresponds to
@(—a@[n]). Finally, if M corresponds to(— D) andM’ corresponds td(—D’) thenM " := Hom(M, ©)
corresponds to(D) andM ® M’ corresponds td(—D — D’). This gives sense to enough line bundles
for our purposes.

2.2. Complex oriented cohomology theories

Now suppose thadtis a 2-periodic ring valued theory with coefficier$ concentrated in even degrees.
The collapse of the Atiyah—Hirzebruch spectral sequencg foshows thak is complex orientable. We
may define ther-equivariant Borel cohomology by} (X) = E*(ET x1X). We work over the ring
k= E0 (T)=EY, and wewE% = EO(BT) as the ring of functions on a formal gro@poverk. The tensor
product and duality of line bundles maksd into a group object, s&%(BT) is a topological Hopf
algebra andb is a group. From this point of view, the augmentation idea ker(EO — E9 consists
of functions vanishing at the identitye G. We may also define the module of cotangent vectors at the
identity by

w:=1/1>?=E%S? =E?=E,.
This allows us to recover the graded cohomology ring from the ungraded ring since
“2(X) = EY(X) ® o

Now, if Wis a complex representation of the circle groovith W' = 0, we also letV denote the
associated bundle ové#T and the Thom isomorphism shou(BT)") = E9(SV) is a rank 1 free
module ovelE% and hence corresponds to a line burid&) overG, whose global sections are naturally
isomorphic to the module

ruw) = E2(s"V).

From the fact that Thom isomorphisms are transitive we seé tiiatb W) =1L(W) ® L(W’). The values
of all these line bundles can be deduced from those of powezs of

Lemma 2.1. (1) L(0) = ¢ is the trivial bundle

(2) L(z) = 0(—(e)) is the sheaf of functions vanishing atamd its module of sections | is generated
by the coordinate y

3) [L(z”):@(—@[n]) is the sheaf of functions vanishing@[n], and its module of sections is generated
by the multiplgn](y) of the coordinate y
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4) L(az™) = 0(—aG[n)) is the sheaf of functions vanishing Gifn] with multiplicity a and its module
of sections is generatg@in](y))“.

Proof. The first statement is clear sin&%(so) = E% For the second we use the equivalenBd)* ~
(BT)?/(pt)°. The third statement follows from the Gysin sequence sifiégethe pullback ok along the
kth power mapBT — BT. The final statement follows from the tensor product property.

This gives the fundamental connection between the equivariant cohnomology of a sphere and sections
of a line bundle.

Corollary 2.2. If E3(-) is a complex oriente@-periodic cohomology theory with associated formal
group G then for anya € 7, n # 0 we have

E9(s%") = 0(—=aGln]). O

3. What to expect when the group is not affine

This section discusses what happens if we replace the formal gr¢wpich is affine) in Section 2 by
a (one-dimensional) group with higher cohomology.

3.1. Odd cohomology

The main point is that we cannot expect a cohomology theory entirely in even degrees. Now that the
group is not affine¢ denotes the structusheafof G. This is reconciled to the above usage since in the
affine case, the structure sheaf is determined by its ring of global sections. In the non-affine case, the
cofibre sequence

NEIN -I]—_|_ 9z S(a—l—l)z

of basedT-spaces forces there to be odd cohomology. Indeed, we expect a corresponding short exact
sequence of sheaves

O(—ae)/O0(—(a + L)e) «<— O(—ae) <— O(—(a + De).

Any satisfactory cohomology theory will be functorial, and applyiﬁ%(-) will give sections of the
associated sheaves. However the global sections functor on sheaves is not usually right exact, and the
sequence of sections continues with the sheaf cohomology gbs; -). It is natural to hope that the

long exact cohomology sequence induced by the sequence of spaces should be the long exact cohomolog
sequence induced by the sequence of sheaves. This gives a natural candidate for the odd cohomology:

EL($%) = H'(G; 0(—a(e))) fori=0,1.

This explains why it is possible for complex orientable cohomology theories to have coefficient rings in
even degrees (formal groups are affine), and how their values on all complex spheres can be the same
(formal groups have a regular coordinate). It also explains why we cannot expect either property for a
theory associated to an elliptic curve.
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3.2. The definition of type

We are now ready to formalize the relationship between group schemes and cohomology theories.

Definition 3.1. (i) Given a virtual complex representatidvwith W' =0 we define an associated divisor
D(W) as follows. We writeW = " a,z", and then takedD(W) = >, a,G[n], whereG[n] = ker(n :
G — G).

(i) We say that a 2-periodi@-equivariant cohomology theoy; (-) is of typeG if, for any complex
representatioly,

EL(S"Y=H'(G; 0(~-D(W))
and
E'.(SY)=H (G; 0(D(W)).

fori =0, 1.
We also require these isomorphisms to be natural for inclusiond — W’ of representations. To
describe this, first note that such a map induces aftfap— S"' of basedr-spaces and hence maps

J o ERSY) — ELsY)
and
jut EL(SY) — EL(s™).
On the other hand, we have inclusion of divis&¥éW) — D(W’), inducing maps
O(=D(W')) — O(=D(W))
and
O(D(W)) — O(D(W")).

The induced maps in sheaf conomology are required tgl@d ...

Remark 3.2. The naturality requirement really allows us to identify the homology and cohomology of
spheres with spaces of functions or their duals. For example, all the sheavesV)) are subsheaves
of the constant sheaf

A ={f|f is a function onG with poles only at points of finite ordgr

of meromorphic functions. Thus the naturality requirement shows we may actually idéﬁlﬁfyw)
with a set of meromorphic functions. In the presence of Serre duality (see Section 11), the first cohnomology
groups may similarly be identified with duals of spaces of functions.

Remark 3.3. We also need to discuss the appropriate behaviour for representatioitb trivial sum-
mands. The convention that

ElL,(X)=El(X)®w
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or
EF2X)=EL(X)® o

leads to an appropriate formula, wherés the cotangent space at the identityGfHowever to obtain a
properly natural identification it is better to use sheaves and the fact that

H (G; ¥80Q) = H (G; ¥) ® o,

where® denotes tensor product overand? is the sheaf of Kahler differentials dp.
This leads to the requirements

EL(SY) = H (G; 0(~D(W/ W)@ admeWD)
and
ET,(s™) = HI (G; c(DW/ W) @c 0 8me VD)

fori =0, 1 (here and elsewher#' denotes thath tensor power of2). The answer for other values of
follows easily.

Remark 3.4. The use of differentials to give suspensions means that a cohomology theory @f type

contains data about Thom isomorphisms. For exampl&iY := lim_, ;1_oSY thens? — §®W
induces
EJ($9) —  EJ(5®W)
= | =

HO(@;a:‘«e))@@Q) —  HYG; #®09Q).

This picks out &-subspace of the constant shea® Q2 = H°(G; # ®¢Q). When is an elliptic curve,
this is the one-dimensional space of invariant differentials.

3.3. The affine case revisited

It is worth pointing out that if is affine and has a good coordinate, any cohomology theory ofGype
is complex orientable and in even degrees (we construct a number of such theories in Appendix A). More
precisely, we require that has a regular coordinate functigrin the sense that the identitye G is
defined by the vanishing gfandy is a regular element of the rirngof functions ons. The multiplication
by nmap is also required to be flat for> 1.
First, sinceG is affine, there is no higher cohomology. Thus, the conditionat) is of typeG states
that the cohnomology of spheres of complex representations is in even degrees, anwthat ,

E7?(s")=0(=D(W) @ o",

where we have identified the sheaf with its space of global sections. It remains to obsef\e-thatv))
is a free module on one generator. Inde@f}] is defined by the vanishing af*(y) the pullback ofy
along the multiplication byn map of G. Since this map is flai*y is a regular element.
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Since we have a complex oriented theory we also have Thom classes and Euler classes, and these
depend on the coordinatg,For example, the Thom class#ifis the chosen generator 6t—G[n]), and
the Euler class is its pullback to namely

2y (@) = [n](y) = n*(y).

Thus we have the idea that the Euler class"of a function whose vanishing definé$n].
In characteristic 0 it is elementary to go one step further and decompose the dif#gor

Glnl=)_ Gis),
s|n
whereG(s) is the divisor of points of exact order In fact, we define a function(y) vanishing to the
first order onG(s) recursively by the condition

1@ =11 s

sin

the formula forn = 1 definess, (y) directly forn = 1, and for larger values of, ¢, (y) is defined by
dividing x,(z") by the previously defined,(y). Each¢, (y) is regular by the regularity of and the
flatness requirement.

3.4. Summary
We may summarize the correspondence between algebra and topology:

e The suspensioi“s" A EG corresponds to the sheafaG[n]) and more generally, suspension iy
corresponds to tensoring with G[n]).

e The subgroupi[n] of ordern (kernel ofz") corresponds to the subgro@dn] of elements of order
dividing n (defined by the vanishing gi(z")).

e The inclusions® — $%" which induces multiplication by the Euler class (in the presence of a Thom
isomorphism) corresponds to— ¢(G[n]).

e We extend the notation, so that

§%7 .= 1lim $%" corresponds to the she@fcoGn]) := lim ©(aG[n])
a

- q —

and

EZ :=Ilim SY corresponds to the she@fooG[tors)) := lim  0(aG[n]).
— a,n

—> UT=0

e The family # of finite subgroups corresponds to the G¢tors] of elements of torsion points.

Part 2. Background on rational T-equivariant cohomology theories

The method of this paper is only practical because there is a complete algebraic model for rational
T-equivariant cohomology theorif®. In Part 2 we describe this model and explain how to make relevant
calculations in it.
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4. The model for rational T-spectra

For most of the paper we work with the representing objects-efjuivariant conomology theories,
namelyT-spectrg19]. Thus we prove results about the representing spectra, and deduce consequences
about the cohomology theories. More precisely, any suitabdguivariant cohomology theo7 () is
represented by @&-spectrunE in the sense that for a bas@dspaceX,

Ef(X) =X, EI}.
This enables us to define the associated homology theory
ENXx)=[S° E A X!

in the usual way. We shall make use of the elementary fact that the Spanier—Whitehead dual of the sphere
S"is §~%, as one sees by embeddisitf as the equator if"®1. Hence, for example

EQSY)y =[SV, EI"=[S°, sV AE)Y =al (ST AE)=ES(s7V).

We say that a cohomology theoryrational if its values are graded rational vector spaces. A spec-
trum is rational if the cohomology theory it represents is rational. It suffices to check the values on the
homogeneous spacd@9 H for closed subgroupsl, since all spaces are built from these up to weak
equivalence.

Convention4.1. Henceforth all spectra and the values of all cohomology theories are rationalized whether
or not this is indicated in the notation.

Our results are made possible because there is a complete algebraic model of the catagjonadf
T-spectra, and hence of ratiormalequivariant conomology theorigg]. For the convenience of the reader
we spend the rest of this section summarizing the relevant resultg&oima convenient form. There
are two models for rational-spectra, as derived categories of abelian categories.

Theorem 4.2(Greenlee$8, 5.6.1, 6.5.1). There are equivalences
T-Spectra~ D(.</s) >~ D(</t).

of triangulated categories

The standardabelian category/s has injective dimension 1, and th@rsionabelian category/; is
of injective dimension 2. The derived categdpy.«7s) is formed by taking differential graded objects in
/s and inverting homology isomorphisms, and similarly 1d¢.7;). It is usually easiest to identify the
model for aT-spectrum inD(.</1), at least providing its model has homology of injective dimension 1.
This is then transported to the standard category, where calculations are sometimes easier. We describ
what we need about the categories in the following subsections.

4.1. Rings of functions

To describe the categories, we need some ingredients. The information is organized by isotropy group,
and we let7 denote the discrete set of finite subgroupg oOn this we consider the constant sheaf
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of rings with stalksQ[c] wherec has degree-2. We need to consider the ring

R=map7, Qlch= [] Qlc]

He7

of global sections, where maps and product are graded. For each subljneapetey € R denote the
idempotent with suppoH.

To avoid confusion about grading we introduce the requisite suspensions. In topology, we may sus-
pend by complex representations these enter the theory through the dimension functig#’) :=
dimc(WH). Note thatw takes only finitely many values, and is equalwgT) for almost all finite
subgroupd.

Definition4.3. Supposev : # — Zis an almost constant function. We divide the set of finite subgroups
into sets

Fui={H|wH) =i

on whichw is constant; only finitely many of these are non-empty, and all but one are finite. We write
w(T) for the value ofw on the infinite set.
Lete, ; € R bethe idempotent supported.@n, ;, and introduce the suspension functoRemodules

by

VN =P 5%ey.iN.

1

Now if w : # — Z-¢ is zero almost everywhere, we writ¢ for the universal Thom clasesf w,
defined byc” (H) = ¢, Since it is not homogeneous” is not an element dR, but nonetheless it is
natural to consider thB-module

¢c’R:=X""R= l_[ Qe
H

viewed as arR-submodule of [, Q[c, ¢~ 11; sincec” is a generator in some sense, we c#lla Thom

class (further explanation is given at the end of the section). Classical Thom classes give rise to Euler
classes by restriction to the coefficient ring. We now create a ring in which the Euler classes corresponding
to the Thom classeas’ belong. First, let

&={c"|w:F — Z-0 of finite suppor};

thinking of this as if it generates a multiplicatively closed subset, we make an adelic construction by
forming theR-submodule

t7 =6R :=lim Z“R=| |c "R

; m R=Je
of [T Qle, ¢ 1]. Observe that” is a gradedR-algebra. As a graded vector spafeis @b, Qin positive
degrees anfl[ ; @ in degrees zero and below.
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Remark 4.4. (i) Note that ifw(T) = O, there is a natural degrega€dmorphism

cV ot

which in thesth component is
S Qle, ¢ — 2OQ[e, 7.

It is natural to see this as multiplication by the Euler class.

(ii) Given a complex representatiof of T with W = 0 we may define an associated function
F — 70 zero almost everywhere hy(H) = dimc(W ). We sometimes write" for this element
of R, and we note thaf is generated as a multiplicative subset by elements of this form.

(i) Viewing Ras the ring of functions on the discrete spacghe universal Euler classes can be used
to define finite subsets. Indeed, we may vigivas a non-homogeneous section of the structure sheaf, or
as a homogeneous section of a line bud{e-w) with global sectiong~" R. Now, for any finite subset
A C Z we may consider its characteristic functigi’). The associated universal Euler clags’) is
the function vanishing to the first order ofi.

4.2. Description of the abelian categories

The objects of the standard mode} are triples(N, B, V) whereN is anR-module (called th@ub),

V is a graded rational vector space (called eetey and : N — t7 ® V is a morphism oR-
modules (called thbasing mapwhich becomes an isomorphism wheis inverted. When no confusion
is likely, we simply say thaN — ¢ ® V is an object of the standard abelian category. An objeat of
should be viewed as the modiNewith the additional structure of a trivialization 6f-1N. A morphism
(N, B, V) — (N, g/, V') of objects is given by aR-map0 : N — N’ and aQ-map¢ : V — V'’
compatible under the basing maps.

Since the standard abelian category has injective dimension 1, homotopy types of objects of the derived
categoryD (<) are classified by their homology it's, so that homotopy types correspond to isomor-
phism classes of objects of the abelian categggyn the sheaf theoretic approafdi], N is the space
of global sections of a sheaf on the space of closed subgmupe vertex/ is the value of the sheaf at
the subgrougr and the fact that the basing mp N — ¢/ ® V is an isomorphism away from is
the manifestation of the patching condition for sheaves.

The objects of the torsion abelian categery are triples(V, ¢, T') whereV is a graded rational vector
spaceT is ané-torsionR-module and; : t7 ® V — T is a morphism oR-modules. The condition
on T is equivalent to requiring (i) thaf is the sum of its idempotent factof§ H) = ey T in the sense
that7 = @, T (H) and (i) that eacHl’ (H) is a torsionQ[c]-module. When no confusion is likely,
we simply say that” ® V — T is an object of the torsion abelian category. In the sheaf theoretic
approach, the modul& (H) is the cohomology of the structure sheaf with suppottiaBy contrast
with the standard abelian category, the torsion abelian category has injective dimension 2. Thus not every
object X of the derived categoryp (/1) is determined up to equivalence by its homolagy(X) in
the abelian category/;. We say thaiX is formal if it is equivalent to its homology (considered as a
differential graded object with zero differential), and that inigsinsically formalif it is equivalent to any
object with the same homology. Evidently, an intrinsically formal object is formal. The Adams spectral
sequence shows immediately th&is intrinsically formal if its homology has injective dimension 0
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or 1in.«#. In general, ifH.(X) = (t7 ® V — T), the objectX is equivalent to the fibre of a map
(t7 ®V — 0 — (7 ® 0 — =T) (in the derived category) between objectseif of injective
dimension 1. This map is classified by an element ofgxt ® V, 2T), so thatX is formal if the Ext
group is zero in even degrees. Thdss intrinsically formal if bothV and T are in even degrees or
[8, 5.3.1]if T is injective in the sense that ea€liH) is an injectiveQ[c]-module.

Lemma4.5. An R-mapg : t7 @V — D, T; is determined by its idempotent pieggs Qlc, c e
V — Ts.

Converselyany sequence db[c]-mapsg; so that for each f € V, only finitely many of the values
gs(c® ® f) are non-zerpdetermines an R-map ¢

Proof. To see that the idempotent pieces deterngjneote that if all idempotent pieces are zero we may
argue thay =0: if (1 ® v) # 0 some idempotent piece would be non-zero, hen@nishesoR Q V,
and hence induces a map

7: @6/ /peV=@lcH/areV — P T,

which is the direct sum of its idempotent pieces.
The converse statement is easily checked.

4.3. Spheres, suspensions and Euler classes

Spheres are important because they are invertible objects, and therefore play a role corresponding to
that of line bundles in categories of sheaves. We introduce the appropriate apparatus to discuss them.
We described the suspensibhi on the category oR-modules in 4.3.

Definition 4.6. The suspension functor on objects of the standard abelian categasydefined by

7 7 T o y2w(T
SN — 17 @ V)= (YN — 2¥t7 @ V17 @ x2*(Dy),

Thus, the basing map for the suspension is obtained by multiplying the original one by the appropriate
Euler class, which is¥@~*( one,, ;N.

Definition 4.7 (Greenleeg$8, 5.8.2]). The algebraic 0-sphere is the object
SO=(R — 17 ®0Q),
whereR is the submodule of” ® Q generated by ® 1.
Given an almost constant functian: # — 7 the algebraiav-sphere is the object of s defined by
s =350 = (R(w) — 17 @ 22D,
where

~

Rw)=I"R=c""RC x"17 = 3207
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as above. Note that different parts of this diagram have been shifted by different amounts, so that both
the grading and the structure maps are different for different spheres.

If Xis aT-spectrum we writéVfs(X) and M;(X) for the models oK in .75 and ./, respectively. In
fact, if ' X denotes the geometric fixed point spectrunXpndE # denotes the universal almost free
T-space, we have

H (M(X)) = (1] ® V. — T),
where

V=r(2'X))
and

T=nl(CEF A X).

Sinces/; is of injective dimension 2, this does not always determiifhéX). On the other hand, sincés
is of injective dimension 1, we may takés(X) to be an object of the underlying abelian categety
(i.e., to have zero differential). In fact,

Ms(X) ~ Ho(Ms(X)) = (N — 1t @ V),
whereV is as above anhl lives in a long exact sequence
-—>N—>tf®V—>T—>.--

This at least makes clear théis to do with T-fixed points ofX, T is to do with the almost free part of
XandN is an appropriate mixture. It also suggests the relationship betwgemd.c/;. This amount of

detail is more than we need for the present paper. Finally, we need to record that spheres in the algebraic
and topological contexts correspond.

Lemma4.8(Greenlee$8, 5.8.3]). Suppose W is a virtual complex representatand letw =dim¢c (W).

(i) The object modelling the sphes&’ in .« is the algebraic spher§®:
Ms(SY) = 8Y = (R(w) — t)).
(i) Algebraic and topological suspensions coincide in the sense that

Ms(EW X) = 2V My(X).

Proof. Part (ii) follows from Part (i) since the algebraic suspension is tensor productSWidnd S is
flat. O

Warning 4.9. We are modellingcomplexrepresentationg/. Thus if ¢ is the trivial representation af

onC, we haves® = §2. We thus need to be careful when discussing a single suspension (smash product
with the circle). We use the same method to resolve this conflict in algebra as in topology: an integer has
its usual meaning, whereas the functi@an— 7 with constant value 1 will be denoted
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We are now in a position to justify calling the functio# a universal Euler class when(T) = 0.
In the topological context, the Euler class of a complex representatioith W' = 0 in a complex
oriented cohomology theory is defined by pulling back a Thom class @brg> S"W; equivalently, in
the associated homology theory we take the image of the Thom class under ths thap—> S°. In
the algebraic context we do precisely the same. The Thom class'bfis the ‘generator’ ofR (—w),
namely the ‘element*, which is the image of & . under the isomorphisat’ : 7 — . The two
obstructions to a universal Thom isomorphism are the two linked factg'thigstnot homogeneous and
that the putative isomorphism is not compatible with basing maps.

Consider the subgroup[n] of ordern, and the representatiafi. If we take theK-theory Euler class
we have

e(z")=1-2" =]_[ by,
s|n

whereg, is thesth cyclotomic function, independentfSimilarly, the dimension function corresponding
to 7", is the characteristic function sab for the subgroups of'[z]. Hence the universal Euler class
defining the subgroups af[n] is

n
&= Csutxn) — l_[ cs,

sin
wherec; is the universal Euler class for the characteristic function of the sing{étpr}. It is therefore
natural to viewe; as a universal cyclotomic function.

5. Cohomology of spheres

The main point of contact between topology and geometry is through the cohomology of spheres and
line bundles. We therefore describe how this works in the standard mod&tdpectra. We shall only
need to discus$-spectra with particularly nice algebraic models, so we begin by describing them.

5.1. Rigidity

Given aT-spectrumE with torsion modelM;(E) with homology H,(My(E)) = (t7 @ V — T) in
the abelian categony, it is not hard to calculat® = EI(EQ«*) orT = E;(E‘lqu). However, if this
is to determinée we must show in addition that/;(E) is formal.

Definition 5.1. We say that & -equivariant cohomology theoEyis rigid if the following two equivalent
conditions hold

(1) H.M(E)= (1t ®V N T) has surjective structure map
B & o
(2) HiMs(E) = (N L> ;" ® V) has injective structure magp

We say that a rigid spectrubis evenif V, T andN are concentrated in even degrees.

Lemma 5.2. If E is rigid then My (E) is intrinsically formal and if H,My(E) = (t7 ® V —> T) then
M(E)~ 7 @V -LT)
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and

Ms(E) =~ (N L5 7 @ V)

where
N =kert/ @ V. — T),

and the basing map is the inclusion. Furthermorave have the explicit injective resolution

N t7 @V T
0—>Ms(E)2< 2 >—>< ! >—>(¢>—>O
t7 @V t7 @V 0

in ..

Proof. To see thatf;(E) is formal, it is only necessary to remark tHais the quotient of a@-divisible
group and therefore injectij8, 5.3.1} O

Lemma 5.3. If E is rigid, the corresponding objeds(E) = (N — t/ ® V) in «/sis flat

Proof. Tensor product on/sis defined termwise. First, note thgt ® V is exact for tensor product with
objectsP with ¢=1P ~t7 @ W for someW, so the tensor product is exact on the vertex part.

For the nub, we use the fact that the categagys of flat dimension 1 by Greenlef 23.3.5] together
with the fact thalN is a submodule of” ® V. O

5.2. Homomorphisms out 6P

For an objecK of .o/ there is an exact sequence
0 — Ext, (S, M) — [S¥, M] — Hom,, (S¥, M) — O,

so we shall need to calculate these Hom and Ext groups. For the present we restrict ourselves to the Hom
groups. We avoid confusion about grading by restricting to the eas® using[S*, M1=[S°, >~ *M].

Lemma 5.4. For an objectM = (N LN t7 ® V) of the abelian category/s
Hom., (S°, (N — 17 @ V)) =N :={ne N|pn) e L@ V).

Proof. A homomorphismy : S — M of degree 0 is given by a square

R 4 N

\ . \
t7 @0 & t7 ®V.
Thusf is determined by th&®map6, and Honkx (R, N) = N. On the other hand, the image ofel R
under the basing map is@ 1, which imposes the stated condition, sigé) € Vo. 0O
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5.3. Cohomology of spheres

The aim of the present section is to make explicit the calculatiah'@fs" ) in terms of H, (M (E)) =
(q :t7 ® V — T) assuming thaE is rigid and even.

Lemma 5.5. Supposew : # — Z is zero almost everywhere. If E is rigid and even then the wth
suspensio™ E is rigid and even

If My(E) = (t7 ® V -5 T) then

M(ZYE)~ (7 @V KN T,
where the structure map is given by
g" (! ® 0) = g @ 0) € ey (XU T) oy _2i5)
foro € VAg,. Thus
Ms(ZYE)= (2N — 17 ® V),
where
SUN =ker(r @ V LN YTy, O
Remark 5.6. A natural mnemonic is to write
g(xc” @ u) =q" (x ® w),
despite the fact thatc” is not an element of” .
We may now assemble the information to calculate the homology of spheres.

Corollary 5.7. Suppose that E is rigid and eveso thatH, (My(E)) = (¢ : t7 ® V —> T) is surjective
andV and T are in even degrees. For any function# —> 7 zero almost everywhere

ES(S™) =ker(g : ¢® ® Vo —> (2" T)o)
and
ET,(S") =cok(g : ¢ ® Vo —> (Z¥T)p).
Proof. To calculate the homology we use the short exact sequence
0 — Ext, (S, Ms(SVE)) — E§ (%) — Hom,, (8%, Ms(Z¥E)) — 0.

We may calculate the Hom and Ext groups by applying I;Qg(ﬂo, -) to the injective resolution of” E
givenin5.2. O
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Part 3. Background on elliptic curves

In Part 3 we summarize relevant facts about elliptic curves, and make some easy deductions that we
will need for the construction of rationdl-equivariant elliptic cohomology.

6. Elliptic curves

In this section we record the well-known facts about elliptic curves that will play a part in our con-
struction. We us¢?4] as a basic reference for facts about elliptic curves,[a6fias background from
algebraic geometry.

Let A be an elliptic curve (i.e., a smooth projective curve of genus 1 with a specifiedg@wer a
field k of characteristic O and leét = ¢4 be its sheaf of regular functions. Note thiat = &, so the sheaf
contains a great deal more information than its ring of global sections. A divis@i®a finiteZ-linear
combination of points defined over the algebraic cloguoék, and associated to any rational function
on A we have the divisor divf) = X pordp(f)(P), where orgh (/) € Z is the order of vanishing dfat
P. If a divisor is fixed by Galk/ k) it is said to be defined ovér, and all the divisors we consider will be
of this sort. In the usual way, D is a divisor orA, we write ©(D) for the associated invertible sheaf. Its
global sections are given by

roo) ={f1dv(f)> — D} U {0},

so that for a poinP, the global sections af(— P) are the functions vanishing Bt

We also have)(D1)®¢0(D2) = (D1 + Dy).

Since the global sections functor is not right exact, we are led to consider cohomology, buA since
is one dimensional this only involve$®(A; -) = I'(-) and H1(A; -), which are related by Serre duality.
This takes a particularly simple form since the canonical divisor is zero on an elliptic curve:

HO(A; (D)) = HY(A; 0(-D))Y,

where(-)Y = Hom (-, k) denotes vector space duality.
From the Riemann—Roch theorem we deduce that the canonical divisor is 0 and the cohomology of
each line bundle:

' degD if deg(D)>1,
dim(H°(A; ¢(D)) = 0 ? Iif deg§D§< -1
and

|degD| if deg(D)< — 1,
0 if deg(D)>1.

dim(H(A; 0(D)) =

For the trivial divisor one has
dim(H°(A; 0)) = dim(H(A; 0)) = 1.

Now if D = Xpnp(P) is a divisor of degree 0, we may form the suitD) = Xpnp P in A, andD is
linearly equivalent ta S(D)) — (e). If S(D) = e then the sheaf/(D) has the same cohomology és
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Otherwise, since no function vanishes to order exactlyA, ate find
HO(A; 0(D)) = H'(A; 0(D)) =0.

We may recoveA from the graded ring' (0O (xe)) = {I'O(ne)}, - o. INdeed, this is the basis of the proof
in [24, 111.3.1] that any elliptic curve is a subvariety B defined by a Weierstrass equation. We choose
a basis{1, x} of I'0(2¢) and a extend it to a bas{4, x, y} of I'(3e). Now observe that SincE(¢(6e)
is six-dimensional, there is a relation between the seven elements?, x3, v, Xy andyz: this is the
Weierstrass equation, and it may be verified thi the closure irP? of the plane curve it defines. The
graded ringl'(¢(xe)) has generataZ of degree 1 corresponding to the constant function LdKe), X
of degree 2 corresponding i andY of degree 3 corresponding yo These three variables satisfy the
homogeneous form of the Weierstrass equation. The statemeAtithiaie projective closure of the plane
curve defined by the Weierstrass equation may be restated in terms of Proj:

A = Proj(I'(¢(xe))).

7. Torsion points and topology

Onthe one hand, equivariant topology only gives counterparts to torsion points, but on the other it gives
them greater importance. This gives two significant variations of the standard theory: we need to use a
different topology and we need to invert different sets of morphisms in forming the derived category.

7.1. The torsion point topology

Because the topological model only gives counterparts of torsion points, we restrict sheaves to open
sets which are complements of sets of points of finite order. This means that for us meromorphic functions
are only allowed poles at points of finite order, and this entails a number of other small effects that need
attention.

The divisorA (n) of points of exact orden will play a central role. Note that

Mﬂzz:Mw

s|n

Definition 7.1. (i) Any divisor of the form) _ a;A(s) (with a, € Z) is called aorsion point divisor
(ii) The torsion point topologyn A is the topology whose proper closed sets are specified by a finite
setF of positive integers

Ve =] Als).
seF
The non-empty open sets are thlig := A\ Vr.

Since the set¥ are closed in the Zariski topology, we have a change of topology mapar — Ay,
and the usual adjoint pair of functors

i1 Sh\}f = Sh\/f‘ar .
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between categories of sheaves. The restriction of topology fuhcisrdefined on Zariski presheaves

F by i.(7)(V) := Z(V), which evidently takes sheaves to sheaves and is exact. The extension of
topology functori ~1 is defined on torsion point presheavesy (i ~1%)(U) = 4(U), whereU = Uy
whereF := {n| A(n) NU =@}; this functor does not preserve sheaves, so to obtain the sheaf level functor
we pass to associated sheaves.

Lemma 7.2. The unit of the adjunction gives an isomorphigit14 ~ .

To describe stalks it is convenient to use the notation

F oo :=lim 7 A\U Alp) |,

—
n
psn

for sections with poles at any points of finite order, and

Fg:=Ilim Z | A\ || A{p)
- n
p<n, p#s

for sections regular on points of exact orddaut with poles at any points of any other finite order. Note
that these are not Zariski stalks, but if we use the corresponding notation for a torsion poir# steaf
find 9p = 4, wheresis the order oP. A short calculation then gives

F o If P is of infinite order

T )p = {9% if P is of orders

and

4, If P is of infinite order

1 .
@ 9p = {fés if P is of orders,

so thati ~1 preserves stalks.

Note that this means Zariski sheaves of the forrhe are very rare, since the stalks at points of the
same order are identical. In particular, all stalks at points of infinite order are the same, suggesting there
are no continuous families of sheaves of this sort.

Example 7.3. We may restrict the Zariski structure shegf" to the torsion point topology, and we take
(C’tp = @Zar

A =105

Similarly, our ring of meromorphic functions is

A ={f| f has poles only at points of finite ordgr

with associated constant sh&gbotors). Note that functions vanishing at points of infinite order are not
invertible in.7".
The local rings of the structure sheaf are thus

H if P is of infinite order

oy
(P = { {f € x| f is regular at points of exact ordef if P is of finite orders.
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Lemma 7.4. The functors, andi 1 are both exact

Proof. The exactness af 1 follows since it preserves stalks. Figr note that taking sections ovan F
is exact for any non-empty sEtof torsion points since it is affine; the stalksigfare calculated as direct
limits of such functors. O

Corollary 7.5. For Zariski sheaves, the cohomology in the Zariski and torsion point topologies agree
Hz(A; 7) = H{E(A; i+7).

Proof. Since# andi,# have the same global sections, d@pds exact, it suffices to note that # is
flabby theni,.# is a fortiori flabby too. O

In future we will simply writeH*(A; &) for the common value of cohomology. Note that this applies
to the sheave@f\ar(D(V)) of most concern to us, and we will usually omit notation for the topology,
writing simply ¢(D(V)).

7.2. Torsion point equivalences

The previous subsection dealt with the change of topology, but there is the second issue of what set of
morphisms are inverted to form the derived category. In equivariant topology one does not usually invert
all equivariant maps which are non-equivariant weak equivalences (since this gives only the homotopy
theory of free actions). Instead, we invert only those equivariant maps which are equivalences in all fixed
points.

We may transpose these considerations to sheaves of modules. More pr@ﬁ%&w sheaf of rings

in the Zariski topology an@tj’ is a sheaf of rings in the torsion point topology, and we may consider their

respective categories of modul@%ar-mod and@f-mod. These are both abelian categories, and related
by the adjoint pair

. t .

i*:0P-mod = ©5¥-mod: i,
where

+ 3k o— '—l (‘\Zar

iI"N:=i N®l.,1((,/t£)OA .

Lemma 7.6. The unit of the adjunction gives an isomorphigif N =~ N, soof‘ff-mod may be viewed as
a subcategory of the catego6f®'-mod. O

Lemma 7.7. The functor * is exact

Proof. It suffices to prove thaa?ff’“ is flat overi‘l(Qf, which we may verify at the level of stalks. This
is straightforward since52'(U) is flat overi—l(ﬁt/i’(U) = 033 (U) for any open set). [

Derived categories are formed from abelian categories by taking a category of differential graded objects
and inverting a suitable collection of morphisms. If all homology isomorphisms are inverted we obtain
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D(@f‘ar-moa) and D(@Ef-mod), but we wish to invert fewer morphisms. The torsion point homology
isomorphisms are those which induce isomorphism86fA; - ® ¢(D)) for all torsion point divisor,
and we denote the derived categories obtained by inverting igse52-mod) anthp(cﬁtj’-mod).

To actually construct the derived categories we use cellular approximation. This is determined by
specifying a set of spherés, ), » Which must be small objects. An objectigllularif it is built from the
spheres, using arbitrary coproducts and triangles. A méap— Y is aweak equivalenc# it induces
an isomorphism ofa,, -], for all «. A cellular approximatiorof an objectX is then a weak equivalence
I'’X — X wherer X is cellular. We then work with the actual homotopy category of cellular objects. For
us the underlying category is the category of differential graded sheavemofiules in the appropriate
topology and the cells are the shea¥é®) whereD runs through torsion point divisors.

For clarity, we display the relationship with the conventional derived category of sheayes on

Proposition 7.8. The derived categories are related by functors in the commutative diagram
Dtp(@tf-mod) — D(cﬁf-mocb
I 1 0% ix P 0"
Dip(¢3¥-mod —  D(¢%¥-mod
where the verticals are adjoint pairs with counits giving equivalerigesv ~ N.

Proof. The horizontals are elementary, since any torsion point homology isomorphism is a homology
isomorphism.

Sincei, andi* are exact, they preserves homology isomorphisms, and therefore induces maps of
derived categories. For torsion point homology isomorphisms we make additional arguments. Indeed,
is HOMM, N)=H0M(i.M,i.N) sothat, takingld = ©(—D) we see that,(N (D)) = (i,N)(D) and
S0i, preserves torsion point homology isomorphisms. Finaﬂy,*M®@t/§)N)%M@eiari*N, so taking

M = 0(D) we see that* preserves torsion point homology isomorphisms as required.

As remarked before, there is a far greater change in character in the vertical maps changing the topology
than in the horizontal maps changing the inverted morphisms. E\Bmﬁar—moa) there are continuous
families ©(P) of distinct objects.

8. Coordinate data

Our main theorem constructs a cohomology theory of #per an elliptic curveA. The construction
depends on a choice of function vanishing at the identity, and the purpose of this section is to make clear
the exact extent of this dependence.

8.1. The coordinate

Because the local ring, in the torsion point topology is not quite the usual Zariski local ring, we
make explicit the properties we need.

Lemma 8.1. The ideal
Ie={f€(9e|f(e)=0}
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of functions vanishing at the identity i is principal. The generators af, are exactly the functions
vanishing to first order at e whose zeroes and poles are all at points of finite.order

If 7, is a generator of, then for any non-zerg € ¢ there is an integer n such thgt” € ¢, and ft/
does not vanish ate

Proof. Suppose that is a function whose zeroes and poles are at points of finite ordermith= 0.
Certainlyz, € I,; on the other hand, if € I,, then f(e) = 0 so thatf/z, is still regular ate, and only
has poles at points of finite order. Henge=1¢, - f/t. € (t,) andI, = (t.) as required. To see that this
exhausts the set of generators, we note that a funetiery, with a zero at a poinP of infinite order
is not a generator. Indeed, contains function$ which do not vanish aP, and whenever = sg, the
functiong has a pole aP.

The final statement is clear singds a uniformizing element in the Zariski local ring

Definition 8.2. (i) A coordinateon A (at the identity) is a generatayr of the ideall, in ¢, of functions
vanishing ae.

(ii) A coordinate divisoiis a divisorZ, of the form di\z,) for some coordinate. By Abel’s theorem,
a torsion point divisoZ, = Xpnp(P) with n, = 1 is a coordinate divisor if and only ¥pnp = 0 and
Xpnp P =0.

Remark 8.3. Thering?®, is not a local ring in the sense of commutative algebra: althdughmaximal,
not all functions outsidé, are invertible. However, the following lemma will provide the good behaviour
we need.

Lemma 8.4. For anys >0the quotien'rlg/léY+1 is one dimensional over, generated by the image gf
Hencec,/I} is s-dimensionalgenerated by the images ft,, ..., ;=1 O

We briefly discuss a special way of choosing coordinates.

Definition 8.5. A Weierstrass parametrizatioot an elliptic curve is a choice of two functions with a
pole of order 2 at the identity and nowhere else, andith a pole of order 3 at the identity and nowhere
else. Because we work with the torsion point topology, we also requirexthatd y, only vanish at
torsion points. This Weierstrass parametrization determines a coorginate /y, of ¢..

Remark 8.6. (i) The functionx, is specified up to scalar multiplication by a pair of non-identity points
A, B of finite order withA + B = ¢ by the condition diyx.) = —2(e) + (A) + (B). The functiony, is

specified up to scalar multiplication by three non-identity poiht®, E of finite order withC+D+ E=e
by div(y.) = —3(e) + (C) + (D) + (E). This gives the coordinate divisor

div(ze) = (e) + (A) + (B) — (C) — (D) — (E).

(iii) One popular choice of Weierstrass parametrization involves choosing aPohbrder 2. This
determines a choice af andy, up to a constant multiple by the conditions

div(x,) = —2(e) + 2(P) and diWy,) = —3(e) + (P) + (P') + (P"),
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whereA[2] = {e, P, P/, P"}. Thus we obtain the coordinate divisor

div(ze) = (e) + (P) — (P') — (P").
8.2. The cyclotomic functions

Once we have chosen a coordinate, this determines the choice of a function defining the points of exact
orders.

Lemma 8.7. Given a choice, of coordinate on the elliptic curve,Aor eachs > 2, there is a unique
functionz, with the properties

(1) #; vanishes exactly to the first order ars),
(2) 1, is regular except at the identigye A where it has a pole of ordg (s)],

(3) 148 takes the valud at e

Furthermorethe functiory, only depends on the imagerpin o := 16/182, and multiplyingr, by a scalar
. multipliest, by /1461,

Proof. Consider the divisoA(s) — |A(s)|(e). Note that the sum of the points dfs) in Ais the identity:

if s # 2 this is because points occur in inverse pairs, andHf2 it is because thd[2] is isomorphic to

Cs x Co. It thus follows from the Riemann—Roch theorem that there is a funttiatih A(s) — |A(s)|(e)

as its divisor. This function (which satisfies the first two properties in the statement) is unique up to
multiplication by a non-zero scalar. The third condition fixes the scalar, and replacing the cootdinate

by, + ft§ has no effect sincgtf'A“)' vanishes aé. 0O
Remark 8.8. If we choose any finite collection = {s1, ..., s;} of orders>2, there is again a unique

functionz,; with analogous properties. Indeed, the good multiplicative property of the normalization means
we may take

tnzl_[ fs;
i

This applies in particular to the sa{n]\{e}.

For some purposes, it is convenient to have a basis for functions with specified poles. We already have
the basis 1x, y, x2, xy, ... if all the poles are at the identity. Multiplication by a functibmduces an
isomorphism

f-:TO(D) =5 TO(D — (f))
so we can translate the basis we have.
n(b)

Lemma 8.9. For the divisorD = X > 1n(s)A(s) lett*(D) := ]_[thb . Multiplication byt* (D) gives
an isomorphism

(D) : H%(A; 0(D)) —> H°(A; 0(deg D) - (e))).
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A basis of H(A; 0(D)) is given byl/:*(D) if deg D) = 0, and by the firstdeg D) terms in the
sequence

1/t*(D), x/t*(D), y/t*(D), xz/t*(D), xy/t*(D), ...

otherwise. O
8.3. Differentials

On any elliptic curve we may choose an invariant differential, also characterized by the fact that it has
no poles or zeroes. This is well defined up to scalar multiplication, and we would like to make a canonical
choice. Since, vanishes to the first order atits differential is regular and non-vanishingetso we
may takeDt to be the invariant differential agreeing with, cte.

We shall be considering the spa@& .#" of meromorphic differentials: those which can be written
in the formf Dt for a meromorphic functiof

Warning 8.10. The differentials d are not generally meromorphic. To give an explicit example, suppose
Ais defined byy? = x2 + ax + b. In this case, the invariant differential is a scalar multiple of o, and

we may take, to be a scalar multiple of, so that the zeroes ofgare those of d = (3x2 + a) dx/y.

The four points at which:& + a vanishes will not generally be torsion points.

It would be nice to make a construction which depends only on the coordinate divisor and not the
coordinate itself, but we only know how to do this for a generic curve. We shall see that for such a
construction, it suffices to construct for easch meromorphic differential with poles to the first order on
each point of ordes which does not change if is multiplied by a scalar.

Fors =1 the expressio®t/t, gives a suitable meromorphic differential. kot 2, the situation is less
straightforward. To start with, by the last clause of 8.7, the differeMtidk; does change if is multiplied
by a scalar. Our next attempt is to note that the differentiaisthgain regular and non-vanishing at each
point P of exact ordes, and its value aP is thus a non-zero multiplep of that of Dt, but in generak p
does depend oR. The differentialip Dt /¢, is suitable, but it involves making a choice of a particular
point P of orders. The alternative is to consider the average value

1 ;
h R

PeA(s)

of the scalars and use the differentiaDz /. Provided/; is non-zero, this gives a suitable differential
depending only on the coordinate divisor. However, for emtfere is a finite number of curves with

s =0, so it is only for a generic curve that this is legitimate. To avoid this restriction we prefer to make
a choice of coordinate rather than coordinate divisor.

9. Principal parts of functions on elliptic curves

The point of this section is to analyse the shegafotors) /¢ of principal parts of functions with poles at
torsion points. We repeat that we are working with sheaves in the torsion point topology, 6ottats)
is the constant sheaf corresponding to the rifigf functions with arbitrary poles at points of finite order.
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For any effective torsion point divis@® we may use the short exact sequence
00— 0 — 0(D) — QD) — 0

of sheaves to define the quotient shédt: D) for 0<a <oo. The cohomology of2 (co D) is the coho-
mology of A with support defined bip.

In fact, we may reduce constructions to the case when the diiserA (s) for somes. Evidently,
0(c0A(s)) is a skyscraper sheaf concentrateddgm), so we may localize at (s) to obtain

0 — Oy —> O(c0A(s))y — Q(c0A(s)) — 0.
Because we use the torsion point topology,
O(00A(s))s = O(00A(s)) g () = U(00tOrS) = A

Sincet, is an invertible meromorphic function vanishing to the first ordeAds), the sequence may be
written

0— 0y — O41/t;] — (/ﬁs/l‘;>o — 0.

This gives the basis of a Thom isomorphism for the homology of almost free spectra.

Lemma 9.1. A choice of coordinate gives isomorphisms

O((a +r)A(s))/O(rA(s)) = Q((a +r)A(s))/ Q(rA(s)) = Q(aAls)),
induced by multiplication by, and hence

Q(00A(s)) ® O(rA(s)) = Q(c0A(s)).
If s >2 the dependence is only through the image @f v = 1,/I2.

Proof. Since the sheaves are all skyscraper sheaves Aer it suffices to observe that for argy
multiplication byz; induces an isomorphism

ty 1 O((a + DA(s)), —> O(aA(s)),.

To see this, view the rings as subrings of the ritigof meromorphic functions. Singgvanishes o (s)
and its poles are at points of finite order other tatihe image lies in the stated subring. Multiplication
by any non-zero function is injective, and to see the map is surjective, we observe fthatif has no
pole of order more thaaon A(s) then f/¢, is a meromorphic function no pole of order more tlaah 1
onA(s). O

Note that it is immediate from the Riemann—Roch formula that fgu& co the cohomology group
HO%A; Q(aA(s))) isa|A(s)| dimensional, and1(A; Q(aP)) =0.
Now we may assemble these sheaves. Indeed, we have a diagram
0O — O(ocoD) — Q(ocoD)
\ 1
0 — O(co(D+ D)) — Q(co(D+ D)

of sheaves, and hence a m@pcoD) — Q(oo(D + D')).
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Proposition 9.2. If s, s’ > 1 are distinct then the natural map

Q(00A(s)) ® Q(00A(s") —> Q(00(Als) + A(s)

is an isomorphism

Proof. We apply the Snake Lemma to the diagram

OO — 0(0A(s) ® O(c0A(s")) —>  Q(00A(s)) ® Q(00A(s"))

1 ! )
0 —  O(o(Als) + Als) — Q(co(A(s) + A(s')))

in the abelian category of sheavesA he first vertical is obviously surjective with kerrel The kernel
of the second vertical is also, since iff and f are local sections af(coA(s)) andO(ocoA(s")) (i.e.,f
only has poles o (s) and f” only onA(s’)) thenf + f’ =0 implies thaf and f’ are regular. Finally we
must show that/(co(A(s) + A(s’))) is the sheaf quotient af — (o0 A(s)) ® O(c0A(s’)). However,
this may be verified stalkwise, where it is cleaf

Corollary 9.3. (i) The natural map gives an isomorphism
P 0(c0Als) —> Q(cotors).
N
(i) A choice of coordinate, gives an isomorphism

T, : Q(00A(s)) ® O(A(s) —> Q(00A(s)).
(i) The sheaf(co0A(s)) has no higher cohomology and its global sections are

T'Q(ocoA(s))=2"/{f| f is regular onA(s)}. O

Part 4. The construction

In Part 4 we show that the structure of the algebraic model for ratibreguivariant cohomology
theories matches the structure of sheaves of functions on an elliptic curve so neatly that the construction
of a cohomology theory is effortless. Short as it is, this is the core of the paper.

10. A cohomology theory associated to an elliptic curve
We are now ready to state and prove the main theorem.
Theorem 10.1. Given an elliptic curve A over a field k of characteridlicand a coordinate,, there is

an associate@-periodic rational T-equivariant conomology theoly A% (-) = E(A, t.)3(-) of type Aso
that for any representation W witlv ' = 0 we have

EAL(SY) = H'(A; 0(=D(W)))
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and
EA';(S") = H'(A; 0(D(W)))
fori =0, 1, where the diviso (W) is defined by taking

D(W)=)a,Aln] whenW =) a,z" withap=0.
n

n

This association is invariant under base extension and functorial for isomorphisms of theipaiy.

The construction is also natural for quotient magps A — A/A[n] in the sense that if the multi-
plicity of p(z.) at e is1 (for example ifdiv(z,) contains no points of order dividing)ithere is a map
p* inf%mn]E(A/A[n], p(t.)) — E(A,t,) of T-spectrawhereE(A/A[n]) is viewed as a& /T[n]-
spectrum and inflated to &-spectrum

Remark 10.2. (i) The elliptic curve can be recovered from the cohomology theory. Indeed, we may form
the graded ring

~T —~T
EAy(S*%) :=={EAg(5)},0

from the productss® A §¥* — §@+b)z and the elliptic curve can be recovered from the cohomology
theory via

A = Proj(EAg (5%)),

as commented in Section 6. Furthermore, this reconstruction is functorial in that any multiplicative natural
transformation of cohomology theories will induce a map of elliptic curves.

(i) In fact the coordinate can also be recovered from the cohomology theory, by evaluating the theory
on suitable spaces (see Proposition 16.1 below).

(iif) A Weierstrass parametrization éfcan be specified by elements of homology:

xe € EAg(S%) and y, € EAq(5%).

Remark 10.3. (i) We have not required thétis an algebraically closed field. To see the advantage of
this, note that even for the multiplicative group, the individual points of ondgee only defined ove if

k contains appropriate roots of unity. Howevag[»] (defined by 1- z*) and hence alsGm (n) (defined

by the cyclotomic polynomiad, (z)) are defined ove@. Hence equivarianK-theory itself is defined
overQ.

(i) It is useful to generalize the construction to alléwo be an arbitraryd-algebra so as to include
various universal cases. There is no obstacle to making the construction in this generality, provided func-
tionss, andz, can be specified, but the analysis of the resulting cohomology theory is more problematic.
Since the entire construction is invariant under base change (provided we use corresponding coordinate
functions), the case of a field already gives significant information. The present methods are intrinsically
restricted to-algebras.

Remark 10.4. One use for the naturality is that any automorphism of the elliptic curve preserving the
coordinater, induces an automorphism of the cohomology theory. For examplasfdefined using a
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pointP of order 2 as in Example 8.6(iii), any rigid Galois automorphism fixtgjves an automorphism
of the theory.

Proof. The basic ingredients of the torsion model of a the cohomology theory associated to an elliptic
curveA are analogous to the affine case described in Appendix A. We will write down a rigid, even object

M(EA) = (7 @ VAL TA)

of the torsion category/; (i.e., the structure magis surjective an&/AandTAare in even degrees). By
5.2 this is intrinsically formal and therefore determines

Ms(EA)=(NA — 17 ® VA)

with N A = ker(g), and the representing spectriA.

We divide the proof into three parts: (1) constructio’VéfandTA, (2) construction of the magand
(3) verification that the cohomology of spheres is correct.

(1) The vertex and nulExactly as in the affine case, the degree 0 part of the vertex

V Ag = I'0(cotors) = #°

consists of rational functions whose poles are all at torsion points, however the torsion module is not
simply the quotient of this by regular functions, but rather

T Ao = I'(0(cotors) /) = I'(Q(ootors)).

Now we use the splitting

Q(ootors) =~ @ Q(0c0A(s))

of 9.3 to separate points of different orders. This gives

T Ag = I'Q(ootors) = P I' Q(c0Als)),

where
I'Q(ooA(s)) = /{f | f isregular onA(s)} = A /0.
BothVVAandTAare zero in odd degrees, and in other even degrees we take
VA =4 Q0Q"'=VAg® " and TAz, =T'(X/0Q¢2")=TAyQ ",

where Q is the sheaf of Kéhler differentials and is the cotangent space at the identity, and where
exponents refer to tensor powers (rather than exterior powers). We may now descridenturile
structure orfTA. The direct sum splitting

TA= @ I'Q(c0A(s))
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corresponds to the splitting
R=]]alc]
N

and
esTA=TQ(c0A(s))

is a Q[c]-module wherec acts as multiplication by, /D¢, wheret,; definesA(s) as described in 8.7.
Fors = 1 this structure does not change.ifis multiplied by a non-zero scalar, so depends only on the
coordinate divisoZZ,; for s > 2 this depends only on the imagerpin w = I,/I2. Since the order of any
pole is finite,e; T A is a torsionQ[c]-module.

Remark 10.5. The torsion modul&A may be described without using the coordinate data. Indeed, we
may definel’ A’ by giving its idempotent pieces

es(TA")g, = A /{f € A |ords(f)>n},

and define thé&[c]-action to be projection. A[c]-isomorphismlI’ A’ =T A is given by the coordinate:

N

Dr\" ,
l_ tes(TA)p, — es(TA)Zn'

We have usedA rather than”” A’ because the coordinate data does need to be used somewhere, whilst
differentials are used in a more uniform wayTiA.

(2) The structure map:By 4.5 a mapqg is determined by its idempotent summands, which can be
easily written down.

Definition 10.6. We define
q:t] @VA—TA=(P e,TA

N

by specifying itssth component

(Y @ a) = Is w(S)oc'
1 Dt ’

up to normalization, this picks out the partoofvith poles of order- w(s) on points of ordes.
Remark 10.7. Any o € V, may be written
o= f-(D)®"

for some meromorphic functiofi € »#". The formula then becomes

q(C;U(S) QR f- (Dt)®n)s — Z;U(S)f . (Dt)®(n_w(s)).

Lemma 10.8. The definition does determine an R-mapr” ® VA — TA.
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Proof. Since any function is regular at all but finitely many points, the mapaps into the sum. Thus
q(c" ® o) is well defined, and we need to check that taken together they spedifynaap. For this, we

apply 4.5. Taking/ = VA andT = T A we note that 10.6 does determine mapsand that they satisfy
the condition. It follows that there is @&mapq with these idempotent piecess

(3) CohomologyNow we can check that the resulting homology and cohomology of spheres agrees
with the cohomology of the corresponding divisors on the elliptic curve. Because the use of differentials
is uniform, it is enough to prove the result for representatitivgith W' = 0.

Since we have decided to use the isomorphjsm®, M] = [S°, ¥ M], we need to identify the
suspension of the representing objgét Applying 5.5 in this case we obtain the following.

Lemma 10.9. Supposev : # —> Z is zero almost everywhere. The wth suspension of EA is given by
SYEA=(ZYNA — 1t/ ® VA),

where
SUYNA=kert] @ VA KN SYTA)

andforau € VA, =4 ® o

o X w(s)+i(s) )
q" (Y @) = “(E) € (H/05) ® " "I = e (2T A) gy _is)-

We also use the mnemonic
gxc’ ®a) =q"(x ® o),

despite the fact thatc® is not an element of” .

Consider the complex representatigvi with W'=0 and the corresponding functiom(H)=
dimc (W), By 5.7 the homology is given by

EAq(SY) =kKer(g : ¢ ® VAg —> (Z"T A)g)
and
EA"(S")=cokig:c” ® VAg — (VT A)g)

and similarly withW replaced by—W. Since the kernel and cokernel are vector spaceslquers no
loss of generality to extend scalars to assume it is algebraically closed. This is convenient because it is
simpler to treat separate points of ordesne at a time.

The following two lemmas complete the proof.

Lemma 10.10. If W is a representation with ' = 0 then

EAg(s") = HO(A; 0(D(W))),
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and if W #£ 0,
EAg(s™)=0.

Proof. By definition

Is wes)

Dt) J

First note thaDt is regular and non-vanishing ot(s), so the differential can be ignored for the purpose
of calculating the kernel. Since the functigvanishes to exactly the first order dris), the condition that

f liesinthe kernelis that orgk f) > — w(s) for each poinP of exact ordes. SinceD(W)=X2pw(sp)(P)

we have

q(c” ® f)s=(

ker(g : ¢ ® VAo —> (Z"TA)g) ={f € VA|div(f) + D(W) >0}

as required.
ReplacingVby —W, the second statement is immediaté]

The calculation of the odd cohomology is less elementary.
Proposition 10.11. If W is a representation with ' = 0 then
EAL,(5™) = HY(A; 0(-D(W))),
and if W #£ 0,
EAg(sV)=0.

Proof. We have to calculate cay : c =¥ ® VAo — (X% T A)g). First, we give the concrete description
of HY(A; 0(—D(W))) using adéles frorf22, Proposition 11.3]
The exact sequence of sheaves

0— O(-D(W)) — A4 — Q(—D(W)) — 0
induces a cohomology exact sequence ending

# 2 HOA; Q(=D(W))) — HY(A; 0(~D(W))) —> O.

However the definition o) (— D(W)) shows that it is a skyscraper sheaf concentrated on the support of
D(W). Its space of sections i5/A(—D(W)), where

A = {(xy), | xs € #,and almost alk; € k}
is the space of adeles and

A(=D(W)) = {(x;) € W |ordp (xs) + ords(—D(W)) >0}.
Thus co¢) = A/(A(=D(W)) + ).
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To complete the proof we construct an isomorphiarso that the left hand square in the diagram

H N HO(A; Q(=D(W))) — HYA; 0(-D(W))) — 0
= m = o
PR (VA — (Z7"T A)o N EA (57 — 0

commutes; the result follows from the 5-lemma. Both the domain and codomairsplit into pieces
corresponding to the divisor(s). If a, = dime (W Tls]), we definem by taking thesth term

my : AJA(—agAls)) = A O(—asAls)) —> A0 @ 0% = (ST A)g

to be

— Dt\%

Indeed, the definition is forced by the requirement that the square commute, but since the vanighing of
definesA(s), mg is an isomorphism. O

Remark 10.12. It is possible to give a more explicit proof of 10.11 as follows. First, one checks any
element(gy, g2, ...) € @, e;T A is congruent (modulo the image @¥) to one withg, =gz =---=0.

Now, using 8.9, identify a subspace of the correct codimension in the image. Using divisors one sees the
cokernel must be at least this big. Finally, the cokernel is naturally dudPat; ¢(D(W)), and hence
naturally isomorphic tdd1(A; ¢(—D(W))) by Serre duality.

Part 5. Properties of T-equivariant elliptic cohomology
Now that we have defined the cohomology thesry (-) associated to an elliptic curvg we discuss
some of its properties, including multiplicativity and a structure reflecting the additién on

11. Homotopical multiplicative properties

For the rest of this section we identiyA with the corresponding object isfs, so thatEA = (NA —
— 17 ® VA), and there is a short exact sequence

0—NALiZovaliTa -0

11.1. The ring structure off A

Note thatVA = @, # ®¢ Q" has a commutative and associative product, which therefore induces
such a product o/ ® VA.

Theorem 11.1. The product of functions and differential forms induces a commutative and associative
product on the algebraic model for EAo EA is a commutative ring spectrum up to homotopy. Using
results off13] we may choose EA to be a strictly commutative firgpectrum
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Proof. First, note that by 5.EA is flat, so that tensor product witBA models the smash product. It
therefore suffices to show that the productgn® V A restricts to a product oNA.

Supposer, b € t7 ® V A; we must show that i () = 0 andg (b) = 0 theng (ab) = 0. It suffices to
concentrate on the component mapping b A for eachs. The key to this is that for fixed we may
give VAthe structure of @[c]-module by lettingc act as;/ Dr. With this definition,c acts invertibly, so
that we have a ring homomorphism

is : Qfc, c_l] — VA.
Now ¢, factors as

Qle.c O VAL VA® VA — VA —> o, TA.

The fact thaty; (ab) =0 if g;(a) =0 andg, (b) =0 now follows since the product of two functions regular
at a point is also regular there.

11.2. Duality

Now that we have a product structure we can tie up topological and geometric duality in a satisfactory
way.

Lemma 11.2. Spanier—-Whitehead duality for spheres corresponds to Serre duality in the sense that the
Serre duality pairing

HY(A; 0(=D(W))) ® H°(A; 0(D(W))) —>  HYA; 0)

| [
(SO, S W ASEAI" @ [SO, SV A EALT (SO, xEA]T

is induced by the algebraically obvious Spanier—Whitehead pairing

SWAEAASYAEA~S WASVAEAAEA — SOAEAANEA —s EA.

Proof. Both maps can be taken to be induced by multiplication of functions and a residue map (see
[22, Chapter I1].

12. Reflecting the group structure of the elliptic curve

The group multiplication on an affine algebraic graemives its ring of functiong’ a diagonal, and
thus® becomes a Hopf algebra. When we say #dheory corresponds to the multiplicative groGpg,
we mean that not only iK% = 7[z, z~1] the representing ring fob, but also that the diagonal also has
a topological source. Indeed, the multiplication mapT x T —> T induces a map

K9 K, 7 =K} @ K?,

which turns out to be the coproduct on the ring of functions@n The corresponding situation for
formal groups and complex oriented theories is even more familiar.
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When we work with an elliptic curve, we again expect the group structurA tingive additional
structure on spaces of functions. However the structure is not just a coproduct, and we extract the relevant
information from Mumford’s workf20]. Indeed, choosing a line bundleto control the behaviour of
functions, the multiplication : A x A — A would give amap* : H%(A; L) — H%(A x A; i*(L)),
but sincep*(L) does not decompose as a tensor product, this is not very helpful. Instead Mumford
considers the map

ETAXA— AXA

givenbyé(x, y)=(x+y,x —y). Itthenturns out that if we le¥ = p; L ® p5L, by the see-saw principle
and the theorem of the square ttians ~ M? (see[20, p. 320). Using the Kiinneth isomorphism, we
obtain a map

¢, - HOA:; L) @ HO(A: L) = HO(A x A; M) <> HO(A x A: M?)
=H%A: L ® H°(A; L?).
Applying this whenL = ¢(D(W)) for a representatiow/ with W' = 0 we see that this is a map
$w : EAg(S™) ® EAg(S") — EAq(S?Y) @ EAq(S2Y).

By choosing/V sufficiently large we can evidently fingt ( /1, f2) for an arbitrary meromorphic functions
f1, f2, and since™ (f1, f2)(x, ¥) = (fi(x + ), f2(x — y)), we recoverfi(x + y) by suitable restriction.
We now describe howy, should be realised at the level of spectra. The realization involves using
T x T-equivariant spectra, so proofs lie outside the scope of the present paper. However the picture is
sufficiently compelling to merit a brief account.
Suppose there existslax T-equivariant conomology theory of typex A. Constructing such a theory
is significantly easier than constructingiax T-equivariant theory for an arbitrary abelian surface. To
the representation’ ® z/ of T x T we associate the divisor

Dw @) =ker(A x A B A x A),
and extend this to arbitrary representations so that
DV e W)=D(V)+ DW).

The 2-periodic theoryz (A x A)I*T(.) should then come with a spectral sequence

TxT
H*(A X A; Opxa(D(W)) = E(AxA), (V).

——— TxT
Since some line bundles have cohomology in degree 2, this does not detéfine A),, ) (S") in
general. However whefis, 4 (D(W)) has no cohomology in dimension 2 we find

—~— TxT W 0
E(Ax A)y (S7)=H"(AxA; Opxa(D(W))).
Next,the mag : A x A — A x A is an isogeny with kernel

AA[2] ={(a,a)|a +a =e}.
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We also consider the corresponding group homomorphism
E:TxT— TxT,

defined by%(w, z) = (wz, w/z), which is surjective with kernel
AT[2] ={(z,2) | 2 = 1}.

To minimize confusion, we identify the secofidx T with T x T = (T x T)/AT[2]. The mapZ should
correspond to a map

& infkg E(Ax A) — E(A x A)

(i for inflation) of T x T-spectra or, adjointly, to a map
& E(Ax A) — E(A x AH)A'

(f for fixed point) of T x T-spectra.

Lemma 12.1. For any representatioi of T x T, the map¢ ; induces
& E(A x AT (S™) — E(A x 5T (sY).

Proof. The map&j’} induces

&[S0 SV A EA x )17 —> [0 8V A E(A x AT

so it suffices to identify the domain and codomain. By definition

—_— ﬁ - ey —_—
E(Ax Ay (8")=[5%S" AE@A x AT
so we turn to the codomain and calculate
150, SV A E(A x ANTT = [S7W E(A x A)ATEHIXT

=[SV, E(A x A)]y*"

=15% SV A E(A x A)13FT
TxT W
—E(Ax A) (7).

TomodelM =p7L® p5L with L=0(D(W)) forarepresentatioWof T we takeW =(WR1) @ (1 W).
Direct sum of representations corresponds to tensor product of line bundles and to sums of divisors, so if

W corresponds to the line bundleand the divisoD (W),
then

W corresponds to the line bundi§ L ® p3L and the divisof D(W) x A] + [A x D(W)].
Viewed as a representation dfx T by pullback along we find

Fwy=&w e Lw.



1250 J.P.C. Greenlees / Topology 44 (2005) 1213-1279
In particular if W = z" we find
EFWy=w' oo w ez,
Finally, we need to observe that for anythe bundles associated to
W'®MH®Ww'®z") and W ®1®(1®2)

are isomorphic: this is precisely the same argument as shéiéd: M2 above. WithL = 0(D(W)),

we thus expect a commutative diagram

HYA; L)®? = HOY%A x A; piL ® p3L) < HOMA x A: PiL?® psLl?) = HOA; LH)®?
) \

™T W & LR
E(Ax Ay (S™") — E(AxA)y (™). O

13. The completion theorem

By formal completion around the identity, we may associate a formal ghotgpan elliptic curveA.
In favourable circumstances there is a (non-equivariant) 2-periodic complex oriented cohomology theory
E A*(-) associated te\, and a Borel theory

EA%(X) := EA*(ETx1X).

The purpose of this section is to make explicit the relationship between the equivariantAepey )
associated to the elliptic curveand the Borel theory associated to the formal grdup

Proposition 13.1. The cohomology of T is concentrated in even degreesd in degreé) it is the
completion ofv, at the ideall, of functions vanishing ate

EAYET) =lim 0,/1F.
<k

Proof. Indeed, we may make the calculation
EAL(ETy) = [ET, EAlS = [ET4, EA A ET, 5 = Homy,(Qlc]”, eaT A).
Now, shifting into degree 0 we replace the actionclwith the action by, and find this is

Homgy,, QL] #°/Ce) = lim (@nr(r /¢, %), 10) = lim (Ce(k(€)/Ce, te)-

Now multiplication by powers of, gives an isomorphism between the inverse systen(e))/0., t,)
and the inverse systeqd,/I¥, projection. [

Since the formal group law aft comes fromf (a+b)=F(f(a), f (b)) whenfis a coordinate function,
the formal group law fol£ A can be inferred from the mafy for EA described in Section 12.



J.P.C. Greenlees / Topology 44 (2005) 1213-1279 1251

There is another less natural approach involving comparison with the Borel theory of the periodic
theory represented by

HP = \/ sy
neZ

This has coefficients

HPY = Ql[y]].

Lemma 13.2. There is an equivalencEA A ET. >~ HP A ET, and therefore
EA*(X x ET)=HP*(ETxTX),

so that in the notation aboy&A ~ H P.

Remark 13.3. The additional information irEA is in the comparison witleA, and hence in the rela-
tionship between the formal group law and the additioon

Proof. First, to see the equivalence we need only show the two theories give homolBgyisdmorphic
asQ[c]-moduled8, 4.4.1] Since, both theories are 2-periodic &EIAI(ET) andH P.(BT) aredivisible,
it suffices to observe that the two theories have isomorphic non-equivariant coefficients.

Now for a based spadé

F(ET4 AY,EA)~ F(ET4 AY,ET4 AEA) ~ F(ET. AY, ET. A HP)
~F(ET,AY,HP). O

14. The homology and cohomology of universal spaces

From the point of view of equivariant topology, the completion theorem of the previous section is just
one example of a family of calculations. For other universal spaces we obtain analogous results by the
same proof. For simplicity we restrict the statement to the value on a point.

Suppose then thatis a finite set of positive integers and letz) denote the family of subgroups with
orders dividing elements af and A[x] denote the set of points with orders dividing elements.of
Theorem 14.1. (i) (Completion theoreh The cohomology of # (n) is in even degrees and

EAY(EZ(n) = HY(A; Oy,

whereA[r] is the set of points with orders dividing elementa.cﬁincecf»g[n] is a skyscraper sheahis
is just the sum of the completed local rings at the points|ad.
(i) (Local cohomology theorelThe homology of:.Z (=) is in odd degrees and

EA{(EZ (m)) = Hyp(0),

where the cohomology on the rightAg=]-local conomology

Proof. The proof of part (i) follows that of 13.1.
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For part (i) we may use the model
S(coV(n)) = EZ(r) whereV (m) =P "

n|n
The cofibre sequence
S(ooV (m)), —> SO — §°V®

and the fact that the Euler classzfdefinesA[n] give the result. O

The calculation of the cohomology &t7 (n) = E(T/T[nr]) corresponds to the fact that one may obtain
aT[n]-equivariant formal group law in the sens€/8f by formal completion of the curv& along A[n],
as described iff].

15. The Hasse square

We want to combine the localization and completion theorems to give a method of calculation of elliptic
cohomology in terms of Borel theories combined using the geometry of the curve.
The localization theorem is elementary.

Lemma 15.1(Localization theorem For any T-space X we have
EAL(X NEF)=H, (X"; @, ®c %),

where the grading on the right is that for homology with graded coefficigetstotal degre@. A similar
result holds in cohomology for finite complexes X

Proof. Since lim.y ¢(D(V))=#",andEZ = lim_, y1_gS" we have
EAS(EF)= @)% @en. O

We want to apply the completion theorem for the family of all finite subgroups. To do this for arbitrary
complexes it is convenient to introduce the notation

HE(XC; 1) := Homy gt (H (X©); 1)
for any H*(BT4)-modulel, where the grading is that of homomorphismgtf(B T )-modules. Ifl is
injective, this is a conomology theory X and if H} (X€) = H.(X®) ® H.(BT4) thenHi(XC; 1) =
H*(XC; Homy« g1,y (H (BT4), ).

Lemma 15.2. For any T-space X
EAY(X NEZ ) =[] Hi (X TcA ® o).
c
If ] (X€) = H.(X¢) ® H.(BT) for all C then
EAY(X NEZ ) = [ H*(XC: 0p ® o),
c
where(}: is the ring obtained as the formal completioncoét A(s) if C is of order s
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Proof. The first statement amounts to the fact that A XE.7  is injective, with coefficientd" A ® .
Now we use the fact that there is a rational splitthg . ~ \/ - E(C) corresponding t@d'A ~ - Tc A,
andtha{X, E(C)AY]"=[XC, E(C)AY]".Passing to the summand corresponding,tthe #*(BT . )-
module structure on rings of functions is throughDt. The second statement follows since the short
exact sequence

00— O¢c — A — TcA— 0
gives an isomorphism
Homy«pT,)(H(BT4), TcA ® 0y)
= Extys a1, (H«(BT4), Uc @ 0}) = Up @ w}. |

We express the homotopy level Hasse square via the associated Mayer—Vietoris long exact sequence.

Proposition 15.3(Hasse squafe For any T-space X there is a long exact sequence

o EAYX) — H'(XT: 4 @0 Q) x [ [ HH(XC: TcA® o0f) — H' (X" A 7 ® o)
C

— EATY(X) — .-,
natural in X, wherer" 7 =[] Op @ . If H'(X) = H.(X) ® H.(BT,) then
HIXC; TcA® o) =H"(XS; 0 @ of)).
Remark 15.4. SinceXis a space, two of the maps in the above long exact sequence give a diagram of
rings
EA%(X) — H*X"; 4 ®0Q%)
];[ H{f(Xc;iTcA ®wy) — H*X'; }7 ® w})

When the connecting homomorphism in the long exact sequence is zero, this is a pullback diagram of
rings. For example, this applies if bofi* (X ) andH{f(XC) are in even degrees for &l

Proof. Any T-spectrunk occurs in the Tate homotopy pullback square
E — EANEF

I oo
F(EF_. E) — F(EFZL E)NEZF
where#Z is the family of proper subgroups, and applyiRgX, -) we obtain the homotopy pullback square
F(X,E) — F(X,E A EF)
v ¥ i
FXANEZ, E)y — F(X,F(EZ,, E)NEZ)

Note that{ X, ¥ A EZ]] =[X7, #"Y],, so that both the right-hand terms can be expressed in terms of
the geometric fixed points 0. Now takeE = E A and apply the Localization Theorem 15.1 to see that
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nl (F(X,EA A EF)=H*X": # ® %) and the Completion Theorem 14.1(i) to see that

n(F(XANEZ{,EA)=EA* X NEF ) = ]_[ HE(XE; o).
C

16. Recovering the coordinate

By showing that the coordinate used in Section 10 can be recovered from the cohomology theory we
show that it is necessary to make such a choice.

To give afull algebraic model of Typ&theories in the sense of 3.1 we would need to show th {f)
is a cohomology theory of Typthen there is a unique coordinate so that-) = E(A, )7 (-). However,
it certainly requires certain additional structure on the cohomology theory to do this. First, we need to
assume that the theory is multiplicative (this will mean it is specified by a collection of differentials
vanishing to first order at points of exact orderHowever to relate the points of different orders we need
to take into account the group structure dand its reflection in cohomology. We restrict ourselves to
showing the required uniqueness for theories constructed by the procedure of Section 10.

Proposition 16.1. If EA is constructed as in Sectidi®, the coordinate, may be recovered from the
cohomology theory.

Proof. First we will recover the coordinativisor, by concentrating on point with trivial isotropy, and
then return to find a suitable coordinate with this divisor by considering isotropy of order 2 and 3.

We evaluate the cohomology on suitable objeBts= (M — 7 ® U) of /s (depending on a
numbem and a representatidfY). These are certain wide spheres in the sen$@, &3.3] but we give a
self-contained description here.

Since our concern is mainly with what happens at the identity, we separate the behaviours at and away
from e using idempotents. Indeed, we adopt the conventionMiat e1M, M" = (1 — e1)M and so
forth. Away from the identity we takB to be an ordinary wedge of spheres

B" = (8%v x257 "y

with W T =0. By choosing suitable representatidithis allows us to permit poles away from the identity,
for which we write

QW) := o € Q®¢ A | ords () > — dime (W) for s > 2}.
The interesting part dB is what happens at the identity
B' =M — Qlc,c e U).

First we takel/ = © @ >Q with basisho, b in degrees 0 and 2 (as forced BY). Now takeM’ to be
the @[c]-submodule of2[¢, ¢ =11 ® U generated byio = 1 ® bg andaz, 12 = ¢~ "D @ by + ¢ ™" @ by.

Lemma 16.2. The cohomology of the object B defined ab@@epending on W and)is given by

—~0 B Dt
EA}(B) = {(/1, o) € k x Q(W)" | ord, (/lt— + o¢> 2n} .

e
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Remark 16.3. SinceB has geometrid-fixed pointss® v §2, the identification with a subset of* x
(Q®e ) is intrinsic.

Proof. Consider a ma3 —> E A given by the diagram

M L Na

) . \
t7 @U ¢ t7 VA

SinceNA C 17 ® V A, the map is determined by thRemap0 : M — N A. SinceM C 17 ® (Q& 22Q)
the map is determined by = ¢(bg) € VAg=# anda = ¢(b2) € VA2 =Q®y .#". However in order
for (f, «) to determine such a map we need to know the generatdvsnoép intoN A = ker(g).

Exactly as in 10.10, the condition away framis thatf is regular away frone and« € Q(W)”. The
condition ate imposes the two conditions thatc® ® ) € NAj and thatd(c= "V ® f + " ®a) €
N A5, . ». The first of these showg = / is constant, and the second gives the stated condition on

Now fix 4 = 1 (say), and consider the set

Dt
Ap,w(te) = {a € QW)"|ord, (t— - a) >n} :

e

Finally, suppose and: are two choices of coordinate with, w (1) = 4, w(7), then provided the two
sets are non-empty (as we may assume by choivd ofve deduce

Dt Dt
ord, (— — 7) >n.

t

Expressing andz in terms of a fixed coordinatg we have = utg andr = utg the condition is equivalent
to requiring thatt(e) /u — u(e) /u vanishes to ordar. Now, since this is true for alt andu andu are both
non-zero ag, it follows thatu /u is the scalau(e) /u(e). This shows thaEA determines the coordinate
divisor.

Now choose a coordinatgwith the appropriate divisor, and consider which multiplesuzg give the
correct cohomology theory. For this we use a similar argument to the above with, once with the
idempotent; replaced by, and once witle; replaced withez. Usingez, we may pick out: satisfying
the condition

D
ordy (—t + oc) >0
2
(this determineg?). Usinges, we may pick out: satisfying the condition
D
ords (—t + oc) >0
]

(this determineg?®). These two together giveas required.
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Part 6. Categories of modules

We are working towards a comparison between the derived catégg(g@tf-moa) of tp-sheaves of
04-modules and a category &fA-modules. Before this can be useful, we need to describe methods of
calculation, and settle a number of technical difficulties.

17. Algebraic categories of modules

To start with, we work entirely in the algebraic categery with the strictly commutative ringeA
in ..

17.1. Modules oveE A

We may consider the categoBA-mod of left modules over the algebraic modelEg& In fact a left
EA-moduleM = (P — t/ ® W) is given by amafEA ® M —> M, or more explicitly, a diagram

NAQrP —— /P

(F @ VA) &g (£ @ W)

ERQVARIW)——HF oW

From examples we see that we do not wish to require the structur@map ¢/ ® W to be monomorphic,
so we view thdNA-moduleP as the basic object. Compatibility with thi&-module structure owimposes
a further condition.

Thus arEA-module is given by a suitably restrictdéth-moduleP. We viewP as a module of sections
over the algebr&lA of regular sections.

Itis worth making this more explicit for special types of objectMit=e (W), then the module structure
is simply the structure of & -module onw.

If M is torsion so that = f(T) then P = &, T; where each modul&; P is a module ovelV Ay,
which is spanned by elements® f with ¢! f regular onA(s). Furthermore, the action &7 A factors
through¢s = {f| f is regular onA(s)}.

17.2. Homological algebra of the category of modules

The purpose of this section is to describe the derived catdde(¥ A-mod) of the algebraic category
of modules, where the subscriptrefers to the fact that only the counterparts of equivariant equivalences
are inverted. We classify its objects up to isomorphism and give a means of calculating maps. Since the
tp-derived category is formed by inverting maps which are homology isomorphisms for all twists, the
maps are calculated in terms of the corresponding relative Ext groups, which we now describe.

With sheaves it is convenient to work with flabby objects rather than injective objects because we invert
cohomology isomorphisms (i.e., isomorphisms of the derived functors of global sections; ¢ Ex).
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There are enough flabby objects for homological dimension to be visible at the level of abelian categories.
We will work with a corresponding class &A-modules.
First we introduce the relevant test objects, namely the spheres and torsion modules

7 :={EA A S" |V acomplex representatipty {M | ®' M = 0}.
The tpflabbyobjects are then given by
Jp ={I|Exty,(T,I)=0forallT € 7,5>1).
We next form an injective class by a process of saturation; tmeapemorphismare
Mi=MIp):={f: X —Y|f* Homga(Y,I) — Homga (X, I)isepiforalll € .7},
and the tpijectivesby
I =1) :={I| f* :Homgs(Y,I) — Homga(X, I)isepiforall f € .#}.

First we need some examples of tp-flabby objects.

Lemma 17.1. If W is any.#-module thene(W) is atp-flabby EA-module
If I =& I, with I; a divisible¢;-module then £ (1) is atp-flabby EA-module
N

Proof. First, note that modules of the fora{W) admit injective resolutions of the same form, and
similarly for those of formf (I). This means we can settle the question by considering just Hom.

Next, we note that the cadé = 0 of the condition holds (i.e., Ext,(EA, N) =0 fors > 0 for N of
the specified forms). Indeed,

Homga(EA, N) = Hom,, (5%, N),

so it suffices foMN to be injective in</s, which is certainly the case for boffi = e(W) andN = f(I)
with I, beingc-divisible.
For the moduleg(W) we use the adjunction

Homg s (M, e(W)) = Homy, (V, W),

whereV is the vertex oM. The result wherp” M ~ 0 is clear since it has zero vertex. The vertex of
SUANEAis independent dfJ, the result follows from the cadé = 0.
For the moduleg (1), we use the adjunction

Homga(M, f()) =[] Home, (Ms, Iy),

where Ms is thesth idempotent summand of the nub M The result is clear sincg is injective by
hypothesis.

Lemma 17.2. The objectsy and the morphisms7 form an injective class and a monomorphic class

Proof. By definition.# =1 (.#), and by saturatioo’ = M (.#). It remains to show that for ariyA-module
Nthereisamag : N — F in.# with F € 7.
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For an arbitraryEA-moduleN = (L — t/ ® V) we have a mapy — &~IN =e(V). The kernel
Kis of the form f(T") for a torsion moduldN, and we may embed this in a divisible modulgiving a
short exact sequence

0— N-Se(V)® fI) — f(J) —> 0,

where 1 (J) is divisible and hence also tp-flabby.
The fact that the mapis tp-monomorphic follows sincg(J) is a test object.

This means that we can do relative homological algebra, and forp,ExtM, N). Better still, the
proof supplied tp-injective resolutions of length 1.

Corollary 17.3. Thetp-injective dimension of any EA-module<€sl, so thatExt‘EA’tp(M, N) =0 for
s >2. FurthermoreHomg 4 1p(M, N) = Homg 4 (M, N).

This makes the category very accessible to calculation.

Theorem 17.4. (i) All objects of Dt (E A-mod are formal in that M ~ H,(M). Thus homotopy types
in Dy (EA-mod correspond to isomorphism classes of EA-modules
(i) For EA-modules M and N there is a short exact sequence

0 —> EXt 4 (o(ZHu (M), Hy(N)) — [M, N1gs —> Homg(H, (M), H.(N)) — O.

The method of proof is standard, and slightly simplified by the fact thatsfaynodule can be con-
sidered as an object @ (E A-mod) by using the zero differential.
We consider the map

v:[M,N] — Homga(Hy (M), Hi(N))

given by taking homology. We will show that it is an isomorphism for good tp-flabby moduil&ge
have seen that arigA-module may be embedded in a good tp-flabby module with tp-flabby quotient.
Now, for an arbitrary differential graddglA-moduleN we choose a tp-resolution

O— H(N)—Ip— 1, — 0

of its homology, wherelg and /1 are both good tp-flabby modules. Now I8t — Ip be the map
corresponding to the first map in the resolution and note that the mapping cone has homoldgyo
isomorphism we therefore have a cofibre sequence

N — g — I,

and applyingM, -1 4 we obtain part (ii) of the theorem. Part (i) now follows, SincHiff M) =~ H, (M) we
may lift this isomorphism to amald — M’, which, being a homology isomorphism, is an equivalence.
In particular tp-flabby objects are classified by their homology, so it was reasonable to call the Rofibre
It remains to prove that our good tp-flabby modules have the right properties.

Lemma 17.5. If N is one of the modules W) and f(T') in 17.1,the mapv is an isomorphism



J.P.C. Greenlees / Topology 44 (2005) 1213-1279 1259

Proof. By definition the functor Homp4 (-, H«(N)) is exact wherN is tp-flabby, so we have a natural
transformation of cohomology theories and it suffices to check it is an isomorphism on a collection of
EA-modules which generate all modules using direct sums and cofibre sequences. By Adams'’s projec-
tive resolution argument, it suffices to use the objecis A SV, since they are small and detect weak
equivalences. The objecisA A SV are extended by construction, and we have

7/ (EANSY)Y=rnZ(EA) @ 17 (SV),
and hence a commutative diagram
[EANASY, N|ga —Mompy(n2 (EAASY), 72 (N))

o o

[SY, N| ——————Mom,, (72 (SV), 7> (N)).

The result follows from the fact that the objects are injectiverdg together with the corresponding
statements thel|®, 5.6.7, 5.6.8]

18. Homotopy modules

The equivalence dB] is only defined at the homotopy level and the equivalend23ifis not known
to be monoidal at the model category level. The resulfd 8f do show that we may choo$€A to be
a strictly commutative ring spectrum, and hence there is a model categeA+mibduleT-spectra, but
since this is not yet published, it seems worth including a brief account of what can be said about modules
up to homotopy: this section will discuss how good a modéb et E A-mod) can be obtained by working
with rings and modules up to homotopy.

Modules up to homotopy have notoriously bad formal behaviour, but the low homological dimension
of the algebraic categories means we can nonetheless obtain some useful information. The idea is to use
the category of homotopy modules and homotopy module maps as a model for the homotopy category
of modules. To see the effectiveness of this, we continue to work in the algebraic category.

At the level of objects, the model is good.

Lemma 18.1. Every homotopy EA-module is represented by a strict EA-module. Two homotopy EA-
modules are equivalent if and only if their strict representives are equivalent

Proof. Any EA-moduleM is obviously a homotopy module. Since the original module may be recovered
via the action of£ A = =7 (E A) on/ (M), the forgetful map is injective on objects. Furthermore, every
object of.«/ is formal, so there is an equivalente~ =¥ M, and the action passes#d (M). Thus any
homotopy modulé is equivalent to the strict modute” (M), and the forgetful map is surjective.]

Given two homotopy module®, N, we define the group of homotopy module maps by
(M, Nlaoea) :==1{f € [M, N]| f is amodule map up to homotopy

The main point to make is that this is a subset of the maps ign&fgiodule structure, so that it is
unlikely to model phenomena of positive filtration. As usual the cofibre of a homotopy module map has
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no canonical structure as a homotopy module. Taking homotopy module maps need not be exact, even if
applied to a cofibre sequence of strict modules.

The best we can do is to attempt to detect homotopy module maps. Given homotopy modules, we
choose strict module®, N representing them, and to simplify the notation, we assume they have zero
differential. We then have a diagram

0 —)/Extim,tp(z M,N) ——/M,N|gas ——Momps (M, N) —4

[M, Nlgo(ea)

|

0 ——>/Ext, (ZM,N) >/|M, N| Mom,, (M, N) —1.

Since every module map in homology is represented by a strict moduléimap N, itisrepresented by a
homotopy module map. Subtracting this, the remaining issue is how to decide when a map inducing zero in
homology is a homotopy module map. Certainly, it suffices for it to be in the image @gﬁa(tZM, N) —

— Exti/s(ZM, N). When no other elements of %;(st(ZM, N) represent homotopy module maps, the
forgetful map

[M,Nlga — [M, Nlgoa)
is surjective, but even then its kernel is
KerlEXty 4 (o(ZM, N) — Extl, (ZM, N)],

which may be non-trivial.

Part 7. An equivalence between derived categories of sheaves and spectra

Having shown that the structure shéaf of the elliptic curveA gives rise to a commutative ririgAin
/s, we show in this part that this extends to an equivalence between their derived categories of modules.
The discussion of modules up to homotopy in Section 18 shows how much of the resulting information
can be transported to the category of spectra without using further technology. However, the results of
[13] show that the strictly commutative ring i#'s gives astrictly commutative ringr-spectrum, and
using this additional technology, the present account applies without change to categories of equivariant
EA-modulespectra

19. Sheaves from spectra

We describe a natural construction of a sheaf @véom a T-spectrum. In Section 22 we show how
it is related to Grojnowski’s constructidt4].
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19.1. Sheaves associated to R-modules

An object of <75 is abased Rmodule in a suitable sense, but it will clarify the later construction to
begin with a construction on arbitraRrmodulesN.

Note first that we have defined suspension funci8td for any almost constant functian: # — 7,
and ifw(s) <w/(s) for all sthere is a mag” N — >*'N which is multiplication byc®'®)=»®) on the
sth idempotent summand.

Recall that, for any finite set of positive integersy, is the set of points oA whose orders are in,
andU, = A\V,.

Definition 19.1. SupposeN is anR-module and let

7N :=1lim SUN.

— w(n)=0
Now define a presheaf of R-modules orA by taking
N(U,) = &71N.
Lemma 19.2. The presheaV is a sheaf

Proof. First note that, sincé; N = &-1R®xzN, we haveN = R®gN.

Now since any cover has a finite subcover, it suffices to check the sheaf conditigpee- U, U U, .
Sinceé”‘;lR is flat for anyr, it suffices to deal with the special cade= R, where we have an exact
sequence

0— &2 R— & ROSR— 6L RO

nUr
19.2. Construction of the sheaf

We begin in earnest by defining a functor
My of s —> SheavesA
at the level of abelian categories. We will show that it restricts to a functor
My EA-mod — 0 4-mod.

Whenr is the set of divisors o we think of V,, as defined by the Euler class @f. This motivates
some corresponding definitions in equivariant topology. For each subbraugoneed the spade(H) =
cofibore E[C H], — E[< H],), whose distinguishing feature is thatitgfixed points are contractible
unlessk = H, ands® if K = H. We consider the se# () of subgroups ofl with order inz and then
form the space

N

E(n) :=esnEF 4 = \/ E(H),
He7 (n)
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whereez»y € map.7, Q) is the idempotent with suppo# (7). We may then form the spadg&(r) using
the cofibre sequence

E(n) — S° — E(n).
The spacer (n) is modelled in«/s by
T(n) = ( P wH — 0)
HeZ (r)
and the spacé (r) by
L(m) = (R(com) — 1)),
whereR (ocor) C 7 consists of elements with poles only gi(r). N
Next, we associate a sheaf, (X) in the torsion-point topology with an obje&t= (P — 1/ @ W)
of .«Zs. First recall the notation
P(® ={peP|B(p)ec®®W}=Hom,(s° X).
Continuing the analogy with sections, we write
P (ocon) = PQgRR(ocon)
so that
X ® L(n) = (P(oom) — 1 @ W).
Definition 19.3. For any objectX = (P — t/ ® W) of ./ the presheaf#  (X) is defined by
M A(X)(Ur) = Home/ (8%, X @ L(m)) = P(com)(c?).

The restriction associated td, C U, is induced by the map (r) — L(=’) which is the identity on
the vertex.

Lemma 19.4. The presheaf# 4 (X) is in fact a sheaf

Proof. It suffices to consider the cover 6t~ by U, andU,/, and we need to show there is an exact
sequence

00— MAX)Unnw) —> Ma(X)(Ur) ® M a(X)(Up) —> M a(X)(Unur)-
This is obtained from the short exact sequence

0— L(zN7) — L(n)® L(7) — L(znU") — 0.
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Indeed, sincd.(n U ') is flat, we obtain the desired exact sequence by applying the functoyg(dﬁ]
X®:).

Lemma 19.5. If X has vertex V then

M A(X)(ootors) = V.

Proof. Since.# (X)(Uy) =Hom,, (5%, X ® L(x)) ands? is small, we find
A 4(X)(ootors) = lim  Hom,, (S°, X ® L(x)) = Hom,,, <SO, im X® L(n)) =V. O
- U, - U,

For torsion free spectra we can also identify stalks.

Lemma 19.6. If X is torsion free then the stalk of 4 (X) at a point of order s is given by

MpaX),=ker(®QV — T —> ¢,T).
Remark 19.7. Itis natural to refer ta# 4 (X), as the space of-meromorphic functions regular st

Proof. To calculate the stalk we take a direct limit oM@y containing points of ordes, which areU,,
with s # =. For a torsion freX

MaX)(Ur)=ker| P @V —T — @Pe,T|. O
rén
Since direct sums commute with tensor products sthig small, we deduce a useful formal property.
Lemma 19.8. The functor.# 4 preserves arbitrary direct sums O
19.3. The sheaf associated to Ad-module
We show that applying the functor to &#-module gives a sheaf df4-modules.

Lemma 19.9. (i) The functor.# 4 takes EA to the structure sheaf
MAEA) =04y.
(i) The functor.# 4 takes EA-modules t64-modulesand therefore induces a functor

My . EA-mod— 0 4-mod

Proof. Part (i) is clear from our construction of elliptic conomology.
For part (ii), we need to show that there are structure ndaps) ® # s (X)(Uy) —> M 4(X)(Uy),
or in other words,

NA(0om)(®) @ P(oon)(c®) — P(ocom)(c?).
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However we need only note thdt(r) (like S°) is idempotent in the sense thatr) ® L(x) = L(x) SO
that the required map is the composite

Hom, (%, EA ® L(n)) ® Hom, (%, X ® L(n))

25 Hom,/(S°® S°, EA ® L(m) ® X ® L(m))
=Hom,, (8%, EA ® X ® L(n)) — Hom,, (5%, X ® L(n)).

Compatibility with restriction is clear since the restriction associated,toC U, is induced by a map
L(n) — L(7). O

One more special value plays an important role.

Lemma 19.10. The EA-modulg™ A E A is taken to the corresponding line bundle

MASY NEA) = 0s(DW)).

Proof. This follows directly from the parallel between topological suspension 4.6 and algebraic twisting
by line bundles. O

20. T-spectra from ¢ 4-modules

In this section we adapt the constructionE& given in Section 10 to associate an objeckofto an
(¢ 4-module, and hence provide a functor
L4 0Op-mod — EA-mod.

In the construction oEA we made fundamental use of the fact that the sldgais torsion free in the

sense that'(D) is a submodule of (cotors) = .#" for all torsion point divisor®. As a result, the nub is a
submodule of/ ® V A, whereV Ag consists of the space’ of meromorphic functions. For aitmodule

%, it often happens for a non-zero shegfthat the shea# (cotors) of meromorphic sections is zero, so

that the earlier construction would give zero. The construction we give here does specialize to construct
EA, but also deals with torsion sheaves.

20.1. The construction

In topology, the object of/s associated to @-spectrumX is obtained from the map
XADEF, — XADEFZ ANEF
by taking equivariant homotopy groups. The key facts are
e XADEFZ ANEFZ ~®"X A\DEZ . A EZ and

e the cofibre of the map is the-free objectX A XEZ |
e there is a cofibre sequence

DE#, —> DEF, NEF —> SEF .
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We make the analogous construction on sheaves, by starting with an analogue of the above cofibre
sequence. Indeed, we considér® V A as the constant sheaf Bfmodules, and) (ootors) as the sum
of skyscraper sheaves for the modug® A. We then define a sheaf by the short exact sequence of
sheaves

7 — 17 @ VA -L Q(octors) @ Q*

of R-modules. Surjectivity ofj follows from the corresponding fact fé&-modules. We also note that
neithert,” ® V A nor Q(ocotors) have higher sheaf cohomology. Thaencapsulates all the conomology
of spheres.

Remark 20.1. Unlike the topological case, it appears thats not the dual of anything. In particular
2 Homg (Q (ootors), @) >~ Homy (Q (ootors), Q(ootors))

is a proper completion af. The Oth idempotent piece of its space of sections is of uncountable dimension,
so it is different fromz.

The next step in the construction is to tensor the basic short exact sequence witmtdule# to
form

IRcY — 17 @ VARW —1> Q(ootors)®q%.

To understand the central term we note thatg = .#" = (¢ (ocotors).

Lemma 20.2. For any¢-moduleZ the sheat/ (ootors) =% ® (¢(ocotors) is constantand its cohomology
is entirely in degree zero O

Similarly, the essential thing about the last term is that its cohomologytassion.

Lemma 20.3. The R-module
H' (% ®¢ Q(ootors) @ Q)

is &-torsion fori =0or 1.

Proof. Consider the decompositiafi(ootors) = @, Q(coA(s)): thesth term is a direct limit of terms
Q(kA(s)) whose cohomology is annihilated by inverting O

Corollary 20.4. The mapz — t/ ® V A induces an isomorphism

. . T a ” k | —

Definition 20.5. We now define the functor
L4 O0p-mod — g

at the level of abelian categories. The object
Fa(W)=(NY — 17 @ V)
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of .«/5 associated to a sheafin degree 0 is
H*(WQ0%) — H* (WQ0ZR00(ocotors)).
To be explicit the nub is
N¥Yey = HO(@(X)@@)
in even degrees, and
NYod=ETH WQcP)
in odd degrees. The vertex is entirely in even degrees and
V%o = % (ocotors).

Remark 20.6. The fact that this is indeed an object.gf; follows from 20.4. Furthermore, for any-
module%, the vertexV % is entirely in even degrees. The odd degree part of the nub is entitelysion.

Since tensor product is compatible with passage to stalks, we may describe the divisible torsion part.

Corollary 20.7. The sheat#/®:Q (occtors) is a sum of skyscraper sheaves. Inddbd stalk at a point
of order s is

Q0 Q(ocotors), = YsQu,es T Ag. O
Since direct sums commute with tensor products@aiglsmall, we deduce a useful formal property.

Lemma 20.8. The functory 4 preserves arbitrary direct sums [

20.2. Module structure
The formal nature of the construction gives a module structure rather simply.
Lemma 20.9. (i) The functory 4 takes® 4 to the structure ring spectrum
Fa(0y) =EA.
(ii) The functor 4 takes® 4-modules to EAnodulesand therefore induces a functor
S5 Op-mod—> EA-mod

Proof. (i) Itis built into the definition that¥ 4 (04) = E A, and we proved in 11.1 th&A s a ring.
(ii) The sheaf level construction preserves tensor products, and there is a map

H @ QH (¥) — H@®0%). O

One more special value will be important.
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Lemma 20.10. The functor¥ 4 takes the basic line bundles to spheres
Fa(OA(D(V)) =S" A EA.

Proof. The correspondence between line bundles and suspensions has been built into the framework 5.5.
Thus, if we take? = 04 (D(V)) we note first that/ (ootors) = 4" and#® Q (ootors) = 4 /O(D). By
constructions 4 (%) (Uy) is the space(D)(U,) of functions regular away from. [

20.3. The functo¥”4 on torsion free sheaves

Whenever is torsion free in the sense that it is a subsheaf of the constant&liestbrs) then the
spectrumy 4 (%) can be constructed exactly as we originally construétad

Definition 20.11. If # is an¢-module we define an object
S =] VY —> TY)
of .«/,. Here
V%= % (ocotors) = IiLnn Y (Uy)
and
T%o=H(A; Q¥),
whereQ# is defined by the exact sequence
0 — % — %(ootors) — Q% — 0.
These are made periodic with differentials as usual:
VH=V¥HyQ@w* and TH%=T%yQ »".
Now the structure map is defined exactly as before, using the differemtidls.
Lemma 20.12. If # is torsion free then
Fa@W)=(NY — 17 Q V),
whereN% =ker(q : t7 V¥ — T%).
Proof. This is immediate from the defining triangle
Y Q@0 T — W Q¢TI Rc O(c0tors) —> % ®¢ Q(ootors) ®q Q*.

Note first that# is flat, being a submodule of the flat modu&octors), so that this is a short exact
sequence of sheaves. It therefore induces a long exact sequence in cohomology. Since the cohomology
of #(ootors) is in even degrees, it therefore suffices to show that thegnaguces a surjective map in
cohomology. O
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21. Equivalence ofEA-modules and¢-modules

We now have functors relating the algebraic model of spectra and sheaves over an elliptic curve. In this
section we show that these can be combined to give an equivalence between suitable derived categories

21.1. The derived categories

We recall the constructions in parallel. In both cases we form the derived categories by a process of
cellular approximation as in Section 7.2.

In the topological case, the categapy (E A-mod) from Section 17.2 is formed from the category of
differential gradedeA-modules. It is natural to use the celisA A T/H, whereH runs through the set
of closed subgroups df. However the cofibre sequence

T/Tlnly — sO 5 57"

shows that it is equivalent to use the cellgl A SV asV runs through complex representations. With
either of these collections of cells, a m&p— Y of EA-modules is a weak equivalence if and only if
it induces an isomorphism{ (-) for all closed subgroupi, which is the usual notion of an equivariant
weak equivalence of -spectra (and equivalent to being a homology isomorphisaidn

In the algebraic case, the categd%((otf—moo) from Section 7.2 is formed from the category of

differential graded sheaves @f—modules. Motivated by the topological case, we use the ¢éllgV))

for representationy. It is equivalent to use the line bundlé$D) whereD runs through torsion point
divisors as was done previously. A m&Ep—> Y is then a weak equivalence if it induces an isomorphism
of H*(A; 0(—D)®(+)) for all torsion point divisorD.

21.2. The equivalence

We are now equipped to state our second main theorem.

Theorem 21.1. The functors# 4 : EA-mod—> (¢ 4-mod and¥’4 : 0 4-mod— E A-mod relating the
categories of algebraic EA-modulespectra and sheaves 6fmodules defined ih9.3 and 20.5nduce
an equivalence

Dt(EA-mod =~ Dyp(¢'-mod)
of associated derived categories

Remark 21.2. Neither functor preserves infinite products, so this not an adjoint pair or a Quillen
equivalence.

We begin at the level of abelian categories.

Lemma21.3. Thereis a natural transformation of functorg, 9’4 — 1whichis anaturalisomorphism
on the line bundleg(D(V)) for any complex representation V with’ = 0.

Proof. Suppose tha¥ is a module, and let
VY = [HOW @0 2) — HO W ®¢ Z(cotors))]
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be the even summand of,%. Now
MASYY)(Ur) = Homy (8%, 799 @ L(n));
this contains the torsion part €Y% and maps to
ker(c® ® #(ootors) — HO(#® Q0 (cotors)) @ R(n)),

which is#(U,). This defines the mapi' s ¥ 1% — %.
Now consider the sheaf = ¢(D). Combining 19.10 and 20.10, we see tha; .9 4% ~% in this case,
and since’(D) is torsion free, the natural transformation is the identity.

Lemma21.4. Thereis a natural transformation of functa¥sy.# 4 —> 1whichis a naturalisomorphism
on the sphereg A A SV for any complex representation.W

Proof. We suppos& = (N —ﬁ> t7 ® V) is anEA-module concentrated in even degrees and construct a
diagram

HO(@®0.4 4(X)) o N

\ \
HY (7 @ VA®oMs(X)) —> t7QV
Since(t? ® VA)®e.# 4(X) is the constant sheafaf ® V, we takey, to be the identity, and it remains
to give a compatible definition foy,. For this we use the structure m&#? A X — X of the EA-
moduleX.
The sheatz®u.# 4 (X) is associated to the presheaf given by a tensor product of modules over each
open set. By 19.2, the preshetfis a sheaf with global sectiond, so it suffices to construct a map at
the presheaf level. More concretely, we need maps

D(Uz) @0 M a(X)(Uy) —> N(Uy) = E;1N

compatible under restriction. Now the domain is the tensor produck@f,) and .# 4 (X)(U,) =
Homﬂs(SO, X ® L(n)). The former can be identified with functiofigsn NA regular away fromrz and
the latter with elements € &N with f(x) € ¢® ® V. We map this tof - x in N, and notice that this
association ig/(U,) bilinear.

Now if we takeX = EA A SW we find.# 4(X) = O(D(W)) by 19.10 and”’ 4.# 4(X) = X by 20.10.
We may check the natural transformation is an isomorphism stalkwise. This is obviows=£00, and
for any other value, both/ 4 (X), and N, are free on the single elemeit’®. O

We may now complete the proof of 21.1.

Proof of Theorem 21.1.We have defined the pair of functorg 4 and ¥4 at the level of abelian
categories, and hence they preserve actual homotopies at the level of differential graded categories. Ac-
cordingly they induce functors at the level of derived categories by replacing objects with approximations
using spheres or torsion point line bundles. Since both functors take sphere objects to cellular objects the
derived functor construction preserves composites. Hence the fungtpesd.¥ 4 on derived categories

again provide an equivalencel]
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Corollary 21.5. For an EAmodule Xthere is a short exact sequence

0 — SHYA; M 4(X)) — 7l (X) — HO(A; 4 4(X)) — O.

Proof. Indeed, from the equivalence of categories the cohomology X is equal to the homotopy of
X. The exact sequence for the cohomology of an objeict the derived category of sheaves is obtained
from the Adams resolutio# — .o — 71, with .7; flabby. [

22. Relation to Grojnowski’s construction

The first construction of &-equivariant elliptic cohomology was given by Grojnow$k#]. It is
defined for analytic elliptic curves, and takes values ifi/2-graded sheaves ovAr We first describe
Grojnowski’s construction and then show that it is related to the shieagF (X, E A) in the torsion point
topology in the simplest possible way.

22.1. Grojnowski’'s construction

The construction works with aanalyticelliptic curveA overC, presented as
p:C—C/A=A

for a latticed C C. To eacHinite T-spaceX it associates a sheaf G(dj) overA in the analytic topology.
An open sebt of Ais smallif p~1U is the disjoint union of connected compone¥itsuch thatp|y :

V — U is an isomorphism. The construction works with the analytic topology, because the description
needs to deal with small open sets. Accordingly wertdenote the sheaf of analytic functions An
with the analytic topology.

Next, for a pointz € A we write

ya— XTs1if ais of exact order s
“ | X" if ais of infinite order

and we say thad is genericif X¢ = X! anda is specialotherwise.
Finally, we say that an open cov@lv,},.4 of Ais adapted to Xf the following five conditions are
satisfied

e acU,,

e eachU, is small,

e if ais special and # b thena # U, N Uy,

e if aandb are both special and # b thenU, N U, = 0,

e if bis generic, thei, N U, is non-empty for at most one special

For any finiteT-complexX, there is a cover adapted ¥ and any two admit a common refinement.
We say that the cover iN-discrete if there is at most one point of order dividiNgn any U,. For any
finite T-complexX and anyN, there is arN-discrete cover adapted ¥y and any two admit a common
refinement.
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Definition 22.1 (Grojnowsk). Given an open coveU, }, adapted toX we definez/2-graded sheaves
Groj(X), overU, by

Groj(X),(U) = H(ETx71X“)®c[;1053"(U — a),

whereU — a is obtained by translating by —a, and wherg/® (U — a) is aC[z]-module since can be
viewed as an analytic function dih — a usingp to identify it with a neighbourhood of @ C.

These sheaves are compatible on intersections. Indeed, since the cover is addptesl heed only
observe that the localization theorem gives an isomorphism

Groj(X),lu = H*(ETx1X ) ®cr 03U — a)

whena # U. The cocycle condition is easily checked, so the sheaves patch to give a shé&h@roj
(¢@"-algebras. This is independent of the adapted cover, since a refinement induces an isomorphism.
If X has ar-fixed basepointg, the inclusion and projection induce a decomposition

Groj(X) = Groj(X) @ Groj(xo),

defining the reduced theory.

Remark 22.2. (i) It is easy to adapt this to give a 2-periodic sheaf valued theory. Indeed, we need only
replace0®" by Qf =P, @4, and declare thate H?(BT) acts ag/dz. We will do this without change
of notation, to allow comparison with our 2-periodic constructions.

(i) The functor GrojX) is exact. Indeed a cofibre sequenite— X — X” induces a long exact
sequence in Borel cohomology affixed points, for eacla. Sincezis not a zero-divisor as an analytic
function, ®¢;;0*"(U — a) preserves exactness. Finally, exactness of sequences of sheaves is detected

stalkwise.
22.2. The derived# 4 functor.

Grojnowski’s functor preserves weak equivalences, so we need to apply a homotopy invariant version
of the functor.# 4. We therefore take# s F (X, E A), applying the function spectrum functor rather than
the Hom functor. The context makes clear thaj is to be interpreted as the total derived functor of the
abelian category level functor.

We remark that this gives an exact functor. First note that a cofibre seqiénee X — X" of
basedT-spaces induces a fibre sequett&’, EA) <— F (X, EA) «<— F(X”, EA) in the homotopy
category oEA-modules. Applying the total derived functer 4 we get a triangle in the derived category
of 7Z/2-graded sheaves.

22.3. Comparison
In order to make the comparison we need to use the map
j:tp— an

including the sets open in the torsion point topology amongst all open sets. Any sheaf in the analytic
topology is a sheaf in the torsion point topology by restriction and a shi@athe torsion point topology
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gives a sheaf,# in the analytic topology via

(J=2)(U) =1im Y(Ux).
= U, 2U

n =

We also use the map: j,.¢0 — 02" of sheaves of rings, giving a map convertingj,¢-modules into
¢®"-modules by taking tensor products.

Theorem 22.3. The2-periodic version of Grojnowksi’'s sheaf associated to a finite bassgace X is
equivalent to the sheaf arising from the function spectift®, EA):

Groj(X) = iy jy. i 4(F(X, EA)).

Proof. First, we construct a natural map
vx tixjella(F(X, EA)) — Groj(X)

of ©®@-algebras.
This corresponds to a map

Vi © jadl AF (X, EA) —> i*Groj(X)
of j.(-algebras. For this we choose a co{&}},. 4, adapted toK and construct a system of maps
Vot Usll AF (X, EA)y, —> Groj(X), = H*(ET+ATX) @11 0*"(Uy — @)

compatible as varies.
Chooseg so that all points of ordek g are generic, and le¥ = g!. Now choose aiN-discrete cover
{Uqs},ca adapted toX.

Lemma 22.4. The mapX“ — X induces an isomorphism

Jsll AF (X, EA)(Uq) = judl aF (X?, EA)(Uy).
Proof. Write x N U =@ if U contains no points with order iy sothattNU =@ ifand only if U 2 U,.
We have

Sl AF (X EAUg) =lim  MAF(X, EA)(Un) = [X. E(H||HINU, =0 A EA.
— tNU,=

a=

If ais of orders, the quotienX / X¢ is built from cellsT /T[n] with n special an@ # s. HenceaNU, =,
and so the cell makes no contribution to the cohomologyl

Now we may define the natural transformation as a composite
Jxll AF (X, EA)(Uq) = jaull aAF (XY, EA)(Up) —> jull aAF(ET+ A XY EA)(Ug)
—“> H*(E—U—+A'|]'Xa)®@[z](9an(Ua —a).
To definex, we use the fact thaA is almost ordinary (in the sense of 13.2), so that

F(ETy AX® EA) ~ F(ET4y AX®, ET. AEA)~ F(ET, AX% ET,. A HP).
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Composing with projectiol P — H, we may now complete the definition, since there are maps
MAF(ET4 A XY, HY(Uyp) —> H*(ET { A1X) Q01 0¥ U, — a)

for eachr so thatU, > U.
There are at least two ways to see thyais an isomorphism for alK. Most directly, we can show that
vx is an isomorphism on stalks. Passing to limits, over neighbourhbpad a, we find

jel AF(X, EA), =lim [X,E(H||H|NU;=%) A EAI%
- U,

=[X, E(H||H| # 5) A EA]}
= EAS(XY) ®
The completion theorem 13.1 shows what happens when we p#&sston X¢ and then we extend to
analytic germs.
The alternative is to use the fact that both sides are sheaf valued cohomology theHrigsirffices
to check that the natural map is an isomorphism for a clagéuffficient to generate a thick category

containing the suspension spectra of all finite complexes.
By definition it suffices to deal with the homogeneous spaceg k], and the cofibre sequences

T/Tik], — §° — &7

show it suffices to check thatis an isomorphism for the spher§¥. In this case all is well since
Groj(S¥) = 0*(—D(V)), and.# 4 F(SV, EA) = O(—D(V)).

In practical terms this gives a means for calculating the cohomologyusing a spectral sequence
from the sheaf cohomology of the Grojnowksi sheaf.

Corollary 22.5. There is a short exact sequence
0 — XHY(A; GrojX) — EAT(X) — HO(A; Grojx) —> 0.

Proof. This follows from 21.5 and the fact that the cohomology is unchangedhy O
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Appendix A. The affine case:T-equivariant cohomology theories from additive and multiplicative
groups

The algebraic models of equivariakttheory and Borel cohomology are easily descrif&dl3.1,
13.4] In this section we express the models as special cases of the general functorial construction of
a cohomology theor§:G7 (-) associated to a one dimensional affine group scheneguipped with a
coordinate.
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The additive group schenie; and the multiplicative group scheniiy,, are affine, and therefore the
construction of associated cohomology theories is considerably simpler than that for elliptic curves. It
turns out that the associated 2-perio@iequivariant theories are concentrated in even degrees and

(EG)%(X) = H¥(ETx1X)
and
(EGm)J(X) = K(X),

and models for these theories were givef8ih We will repeat the answer here in our present language.
There are some features that differ from the elliptic case. Once again, we must specify a cogatinate

G, which is a function whose vanishing defire®r equivalently, a generator of the augmentation ideal

(y) =ker(0 — k). However here we may use the differentialtd generate meromorphic differentials.

Next, we must choose functions defining the points of osler eachs. By definition G[x] is given

by the vanishing ofr](y). The cyclotomic functiong, are defined recursively by:]1(y) = ]_[S‘n b

Once again, d, need not generate the Kahler differentials. For exampte=f3 and we consider the

multiplicative group withy = 1 — z, thengz = 14z + z2, and db3 = (1 + 2z) dz. Since the zero of + 2¢

is not a point of finite order, the function-& 2z is not invertible.

Theorem A.1. Given a commutative one-dimensional affine group schemeer a ring containingd,
and a coordinate y o there is a 2-periodic cohomology thedi ] (-) of typeG. SinceG is affing the
cohomology theory is complex orientddG is in even degrees and = spea{EG%). The construction
is natural for isomorphisms dfG, ).

The construction is also natural for quotient mgps G — G/G[n] in the sense that there is a map
p*: infl%mn]E(G/G[n]) —> EG of T-spectrawhereE G is viewed as & /T[n]-spectrum and inflated
to a T-spectrumand the coordinate o/ G[n] is 1,cc[n 1oy, Where y is the coordinated ok and 7,
denotes translation by.a

Proof. The construction was motivated in Section 2. The idea is that all the ingredients described in
Section 4 are implicit in the definition of type (3.1).
We will write down a rigid even object

M{(EG) = (7 ® VG - TG)

of the torsion category/; (i.e., the structure mag will be surjective andV G and 7 G will be in even
degrees). By 5.2 this is intrinsically formal and therefore determines

Ms(EG) = (NG — 17 @ VG)

with NG = ker(g), and the representing spectruiis.
Writing ¢ = g for the ring of functions orts, in degree 0 we take

V Gog = O(ootors)
and

T Go = O(cotors) /C.
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For other degrees we twist lay, taking
Vo, =Vo® " and Ty, =Ty ® o".
Accordingto 4.5, the map : t7 ® VG — TG may be described compactly by giving its idempotent
summands. We take

4@ @ ), = (22w,
dy

A choice of coordinatg gives a generaton®” of ", and multiplication by g gives an isomorphism
" — ™D Nowa € Vs, can be written

o= f-(dy)®"

for some functionf € ¢(ootors) and

(" ® £ (dy)®); 1= g (" f - (@A) FTO),

Since any functiorf only has finitely many poles, we see that this does map into the direcTstim

PD,esTG.
We must explain how G is a module oveR, and whyq is a map ofR-modules. We mak& G into a

module overR by lettingc; act asp,(y)/dy one;T G. Since poles are of finite ordef,G is a&-torsion
module. The definition of the mapshows it is arR-map.

Finally, we must show that the homotopy groups of the resulting object are as required in 3.1. By 5.2
we haveM(EG) = (f : NG — t7 ® VG), whereNG = ker(t/ ® VG — TG), and we need to
calculate

SV, EG]! =[S¥, Ms(EG)]..

Sinceq is epimorphicg is monomorphic, and' G is injective. Thus by 5.2 we have the explicit injective
resolution

NG t7 @ VG TG
O—>MS(EG)=( { )—)(ﬁ¢ )—><¢>—>0.
t7 VG t7 VG 0
Now, applying 5.4 withw(T) = O we obtain the exact sequence
0 — Hom,, (S¥, Ms(EG)) — ¢ ¥ ® VGo ﬂ(z—wm)o — Ext, (SY, Ms(EG)) —> 0.

Hence Ex{S", Ms(EG)) =0 sinceg : ¢ ® VG — TG is surjective. Indeed, any torsion element
t € (T G)o=0(ocotors)/0 lifts to f e ¢(ootors) and hence to &Y ® y(W) £. It is immediate from
the definition that ifw(T) = 0,

Hom(SY, Ms(EG)) ={c™™ ® f| f/x(W)regulas.

By construction the divisor associated to the functioW) is D(V), so f/y(V) is regular if and only if
f € 0(—=D(V)) as required. [
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For the statement about isogenies, note thatig a coordinate ors then its normIl,cgn7ay
is a coordinate orG/G[n] (whereT, denotes translation bg). Using these coordinates, we obtain
equivariant spectrE G /G[n] andEG. As a first step to maps between them, note that we have pjaps
V(G/G[n]) — VG andp} : T(G/G[n]) — TG corresponding to pullback of functions. However
py andp?. do not give a map off-spectrak (G/G[n]) — EG; for example, the non-equivariant part
of E(G/G[n]) corresponds to functions ah/G[n] with support at the identity, and these pull back to
functions onG supported ori (], which correspond to the part &fG with isotropy contained iff [n].
The answer is to view the circle of equivarianceRdt asT/T[n], and then to use the inflation functor
studied in Chapters 10 and 24[8] to obtain ar-spectrum.

Remark A.2. In the above proof we made use of the fact that the Euler gla8$ exists as a function in

. This should be contrasted with the elliptic case, where the Euler class is given by different functions
at different points. This corresponds to the fact that elliptic cohomology is not complex orientable, so
that the bundle specified B is not trivializable.

We make the construction explicit in four cases. Because the differentials occur in the same way for
all s, this has been omitted in the examples, and the giagnslated to degree O.

Example A.3 (The additive group The ring of functions ornG, is Q[x], and the group structure is
defined by the coproduet— 1® x + x ® 1. We choose& as a coordinate about the identity, zero. The
groupGgy[n] of points of order dividingh is defined by the vanishing gfz"*) = nx, so the identity is the
only element of finite order oveb-algebras. This case becomes rather degenerate in that it only detects
isotropy 1 andr.

The cohomology theory associateddg is 2-periodic Borel cohomology. This is complex orientable,
concentrated in even degrees and in each even degree is the map

t/ ® O(ootors) =17 @ Qlx, x 1] — Qx, x11/QLx] = ¢(cotors) /¢

s/e(V)® f s f/1(V).

Here® = Q[x] andy(z") = nx. The ring¢(ootors) = Q[x, x 1] of functions with poles only at points of
finite order is obtained by inverting the Euler clasz.of

Example A.4(The multiplicative group; Greenleg8, 13.4.4)). The multiplicative group is defined by
Gm(k) = Units(k) with group structure given by the product. Accordingly, the ring of function&gn
is 0 = R(T) = Q[z, z ], and the group structure is defined by the coproduet> z ® z. We choose
y =1—z as a coordinate about the identity element, 1. The coproduct then takes the more familiar form
y— 1 y+y®1—y® y. The groupGm[r] of points of order dividingn is defined by the vanishing
of y(z")=1-z7".

The cohomology theory associated@g, is equivarianK-theory. This is complex oriented, concen-
trated in even degrees and in each even degree is the map

1 ® O(ootors) — ((ootors) /¢

s/e(V)® f s f/1(V).
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Here( = Q[z, z~ 1] andy(z") = 1 — z". The ring@(ootors) of functions with poles only at points of finite
order is obtained by inverting all Euler classes.

Example A.5(The non-split one dimensional tojusT he ring of functions on the non-split (non-deployé€)
torusGnqis O=0Q[a, b]/(a®+b%=1). Once one adjoins an elementiwithi—1, this becomes equivalent
to the multiplicative group (also known as the standard torus). Indeed, we may-taker- ib to see the
equivalence. From the usual multiplication rule for complex numbers we see that the coproduct is given
byat+r— a®a—-b®bandb — a® b+ b ®a. The ideal(1 — a, b) of functions vanishing at 0 is not
principal, so there is no coordinate in the previous sense.

Since there is no coordinate, a cohomology theory of tgpe cannot be complex orientable. For
example the mapg® — $¢ induces the inclusiot <— ¢(—(e)) of functions vanishing at the identity.
Hence the cohomology & would not be a free module of rank 1.

It is standard that g can be revovered fro®, overQ(i) using an action o€». Indeed,C» acts on
0 = Q(i)[z, z~1] by the Galois action om(i) and by exchangingwith z=1. Thusa = (z +z~1)/2 and
b=i(z—z 1)/2 are fixed. The coordinate= 1 — z is not fixed, although + a = z~1(1 — 2)2is fixed.
Because the coordinayas not fixed, the action of', on ¢ does not extend to an action & (7).

We may construct a theory of tygenq in the usual way. We le$ denote the multiplicative set of
functionsf with zeroes only at points of finite order, and take = S~1¢. Now take Vo = # and
To= P, Hénd<s>(@). HereHénd(s (0) is the local cohomology for the ideal of functions vanishing at
points of order exactlg. Now as before we define

q:tf7®Vo—> To.
For this we need to know that,q(s) is essentiallydefined by a principal ideal (generateddysay), so
that we may define

gV ® £y = ()" f.

The point is that even thoudhng(s) is not itself defined by a principal ideal, it is in the appropriate local
ring. For instance, the ideal of functions vanishing at the identitiLis a, b). This is not a principal
ideal, but at the level of local cohomology we have

HY_ 0O =HY_y 5 (Oa—a) = Hi_ 0 (Oa-a.p)),

where the second equality follows since

(1 —a, b) =/ (1 — a) in @(afl,b),

as one sees explicitly from the equatidn— a)(1 + a) = b%. We therefore take); = 1 — a and define
¢, recursively by the equation

n*¢1 = l_[ ¢s-

s|n

Example A.6 (Formal group3. By way of completeness we also record the analogue for formal groups.
This completes the circle by establishing the universality of the motivation described in Section 2. How-
ever, since we must work oved, there is little difference from the additive group above. Suppose
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given a commutative one dimensional formal grcﬁ]mver a ringk containing@, with a coordinate
y. We may identify the ring of fungions ot with k[[x]], and the group structure is the coproduct
x — F(x ® 1,1® x). The groupG[n] of points of order dividingn is defined by the vanishing of
7(z") = [n](x) so the identity is the only element of finite order o@eialgebras. We may now make the
direct analogue of the construction in A.1. This case becomes rather degenerate in that it only detects
isotropy 1 andr.

The cohomology theory associated to the formal group of a complex oriented 2-periodic cohomology
theoryE is the 2-periodic Borel cohomology & This is concentrated in even degrees and in each even
degree is the map

1] ® O(ootors) =17 ® E%((x)) — E°((x))/E°[[x]] = ¢(ootors) /¢

s/e(V)® fr—s- f/x(V).

Here© = EO[[x]] andy(z") = [n](x). The ring@(ootors) = E[[x]][1/x] = E°((x)) of functions with
poles only at points of finite order is obtained by inverting the Euler clags of
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