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Abstract

Wegivea functorial construction of a rationalS1-equivariant cohomology theory fromanelliptic curveAequipped
with suitable coordinate data. The elliptic curve may be recovered from the cohomology theory; indeed, the value of
the cohomology theoryon thecompactificationof anS1-representation is givenby thesheaf cohomologyof a suitable
line bundle onA. This suggests the construction: by considering functions on the elliptic curve with specified poles
one may write down the representingS1-spectrum in the author’s algebraic model of rationalS1-spectra [Greenlees,
Mem. Am. Math. Soc. 661 (1999) xii +289pp.].

The construction extends to give an equivalence of categories between the homotopy category of module
S1-spectra over the representing spectrum and a derived category of sheaves of modules over the structure sheaf
of A.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Two of the most important topological cohomology theories are associated to one-dimensional group
schemes: ordinary cohomology is associated to the additive group andK-theory is associated to the
multiplicative group. This connection is most transparent in the equivariant context, and because the
group schemes are one-dimensional it is enough to consider a one-dimensional group of equivariance:
the circle groupT.

Beginning with ordinary cohomology, we use the Borel construction to define an equivariant theory for
T-spacesX by H ∗

T(X) = H ∗(ET×TX). The coefficient ringH ∗
T = H ∗(BT)�Z[x] inherits a coproduct
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from the mapBT×BT −→ BT classifying tensor product of line bundles, and the resulting Hopf algebra
represents the additive group.

This construction works equally well for any complex oriented theory. For instance if we letzdenote
the natural representation of the circle group on the complex numbers,K-theory of the Borel construction
has coefficient ringK0(BT)=Z[[y]] with y =1− z, and this represents the multiplicative formal group.
However, by working with the correct equivariant theory we may obtain the uncompleted version. Indeed,
the coefficient ringK0

T = Z[z, z−1] of Atiyah–Segal equivariantK-theory acquires a coproduct from the
group multiplicationT × T −→ T, and the resulting Hopf algebra represents the multiplicative group.

Elliptic cohomology was first defined[17,18] as a non-equivariant complex oriented cohomology
theory whose associated formal group is the completion of an elliptic curve around the identity. It is
therefore natural to hope for an equivariant cohomology theory giving the associated elliptic curveA
without completion. It is the purpose of the present paper to construct such a theory over the rationals and
establish its basic properties. The most obvious new feature is thatA is not affine, and one of our main
tasks is to elucidate the connection between the cohomology theory and the elliptic curve.

A programme to extend this work to higher dimensional abelian varieties and higher dimensional tori
is underway[10–13].

In concrete terms, the main purpose of this paper is to construct a rationalT-equivariant cohomology
theoryEA∗

T(·) associated to any elliptic curveA over aQ-algebra. The construction is compatible with
base change, and the properties of the cohomology theory when we work over a field may be summarized
as follows; we give full details in Section 10 below.

Theorem 1.1. For any elliptic curve A over a fieldk of characteristic0, there is a2-periodic,multiplica-
tive, rational T-equivariant cohomology theoryEA∗

T(·). The value on the one point compactification
SW of a complex representation W ofT with W T = 0 is given as the sheaf cohomology of a line bun-
dle O(−D(W)). To describe this, we writeA[n] for the divisor of points of order dividing n in A. If
W =∑n anzn,we consider the divisorD(W)=∑n anA[n], and the associated line bundleO(−D(W))

on A. The cohomology ofSW is given by

ẼA
i

T(SW )�H i(A;O(−D(W)) for i = 0, 1

and the homology by

ẼA
T

−i(S
W )�H i(A;O(D(W)) for i = 0, 1.

In particular, the coefficient ring is

EAT∗ = k[u, u−1] ⊗ �(�),

where u(of degree2) is a generator ofH 0(A;�) (i.e., a nowhere zero, regular differential) and � (of
degree−1) is a generator ofH 1(A;O).

Remark 1.2. The above properties do not quite determine the cohomology theory. The cohomology
theory depends on one auxiliary piece of data: acoordinatete onA. This is a function vanishing to the
first order at the identity, whose zeroes and poles are all at points of finite order. The construction is
natural for isomorphisms of the data(A, k, te). All three of the inputs,A, k andte can be recovered from
the cohomology of suitable spaces.
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Remark 1.3. For general spaces there is a Hasse long exact sequence describing how to calculate elliptic
cohomology. A precise statement is given in 15.3, but the idea is that, just as the arithmetic Hasse square
recovers global data from completions at various primesp, compatible in the rationalization, the Hasse
sequence recovers elliptic cohomology from Borel cohomology ofC-fixed points with coefficients in
completions of local rings at points of order|C|, compatible with the cohomology of theT-fixed points
with coefficients in meromorphic functions.

The first version ofT-equivariant elliptic cohomology was constructed by Grojnowksi in 1994[14]. He
was interested in implications for the representation theory of certain elliptic algebras: these implications
are the subject of the work of Ginzburg et al.[7] and the context is explained further in[6]. For this purpose
it was sufficient to construct a theory on finite complexes taking values in analytic sheaves over the elliptic
curve. Later Rosu[21] used this sheaf-valued theory to give a proof of Witten’s rigidity theorem for the
equivariant Ochanine genus of a spin manifold with non-trivialT-action, andAndo–Basterra do the same
for the Witten genus[2]. Ando[1] has related the sheaf valued theory to the representation theory of loop
groups.

However, to exploit the theory fully, it is essential to have a theory defined on generalT-spaces and
T-spectra, and to have a conventional group-valued theory represented by aT-spectrumEA. This allows
one to use the full apparatus of equivariant stable homotopy theory. For example, twisted pushforward
maps are immediate consequences of Atiyah duality; in more concrete terms, it allows one to calculate
the theory on free loop spaces, and to describe algebras of operations. It is also likely to be useful in
constructing an integral version of the theory, and we hope it may also prove useful in the continuing
search for a geometric definition of elliptic cohomology. The theory we construct has these desirable
properties, whilst retaining a very close connection with the geometry of the underlying elliptic curve.

Returning to the geometry, a very appealing feature is that although our theory is group valued, the
original curve can still be recovered from the cohomology theory. It is also notable that the earlier
sheaf theoretic constructions work over larger rings and certainly require the coefficients to contain
roots of unity: the loss of information can be illustrated by comparing the rationalized representation
ring R(Cn) = Q[z]/(zn − 1) (with components corresponding tosubgroupsof Cn) to the complexified
representation ring, isomorphic to the character ring map(Cn, C) (with components corresponding to the
elementsof Cn).

Finally, the ingredientsof themodel are verynatural invariantsof thecurvegivenbysheavesof functions
with specified poles at points of finite order: Definition 10.6 simply writes down the representing object in
terms of these, and readers already familiar with elliptic curves and the model of[8] may wish to look at
this immediately. In fact, the algebraic model of[8] gives a generic de Rham model for allT-equivariant
theories, and the models of elliptic cohomology theories highlight this geometric structure. These higher
de Rham models should allow applications in the same spirit as those made for de Rham models of
ordinary cohomology andK-theory[15].

In fact, we are able to go beyond constructing a particular cohomology theoryEA∗
T(·) and establish an

equivalence between a derived category of sheaves over the elliptic curve and cohomology theories which
are modules overEA∗

T(·). Because homotopy theory only sees points of finite order, we use the torsion
point topology on the elliptic curve consisting of complements of sets of points of finite order, which is
coarser than the Zariski topology, and because aT-equivariant homotopy equivalence is an equivalence
in H-equivariant fixed points for all subgroupsH, the maps inverted in formingDtp(O

tp
A-mod) are those

inducing isomorphisms ofH ∗(A;OA(D(W))⊗O(·)) for all representationsWwith W T = 0.
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Theorem 1.4. The representing objectEAa in the algebraic category may be taken to be a commutative
ring, and there is an equivalence

Dtp(O
tp
A-mod) � DT(EAa-mod)

between derived categories of sheaves ofOA-modules on A andEAa-modules. These categories both
have relative injective dimension1,so that maps are calculated by a short exact sequence from Hom and
Ext groups in an abelian category.
The correspondingT-spectrum EA is a ring up to homotopy, and the above equivalence classifies

homotopy EA-module spectra up to equivalence asOA-modules up to isomorphism. Using the result
of [13], that EA can be realized as a strictly commutative ring spectrum, the right hand side may be
replaced the derived category of EA-moduleT-spectra, and morphisms of module spectra are thereby
also classified.

This is proved in Section 21. Our construction directly models the representing ring spectrumEA in
the author’s algebraic modelAs of rationalT-spectra[8]. We describe the abelian categoryAs in detail
in Section 4, but it can be viewed as a category of sheaves over the space of closed subgroups ofT

[11]. The equivalence is obtained from functors at the level of abelian categories, and (Theorem 22.3)
Grojnowski’s sheaf Groj(X) associated to a compactT-manifoldX is obtained by applying the functor
to the function spectrumEA-moduleF (X, EA), and then changing to the analytic topology. Thus, for a
compactT-manifoldX, there is a short exact sequence

0 −→ �H 1(A;Groj(X)) −→ EA∗
T(X) −→ H 0(A;Groj(X)) −→ 0

relating the cohomology of Grojnowksi’s sheaf toEA∗
T(X).

By way of motivation, we will discuss the way that aT-equivariant cohomology theory is associated to
several other geometric objects. Perhaps most familiar is the complete case discussed in Section 2, where
the Borel theory for a complex oriented cohomology theory is associated to a formal group. Amongst
global groups, the additive and multiplicative ones are the simplest, and in Appendix A we describe how
they give rise to ordinary Borel cohomology and equivariantK-theory; the behaviour of the construction
on the non-split torus is also notable.

We have divided the paper into six parts. Part 1 explains how equivariant cohomology theories ought
to be related to group schemes. Part 2 provides prerequisites on rationalT-equivariant cohomology
theories. Part 3 provides prerequisites on elliptic curves. Part 4 is extremely short, and just contains the
construction. Part 5 describes some properties of the theory. Part 6 builds on the construction to give
an equivalence between a derived category of sheaves overA and a derived category ofT-spectra. The
appendix re-examines equivariantK-theory from the present point of view.

Historical note. Early versions of this paper were under joint authorship with M.J. Hopkins and I. Rosu.
This reflected the fundamental influence of their ideas, in the expectation that they would continue to be
part of the project. To the disappointment of all of us, circumstances prevented this, and the other authors
withdrew.

Rosu’s emphasis on the sheaf associated to a sphere[21] was significant. When the author first heard it
at the 1997 Glasgow workshop on elliptic cohomology, he believed this would necessitate representing
elliptic cohomology by sheaves of spectra. However it led Hopkins towards his vision that a result like the
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Theorem 1.1 proved here should be true. Work on the present paper began after a breathless conversation
between the author and Hopkins in Oberwolfach at the 1998 Homotopietheorie meeting.

The present paper is Version 5.2 of the preprint.

Part 1. Equivariant cohomology theories and group schemes

In Part 1 we describe how equivariant cohomology theories and group schemes are related in ideal
circumstances. We begin with the familiar example of formal groups and complex oriented theories, and
then explore how this correspondence should be extended.

2. Formal groups from complex oriented theories

The purpose of this section is to recall that any complex orientable cohomology theoryE∗(·) deter-
mines a one-dimensional, commutative formal groupĜ and to explain how the cohomology of various
spaces can be described in terms of the geometry ofĜ. This is well known (see especially[3]) but it
introduces the geometric language, and motivates our main construction, whichover the rationalsre-
verses the process by using this geometric data to construct the cohomology theory. Indeed, we will
show that the machinery of[8] permits a construction of a 2-periodic rationalT-equivariant cohomology
theoryEG∗

T(·) from a one-dimensional group schemeG over aQ-algebra, functorial inG with some
additional data. Furthermore, the construction is reversible in the sense thatG can be recovered from
EG∗

T(·). The most interesting case of this is whenG is an elliptic curve, but the affine case is treated in
Appendix A.

2.1. Geometry of formal groups

Before bringing the cohomology theory into the picture, we introduce the geometric language.When all
schemes are affine, the geometric language is equivalent to the ring theoretic language, and all geometric
statements can be given meaning by translating them to algebraic ones. It is traditional in topology to
stick to algebra, but to prepare for the case of an elliptic curve, we will use the geometric language.

A one-dimensional commutative formal group law over a ringk is a commutative and associative
coproduct on the complete topologicalk-algebrak[[y]]. Equivalently, it is a complete topological Hopf
k-algebraO together with an elementy ∈ O so thatO= k[[y]]. A topological Hopfk-algebraO for which
such ay exists is the ring of functions on a one-dimensional commutative formal groupĜ. The counit
O −→ k, is viewed as evaluation of functions at the identitye ∈ Ĝ, and the augmentation idealI consists
of functions vanishing ate. The elementy generates the idealI, and is known as acoordinateate.

We also need to discuss locally free sheavesF over Ĝ, and in the present affine context these are
specified by theO-moduleM =�F of global sections. In particular, line bundlesL overĜ correspond to
modulesM which are submodules of the ring of rational functions and free of rank 1. Line bundles can
also be described in terms of the zeroes and poles of their generating section: we only need this in special
cases made explicit below. The generatorf of theO-moduleM is a section ofL, and as such it defines
a divisorD = D+ − D−, whereD+ is the subscheme of̂G wheref vanishes (with multiplicities), and
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D− is the subscheme of̂G wheref has poles (with multiplicities). This divisor determinesL, and we write
L = O(−D). For example,

M = I = (y) corresponds toO(−(e))

and

M = I a = (ya) corresponds toO(−a(e)).

Next, we may consider the[n]-series map[n] : O −→ O, which corresponds to then-fold sum map
n : Ĝ −→ Ĝ. We writeĜ[n] for the kernel ofn, and its ring of functions isO/([n](y)). Hence, since
n∗y=[n](y) by definition,M=([n](y)) corresponds toO(−Ĝ[n]), andM=( ([n](y))a ) corresponds to
O(−aĜ[n]). Finally, ifM corresponds toO(−D) andM ′ corresponds toO(−D′) thenM∨ := Hom(M,O)

corresponds toO(D) andM ⊗ M ′ corresponds toO(−D − D′). This gives sense to enough line bundles
for our purposes.

2.2. Complex oriented cohomology theories

Nowsuppose thatE is a 2-periodic ring valued theorywith coefficientsE∗ concentrated in evendegrees.
The collapse of the Atiyah–Hirzebruch spectral sequence forBT shows thatE is complex orientable. We
may define theT-equivariant Borel cohomology byE∗

T(X) = E∗(ET×TX). We work over the ring
k =E0

T(T)=E0, and viewE0
T =E0(BT) as the ring of functions on a formal group̂G overk. The tensor

product and duality of line bundles makesBT into a group object, soE0(BT) is a topological Hopf
algebra and̂G is a group. From this point of view, the augmentation idealI = ker(E0

T −→ E0) consists
of functions vanishing at the identitye ∈ Ĝ. We may also define the module of cotangent vectors at the
identity by

� := I/I2 = Ẽ0(S2) = E−2 = E2.

This allows us to recover the graded cohomology ring from the ungraded ring since

E−2n
T (X) = E0

T(X) ⊗ �n.

Now, if W is a complex representation of the circle groupT with W T = 0, we also letW denote the
associated bundle overBT and the Thom isomorphism shows̃E0((BT)W ) = Ẽ0

T(SW ) is a rank 1 free
module overE0

T, and hence corresponds to a line bundleL(W) overĜ, whose global sections are naturally
isomorphic to the module

�L(W) = Ẽ0
T(SW ).

From the fact that Thom isomorphisms are transitive we see thatL(W ⊕W ′)=L(W)⊗L(W ′). The values
of all these line bundles can be deduced from those of powers ofz.

Lemma 2.1. (1) L(0) = O is the trivial bundle.
(2) L(z) = O(−(e)) is the sheaf of functions vanishing at e, and its module of sections I is generated

by the coordinate y.
(3)L(zn)=O(−Ĝ[n]) is the sheaf of functions vanishingonĜ[n],and itsmodule of sections is generated

by the multiple[n](y) of the coordinate y.
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(4) L(azn)=O(−aĜ[n]) is the sheaf of functions vanishing on̂G[n]with multiplicity a, and its module
of sections is generated([n](y))a.

Proof. The first statement is clear sincẽE0
T(S0) = E0

T. For the second we use the equivalence(BT)z �
(BT)0/(pt)0. The third statement follows from the Gysin sequence sincezk is the pullback ofzalong the
kth power mapBT −→ BT. The final statement follows from the tensor product property.�

This gives the fundamental connection between the equivariant cohomology of a sphere and sections
of a line bundle.

Corollary 2.2. If E∗
T(·) is a complex oriented2-periodic cohomology theory with associated formal

groupĜ then for anya ∈ Z, n �= 0we have

Ẽ0
T(Sazn

) = O(−aĜ[n]). �

3. What to expect when the group is not affine

This section discusses what happens if we replace the formal groupĜ (which is affine) in Section 2 by
a (one-dimensional) groupG with higher cohomology.

3.1. Odd cohomology

The main point is that we cannot expect a cohomology theory entirely in even degrees. Now that the
group is not affine,O denotes the structuresheafof G. This is reconciled to the above usage since in the
affine case, the structure sheaf is determined by its ring of global sections. In the non-affine case, the
cofibre sequence

Saz ∧ T+ −→ Saz −→ S(a+1)z

of basedT-spaces forces there to be odd cohomology. Indeed, we expect a corresponding short exact
sequence of sheaves

O(−ae)/O(−(a + 1)e) ←− O(−ae) ←− O(−(a + 1)e).

Any satisfactory cohomology theory will be functorial, and applyingẼ0
T(·) will give sections of the

associated sheaves. However the global sections functor on sheaves is not usually right exact, and the
sequence of sections continues with the sheaf cohomology groupsH 1(G; ·). It is natural to hope that the
long exact cohomology sequence induced by the sequence of spaces should be the long exact cohomology
sequence induced by the sequence of sheaves. This gives a natural candidate for the odd cohomology:

Ẽi
T(Saz) = H i(G;O(−a(e))) for i = 0, 1.

This explains why it is possible for complex orientable cohomology theories to have coefficient rings in
even degrees (formal groups are affine), and how their values on all complex spheres can be the same
(formal groups have a regular coordinate). It also explains why we cannot expect either property for a
theory associated to an elliptic curve.
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3.2. The definition of type

We are now ready to formalize the relationship between group schemes and cohomology theories.

Definition 3.1. (i) Given a virtual complex representationWwith W T=0 we define an associated divisor
D(W) as follows. We writeW =∑

n anzn, and then takeD(W) =∑
n anG[n], whereG[n] = ker(n :

G −→ G).
(ii) We say that a 2-periodicT-equivariant cohomology theoryE∗

T(·) is of typeG if, for any complex
representationW,

Ẽi
T(SW )�H i(G;O(−D(W))

and

ẼT−i(S
W )�H i(G;O(D(W)).

for i = 0, 1.
We also require these isomorphisms to be natural for inclusionsj : W −→ W ′ of representations. To

describe this, first note that such a map induces a mapSW −→ SW ′
of basedT-spaces and hence maps

j∗ : Ẽi
T(SW ′

) −→ Ẽi
T(SW )

and

j∗ : ẼT−i(S
W ) −→ ẼT−i(S

W ′
).

On the other hand, we have inclusion of divisorsD(W) −→ D(W ′), inducing maps

O(−D(W ′)) −→ O(−D(W))

and

O(D(W)) −→ O(D(W ′)).

The induced maps in sheaf cohomology are required to bej∗ andj∗.

Remark 3.2. The naturality requirement really allows us to identify the homology and cohomology of
spheres with spaces of functions or their duals. For example, all the sheavesO(−D(V )) are subsheaves
of the constant sheaf

K= {f |f is a function onG with poles only at points of finite order},
of meromorphic functions. Thus the naturality requirement shows we may actually identifyẼ0

T(S−W )

with a set ofmeromorphic functions. In thepresenceofSerre duality (seeSection 11), the first cohomology
groups may similarly be identified with duals of spaces of functions.

Remark 3.3. We also need to discuss the appropriate behaviour for representationsWwith trivial sum-
mands. The convention that

ET
i+2(X) = ET

i (X) ⊗ �
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or

Ei−2
T (X) = Ei

T (X) ⊗ �

leads to an appropriate formula, where� is the cotangent space at the identity ofG. However to obtain a
properly natural identification it is better to use sheaves and the fact that

H i(G;L⊗O�) = H i(G;L) ⊗ �,

where⊗ denotes tensor product overk, and� is the sheaf of Kähler differentials onG.
This leads to the requirements

Ẽi
T(SW )�H i(G;O(−D(W/W T))⊗O�dimC(W T))

and

ẼT−i(S
W )�H i(G;O(D(W/W T))⊗O�−dimC(W T))

for i = 0, 1 (here and elsewhere�n denotes thenth tensor power of�). The answer for other values ofi
follows easily.

Remark 3.4. The use of differentials to give suspensions means that a cohomology theory of typeG

contains data about Thom isomorphisms. For example, ifS∞W := lim→UT=0 SU thenSz −→ S∞W

induces

ẼT
2 (Sz) −→ ẼT

2 (S∞W )

� ↓ ↓ �
H 0(G;O((e))⊗O�) −→ H 0(G;K⊗O�).

This picks out ak-subspace of the constant sheafK⊗O�=H 0(G;K⊗O�). WhenG is an elliptic curve,
this is the one-dimensional space of invariant differentials.

3.3. The affine case revisited

It is worth pointing out that ifG is affine and has a good coordinate, any cohomology theory of typeG

is complex orientable and in even degrees (we construct a number of such theories inAppendixA). More
precisely, we require thatG has a regular coordinate functiony in the sense that the identitye ∈ G is
defined by the vanishing ofyandy is a regular element of the ringO of functions onG. The multiplication
by nmap is also required to be flat forn�1.

First, sinceG is affine, there is no higher cohomology. Thus, the condition thatE∗
T(·) is of typeG states

that the cohomology of spheres of complex representations is in even degrees, and that ifW T = 0,

Ẽ−2n
T (SW ) = O(−D(W)) ⊗ �n,

where we have identified the sheaf with its space of global sections. It remains to observe thatO(−D(W))

is a free module on one generator. Indeed,G[n] is defined by the vanishing ofn∗(y) the pullback ofy
along the multiplication bynmap ofG. Since this map is flat,n∗y is a regular element.
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Since we have a complex oriented theory we also have Thom classes and Euler classes, and these
depend on the coordinate,y. For example, the Thom class ofzn is the chosen generator ofO(−G[n]), and
the Euler class is its pullback toO, namely

�y(zn) = [n](y) := n∗(y).

Thus we have the idea that the Euler class ofzn is a function whose vanishing definesG[n].
In characteristic 0 it is elementary to go one step further and decompose the divisorG[n]:

G[n] =
∑
s|n

G〈s〉,

whereG〈s〉 is the divisor of points of exact orders. In fact, we define a function�s(y) vanishing to the
first order onG〈s〉 recursively by the condition

�y(zn) =
∏
s|n

�s(y):

the formula forn = 1 defines�n(y) directly for n = 1, and for larger values ofn, �n(y) is defined by
dividing �y(zn) by the previously defined�s(y). Each�n(y) is regular by the regularity ofy and the
flatness requirement.

3.4. Summary

We may summarize the correspondence between algebra and topology:

• The suspensionSazn ∧ EG corresponds to the sheafO(aG[n]) and more generally, suspension byzn

corresponds to tensoring withO(G[n]).
• The subgroupT[n] of ordern (kernel ofzn) corresponds to the subgroupG[n] of elements of order

dividing n (defined by the vanishing of�(zn)).
• The inclusionS0 −→ Szn

which induces multiplication by the Euler class (in the presence of a Thom
isomorphism) corresponds toO −→ O(G[n]).

• We extend the notation, so that

S∞zn := lim→ a
Sazn

corresponds to the sheafO(∞G[n]) := lim→ a
O(aG[n])

and

ẼF := lim→ UT=0
SU corresponds to the sheafO(∞G[tors]) := lim→ a,n

O(aG[n]).
• The familyF of finite subgroups corresponds to the setG[tors] of elements of torsion points.

Part 2. Background on rational T-equivariant cohomology theories

The method of this paper is only practical because there is a complete algebraic model for rational
T-equivariant cohomology theories[8]. In Part 2 we describe this model and explain how to make relevant
calculations in it.
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4. The model for rational T-spectra

For most of the paper we work with the representing objects ofT-equivariant cohomology theories,
namelyT-spectra[19]. Thus we prove results about the representing spectra, and deduce consequences
about the cohomology theories. More precisely, any suitableT-equivariant cohomology theoryE∗

T(·) is
represented by aT-spectrumE in the sense that for a basedT-spaceX,

Ẽ∗
T(X) = [X, E]∗T.

This enables us to define the associated homology theory

ẼT∗ (X) = [S0, E ∧ X]T∗
in the usual way. We shall make use of the elementary fact that the Spanier–Whitehead dual of the sphere
SW is S−W , as one sees by embeddingSW as the equator ofSW⊕1. Hence, for example

Ẽ0
T(SW ) = [SW , E]T = [S0, S−W ∧ E]T = 	T

0 (S−W ∧ E) = ẼT
0 (S−W ).

We say that a cohomology theory isrational if its values are graded rational vector spaces. A spec-
trum is rational if the cohomology theory it represents is rational. It suffices to check the values on the
homogeneous spacesT/H for closed subgroupsH, since all spaces are built from these up to weak
equivalence.

Convention4.1. Henceforthall spectraand thevaluesofall cohomology theoriesare rationalizedwhether
or not this is indicated in the notation.

Our results are made possible because there is a complete algebraic model of the category ofrational
T-spectra, and hence of rationalT-equivariant cohomology theories[8]. For the convenience of the reader
we spend the rest of this section summarizing the relevant results from[8] in a convenient form. There
are two models for rationalT-spectra, as derived categories of abelian categories.

Theorem 4.2(Greenlees[8, 5.6.1, 6.5.1]). There are equivalences

T-Spectra� D(As) � D(At).

of triangulated categories.

Thestandardabelian categoryAs has injective dimension 1, and thetorsionabelian categoryAt is
of injective dimension 2. The derived categoryD(As) is formed by taking differential graded objects in
As and inverting homology isomorphisms, and similarly forD(At). It is usually easiest to identify the
model for aT-spectrum inD(At), at least providing its model has homology of injective dimension 1.
This is then transported to the standard category, where calculations are sometimes easier. We describe
what we need about the categories in the following subsections.

4.1. Rings of functions

To describe the categories, we need some ingredients. The information is organized by isotropy group,
and we letF denote the discrete set of finite subgroups ofT. On this we consider the constant sheafR
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of rings with stalksQ[c] wherec has degree−2. We need to consider the ring

R = map(F, Q[c])�
∏

H∈F
Q[c]

of global sections, where maps and product are graded. For each subgroupH, we leteH ∈ R denote the
idempotent with supportH.

To avoid confusion about grading we introduce the requisite suspensions. In topology, we may sus-
pend by complex representationsW; these enter the theory through the dimension functionw(H) :=
dimC(W H ). Note thatw takes only finitely many values, and is equal tow(T) for almost all finite
subgroupsH.

Definition 4.3. Supposew : F −→ Z is an almost constant function.Wedivide the set of finite subgroups
into sets

Fw,i = {H |w(H) = i}
on whichw is constant; only finitely many of these are non-empty, and all but one are finite. We write
w(T) for the value ofw on the infinite set.

Letew,i ∈ R be the idempotent supported onFw,i , and introduce the suspension functor onR-modules
by

�wN =
⊕

i

�2iew,iN .

Now if w : F −→ Z�0 is zero almost everywhere, we writecw for theuniversal Thom classof w,
defined bycw(H) = cw(H). Since it is not homogeneous,cw is not an element ofR, but nonetheless it is
natural to consider theR-module

cwR := �−wR =
∏
H

cw(H)Q[c],

viewed as anR-submodule of
∏

H Q[c, c−1]; sincecw is a generator in some sense, we callcw a Thom
class (further explanation is given at the end of the section). Classical Thom classes give rise to Euler
classes by restriction to the coefficient ring.We now create a ring in which the Euler classes corresponding
to the Thom classescw belong. First, let

E= {cw |w : F −→ Z�0 of finite support};
thinking of this as if it generates a multiplicatively closed subset, we make an adelic construction by
forming theR-submodule

tF∗ = E−1R := lim→ w
�wR =

⋃
w

c−wR

of
∏

H Q[c, c−1]. Observe thattF∗ is a gradedR-algebra.As a graded vector spacetF∗ is
⊕

H Q in positive
degrees and

∏
H Q in degrees zero and below.
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Remark 4.4. (i) Note that ifw(T) = 0, there is a natural degree 0isomorphism

cw : tF∗
�−→�wtF∗ ,

which in thesth component is

cw(s) : Q[c, c−1] −→ �2w(s)Q[c, c−1].
It is natural to see this as multiplication by the Euler class.

(ii) Given a complex representationW of T with W T = 0 we may define an associated functionw :
F −→ Z�0 zero almost everywhere byw(H) = dimC(W H ). We sometimes writecW for this element
of R, and we note thatE is generated as a multiplicative subset by elements of this form.

(iii) Viewing Ras the ring of functions on the discrete spaceF, the universal Euler classes can be used
to define finite subsets. Indeed, we may viewcw as a non-homogeneous section of the structure sheaf, or
as a homogeneous section of a line bundleR(−w) with global sections�−wR. Now, for any finite subset
H ⊆ F we may consider its characteristic function�(H). The associated universal Euler classc�(H) is
the function vanishing to the first order onH.

4.2. Description of the abelian categories

The objects of the standard modelAs are triples(N, 
, V ) whereN is anR-module (called thenub),
V is a graded rational vector space (called thevertex) and
 : N −→ tF∗ ⊗ V is a morphism ofR-
modules (called thebasing map) which becomes an isomorphism whenE is inverted. When no confusion
is likely, we simply say thatN −→ tF∗ ⊗V is an object of the standard abelian category. An object ofAs
should be viewed as the moduleNwith the additional structure of a trivialization ofE−1N . A morphism
(N, 
, V ) −→ (N ′, 
′, V ′) of objects is given by anR-map� : N −→ N ′ and aQ-map� : V −→ V ′
compatible under the basing maps.

Since the standard abelian category has injective dimension 1, homotopy types of objects of the derived
categoryD(As) are classified by their homology inAs, so that homotopy types correspond to isomor-
phism classes of objects of the abelian categoryAs. In the sheaf theoretic approach[11], N is the space
of global sections of a sheaf on the space of closed subgroupsT, the vertexV is the value of the sheaf at
the subgroupT and the fact that the basing map
 : N −→ tF∗ ⊗ V is an isomorphism away fromE is
the manifestation of the patching condition for sheaves.

The objects of the torsion abelian categoryAt are triples(V , q, T ) whereV is a graded rational vector
space,T is anE-torsionR-module andq : tF∗ ⊗ V −→ T is a morphism ofR-modules. The condition
onT is equivalent to requiring (i) thatT is the sum of its idempotent factorsT (H) = eH T in the sense
that T =⊕

H T (H) and (ii) that eachT (H) is a torsionQ[c]-module. When no confusion is likely,
we simply say thattF∗ ⊗ V −→ T is an object of the torsion abelian category. In the sheaf theoretic
approach, the moduleT (H) is the cohomology of the structure sheaf with support atH. By contrast
with the standard abelian category, the torsion abelian category has injective dimension 2. Thus not every
objectX of the derived categoryD(At) is determined up to equivalence by its homologyH∗(X) in
the abelian categoryAt. We say thatX is formal if it is equivalent to its homology (considered as a
differential graded object with zero differential), and that it isintrinsically formalif it is equivalent to any
object with the same homology. Evidently, an intrinsically formal object is formal. The Adams spectral
sequence shows immediately thatX is intrinsically formal if its homology has injective dimension 0
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or 1 in At. In general, ifH∗(X) = (tF∗ ⊗ V −→ T ), the objectX is equivalent to the fibre of a map
(tF∗ ⊗ V −→ 0) −→ (tF∗ ⊗ 0 −→ �T ) (in the derived category) between objects inAt of injective
dimension 1. This map is classified by an element of ExtR(tF∗ ⊗ V, �T ), so thatX is formal if the Ext
group is zero in even degrees. ThusX is intrinsically formal if bothV andT are in even degrees or
[8, 5.3.1]if T is injective in the sense that eachT (H) is an injectiveQ[c]-module.

Lemma 4.5. An R-mapq : tF∗ ⊗ V −→⊕
s Ts is determined by its idempotent piecesqs : Q[c, c−1] ⊗

V −→ Ts .
Conversely, any sequence ofQ[c]-mapsqs so that, for eachf ∈ V , only finitely many of the values

qs(c
0 ⊗ f ) are non-zero, determines an R-map q.

Proof. To see that the idempotent pieces determineq, note that if all idempotent pieces are zero we may
argue thatq =0: if q(1⊗ v) �= 0 some idempotent piece would be non-zero, henceq vanishes onR ⊗V ,
and hence induces a map

q : (tF∗ /R) ⊗ V =
⊕

s

(Q[c, c−1]/Q[c]) ⊗ V −→
⊕

s

Ts ,

which is the direct sum of its idempotent pieces.
The converse statement is easily checked.�

4.3. Spheres, suspensions and Euler classes

Spheres are important because they are invertible objects, and therefore play a role corresponding to
that of line bundles in categories of sheaves. We introduce the appropriate apparatus to discuss them.

We described the suspension�w on the category ofR-modules in 4.3.

Definition 4.6. The suspension functor on objects of the standard abelian categoryAs is defined by

�w(N −→ tF∗ ⊗ V ) = (�wN −→ �wtF∗ ⊗ V
cw−→ tF∗ ⊗ �2w(T)V ).

Thus, the basing map for the suspension is obtained by multiplying the original one by the appropriate
Euler class, which iscw(i)−w(T) on ew,iN .

Definition 4.7 (Greenlees[8, 5.8.2]). The algebraic 0-sphere is the object

S0 = (R −→ tF∗ ⊗ Q),

whereR is the submodule oftF∗ ⊗ Q generated by 1⊗ 1.

Given an almost constant functionw : F −→ Z the algebraicw-sphere is the object ofAs defined by

Sw = �wS0 = (R(w) −→ tF∗ ⊗ �2w(T)Q),

where

R(w) = �wR = c−wR ⊆ �wtF∗
�−→�2w(T)tF∗
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as above. Note that different parts of this diagram have been shifted by different amounts, so that both
the grading and the structure maps are different for different spheres.

If X is aT-spectrum we writeMs(X) andMt(X) for the models ofX in As andAt, respectively. In
fact, if �TX denotes the geometric fixed point spectrum ofX, andEF denotes the universal almost free
T-space, we have

H∗(Mt(X)) = (tF∗ ⊗ V −→ T ),

where

V = 	∗(�TX))

and

T = 	T∗ (�EF+ ∧ X).

SinceAt is of injective dimension 2, this does not always determineMt(X). On the other hand, sinceAs
is of injective dimension 1, we may takeMs(X) to be an object of the underlying abelian categoryAs
(i.e., to have zero differential). In fact,

Ms(X) � H∗(Ms(X)) = (N −→ tF∗ ⊗ V ),

whereV is as above andN lives in a long exact sequence

· · · −→ N −→ tF∗ ⊗ V −→ T −→ · · · .

This at least makes clear thatV is to do withT-fixed points ofX, T is to do with the almost free part of
X andN is an appropriate mixture. It also suggests the relationship betweenAs andAt. This amount of
detail is more than we need for the present paper. Finally, we need to record that spheres in the algebraic
and topological contexts correspond.

Lemma4.8(Greenlees[8, 5.8.3]). SupposeW is a virtual complex representation,and letw=dimC(W).

(i) The object modelling the sphereSW inAs is the algebraic sphereSw:

Ms(S
W ) = Sw = (R(w) −→ tF∗ ).

(ii) Algebraic and topological suspensions coincide in the sense that

Ms(�
W X) = �wMs(X).

Proof. Part (ii) follows from Part (i) since the algebraic suspension is tensor product withSw andSw is
flat. �

Warning 4.9. We are modellingcomplexrepresentationsW. Thus if 
 is the trivial representation ofT
onC, we haveS
 = S2. We thus need to be careful when discussing a single suspension (smash product
with the circle). We use the same method to resolve this conflict in algebra as in topology: an integer has
its usual meaning, whereas the functionF −→ Z with constant value 1 will be denoted
.
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We are now in a position to justify calling the functioncw a universal Euler class whenw(T) = 0.
In the topological context, the Euler class of a complex representationW with W T = 0 in a complex
oriented cohomology theory is defined by pulling back a Thom class alongS0 −→ SW ; equivalently, in
the associated homology theory we take the image of the Thom class under the mapS−W −→ S0. In
the algebraic context we do precisely the same. The Thom class ofS−W is the ‘generator’ ofR(−w),
namely the ‘element’cw, which is the image of 1∈ tF∗ under the isomorphismcw : tF∗ −→ tF∗ . The two
obstructions to a universal Thom isomorphism are the two linked facts thatcw is not homogeneous and
that the putative isomorphism is not compatible with basing maps.

Consider the subgroupT[n] of ordern, and the representationzn. If we take theK-theory Euler class
we have

e(zn) = 1− zn =
∏
s|n

�s ,

where�s is thesth cyclotomic function, independent ofn. Similarly, thedimension function corresponding
to zn, is the characteristic function sub(n) for the subgroups ofT[n]. Hence the universal Euler class
defining the subgroups ofT[n] is

czn = csub(n) =
∏
s|n

cs ,

wherecs is the universal Euler class for the characteristic function of the singleton{T[s]}. It is therefore
natural to viewcs as a universal cyclotomic function.

5. Cohomology of spheres

The main point of contact between topology and geometry is through the cohomology of spheres and
line bundles. We therefore describe how this works in the standard model forT-spectra. We shall only
need to discussT-spectra with particularly nice algebraic models, so we begin by describing them.

5.1. Rigidity

Given aT-spectrumE with torsion modelMt(E) with homologyH∗(Mt(E)) = (tF∗ ⊗ V −→ T ) in
the abelian categoryAt, it is not hard to calculateV =ET∗ (ẼF) or T =E∗

T (�−1EF+). However, if this
is to determineEwe must show in addition thatMt(E) is formal.

Definition 5.1. We say that aT-equivariant cohomology theoryE is rigid if the following two equivalent
conditions hold

(1) H∗Mt(E) = (tF∗ ⊗ V
q−→ T ) has surjective structure mapq.

(2) H∗Ms(E) = (N

−→ tF∗ ⊗ V ) has injective structure map
.

We say that a rigid spectrumE is evenif V, T andN are concentrated in even degrees.

Lemma 5.2. If E is rigid thenMt(E) is intrinsically formal, and ifH∗Mt(E) = (tF∗ ⊗ V
q−→ T ) then

Mt(E) � (tF∗ ⊗ V
q−→ T )
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and

Ms(E) � (N

−→ tF∗ ⊗ V )

where

N = ker(tF∗ ⊗ V −→ T ),

and the basing map
 is the inclusion. Furthermore, we have the explicit injective resolution

0 −→ Ms(E) �
(

N

↓
tF∗ ⊗ V

)
−→

(
tF∗ ⊗ V

↓
tF∗ ⊗ V

)
−→

(
T

↓
0

)
−→ 0

in As.

Proof. To see thatMt(E) is formal, it is only necessary to remark thatT is the quotient of anE-divisible
group and therefore injective[8, 5.3.1]. �

Lemma 5.3. If E is rigid, the corresponding objectMs(E) = (N −→ tF∗ ⊗ V ) inAs is flat.

Proof. Tensor product onAs is defined termwise. First, note thattF∗ ⊗V is exact for tensor product with
objectsPwith E−1P �tF∗ ⊗ W for someW, so the tensor product is exact on the vertex part.

For the nub, we use the fact that the categoryAs is of flat dimension 1 by Greenlees[8, 23.3.5], together
with the fact thatN is a submodule oftF∗ ⊗ V . �

5.2. Homomorphisms out ofS0

For an objectX of As there is an exact sequence

0 −→ ExtAs(S
1+w, M) −→ [Sw, M] −→ HomAs(S

w, M) −→ 0,

so we shall need to calculate these Hom and Ext groups. For the present we restrict ourselves to the Hom
groups. We avoid confusion about grading by restricting to the casew=0 using[Sw, M]= [S0, �−wM].

Lemma 5.4. For an objectM = (N

−→ tF∗ ⊗ V ) of the abelian categoryAs

HomAs(S
0, (N −→ tF∗ ⊗ V )) = N(c0) := {n ∈ N | 
(n) ∈ c0 ⊗ V }.

Proof. A homomorphismf : S0 −→ M of degree 0 is given by a square

R
�−→ N

↓ ↓
tF∗ ⊗ Q

1⊗�−→ tF∗ ⊗ V.

Thus f is determined by theR-map�, and HomR(R, N) = N . On the other hand, the image of 1∈ R

under the basing map is 1⊗ 1, which imposes the stated condition, since�(1) ∈ V0. �
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5.3. Cohomology of spheres

The aim of the present section is to make explicit the calculation ofET∗ (SW ) in terms ofH∗(Mt(E))=
(q : tF∗ ⊗ V −→ T ) assuming thatE is rigid and even.

Lemma 5.5. Supposew : F −→ Z is zero almost everywhere. If E is rigid and even then the wth
suspension�wE is rigid and even.

If Mt(E) = (tF∗ ⊗ V
q−→ T ) then

Mt(�
wE) � (tF∗ ⊗ V

qw

−→�wT ),

where the structure map is given by

qw(ci(s)
s ⊗ �) = q(ci(s)+w(s)

s ⊗ �) ∈ es(�
wT )2n−2i(s)

for � ∈ V A2n. Thus

Ms(�
wE) = (�wN −→ tF∗ ⊗ V ),

where

�wN = ker(tF∗ ⊗ V
qw

−→�wT ). �

Remark 5.6. A natural mnemonic is to write

q(xcw ⊗ �) = qw(x ⊗ �),

despite the fact thatxcw is not an element oftF∗ .

We may now assemble the information to calculate the homology of spheres.

Corollary 5.7. Suppose that E is rigid and even, so thatH∗(Mt(E))= (q : tF∗ ⊗V −→ T ) is surjective
and V and T are in even degrees. For any functionw : F −→ Z zero almost everywhere

ẼT
0 (Sw) = ker(q : cw ⊗ V0 −→ (�wT )0)

and

ẼT−1(Sw) = cok(q : cw ⊗ V0 −→ (�wT )0).

Proof. To calculate the homology we use the short exact sequence

0 −→ ExtAs(S
1, Ms(�

wE)) −→ ET
0 (Sw) −→ HomAs(S

0, Ms(�
wE)) −→ 0.

We may calculate the Hom and Ext groups by applying HomAs(S
0, ·) to the injective resolution of�wE

given in 5.2. �
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Part 3. Background on elliptic curves

In Part 3 we summarize relevant facts about elliptic curves, and make some easy deductions that we
will need for the construction of rationalT-equivariant elliptic cohomology.

6. Elliptic curves

In this section we record the well-known facts about elliptic curves that will play a part in our con-
struction. We use[24] as a basic reference for facts about elliptic curves, and[16] as background from
algebraic geometry.

Let A be an elliptic curve (i.e., a smooth projective curve of genus 1 with a specified pointe) over a
field k of characteristic 0 and letO= OA be its sheaf of regular functions. Note that�O= k, so the sheaf
contains a great deal more information than its ring of global sections. A divisor onA is a finiteZ-linear
combination of points defined over the algebraic closurek of k, and associated to any rational functionf
onAwe have the divisor div(f ) = �P ordP (f )(P ), where ordP (f ) ∈ Z is the order of vanishing off at
P. If a divisor is fixed by Gal(k/k) it is said to be defined overk, and all the divisors we consider will be
of this sort. In the usual way, ifD is a divisor onA, we writeO(D) for the associated invertible sheaf. Its
global sections are given by

�O(D) = {f |div(f )� − D} ∪ {0},
so that for a pointP, the global sections ofO(−P ) are the functions vanishing atP.

We also haveO(D1)⊗OO(D2) = O(D1 + D2).

Since the global sections functor is not right exact, we are led to consider cohomology, but sinceA
is one dimensional this only involvesH 0(A; ·) = �(·) andH 1(A; ·), which are related by Serre duality.
This takes a particularly simple form since the canonical divisor is zero on an elliptic curve:

H 0(A;O(D)) = H 1(A;O(−D))∨,

where(·)∨ = Homk(·, k) denotes vector space duality.
From the Riemann–Roch theorem we deduce that the canonical divisor is 0 and the cohomology of

each line bundle:

dim(H 0(A;O(D)) =
{

degD if deg(D)�1,

0 if deg(D)� − 1

and

dim(H 1(A;O(D)) =
{ |degD| if deg(D)� − 1,

0 if deg(D)�1.

For the trivial divisor one has

dim(H 0(A;O)) = dim(H 1(A;O)) = 1.

Now if D = �P nP (P ) is a divisor of degree 0, we may form the sumS(D) = �P nP P in A, andD is
linearly equivalent to(S(D)) − (e). If S(D) = e then the sheafO(D) has the same cohomology asO.
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Otherwise, since no function vanishes to order exactly 1 atP, we find

H 0(A;O(D)) = H 1(A;O(D)) = 0.

We may recoverA from the graded ring�(O(∗e))={�O(ne)}n�0. Indeed, this is the basis of the proof
in [24, III.3.1] that any elliptic curve is a subvariety ofP2 defined by a Weierstrass equation. We choose
a basis{1, x} of �O(2e) and a extend it to a basis{1, x, y} of �O(3e). Now observe that since�O(6e)

is six-dimensional, there is a relation between the seven elements 1, x, x2, x3, y, xy andy2: this is the
Weierstrass equation, and it may be verified thatA is the closure inP2 of the plane curve it defines. The
graded ring�(O(∗e)) has generatorZ of degree 1 corresponding to the constant function 1 in�O(e), X
of degree 2 corresponding tox, andY of degree 3 corresponding toy. These three variables satisfy the
homogeneous form of the Weierstrass equation. The statement thatA is the projective closure of the plane
curve defined by the Weierstrass equation may be restated in terms of Proj:

A = Proj(�(O(∗e))).

7. Torsion points and topology

On the one hand, equivariant topology only gives counterparts to torsion points, but on the other it gives
them greater importance. This gives two significant variations of the standard theory: we need to use a
different topology and we need to invert different sets of morphisms in forming the derived category.

7.1. The torsion point topology

Because the topological model only gives counterparts of torsion points, we restrict sheaves to open
sets which are complements of sets of points of finite order. This means that for us meromorphic functions
are only allowed poles at points of finite order, and this entails a number of other small effects that need
attention.

The divisorA〈n〉 of points of exact ordernwill play a central role. Note that

A[n] =
∑
s|n

A〈s〉.

Definition 7.1. (i) Any divisor of the form
∑

sasA〈s〉 (with as ∈ Z) is called atorsion point divisor.
(ii) The torsion point topologyonA is the topology whose proper closed sets are specified by a finite

setF of positive integers

VF =
⋃
s∈F

A〈s〉.

The non-empty open sets are thusUF := A\VF .

Since the setsVF are closed in theZariski topology,wehavea changeof topologymapi : AZar −→ Atp,
and the usual adjoint pair of functors

i−1 : ShvtpA � ShvZar
A : i∗
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between categories of sheaves. The restriction of topology functori∗ is defined on Zariski presheaves
F by i∗(F)(V ) := F(V ), which evidently takes sheaves to sheaves and is exact. The extension of
topology functori−1 is defined on torsion point presheavesG by (i−1G)(U) = G(Û), whereÛ = UF

whereF := {n |A〈n〉∩U =∅}; this functor does not preserve sheaves, so to obtain the sheaf level functor
we pass to associated sheaves.

Lemma 7.2. The unit of the adjunction gives an isomorphismi∗i−1G�G.

To describe stalks it is convenient to use the notation

F∞ := lim→ n
F

A\
⋃

p �n

A〈p〉
 ,

for sections with poles at any points of finite order, and

Fs := lim→ n
F

A\
⋃

p �n, p �=s

A〈p〉


for sections regular on points of exact ordersbut with poles at any points of any other finite order. Note
that these are not Zariski stalks, but if we use the corresponding notation for a torsion point sheafG we
findGP = Gs , wheres is the order ofP. A short calculation then gives

(i∗F)P =
{
F∞ if P is of infinite order,
Fs if P is of orders

and

(i−1G)P =
{
G∞ if P is of infinite order,
Gs if P is of orders,

so thati−1 preserves stalks.
Note that this means Zariski sheaves of the formi−1G are very rare, since the stalks at points of the

same order are identical. In particular, all stalks at points of infinite order are the same, suggesting there
are no continuous families of sheaves of this sort.

Example 7.3.We may restrict the Zariski structure sheafOZar
A to the torsion point topology, and we take

O
tp
A := i∗OZar

A .
Similarly, our ring of meromorphic functions is

K= {f |f has poles only at points of finite order},
with associated constant sheafO(∞tors). Note that functions vanishing at points of infinite order are not
invertible inK.

The local rings of the structure sheaf are thus

(O
tp
A)P =

{
K if P is of infinite order,
{f ∈ K |f is regular at points of exact orders} if P is of finite orders.
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Lemma 7.4. The functorsi∗ andi−1 are both exact.

Proof. The exactness ofi−1 follows since it preserves stalks. Fori∗, note that taking sections overA\F

is exact for any non-empty setF of torsion points since it is affine; the stalks ofi∗ are calculated as direct
limits of such functors. �

Corollary 7.5. For Zariski sheavesF, the cohomology in the Zariski and torsion point topologies agree:

H ∗
Zar(A;F) = H ∗

tp(A; i∗F).

Proof. SinceF andi∗F have the same global sections, andi∗ is exact, it suffices to note that ifI is
flabby theni∗I is a fortiori flabby too. �

In future we will simply writeH ∗(A;F) for the common value of cohomology. Note that this applies
to the sheavesOZar

A (D(V )) of most concern to us, and we will usually omit notation for the topology,
writing simplyO(D(V )).

7.2. Torsion point equivalences

The previous subsection dealt with the change of topology, but there is the second issue of what set of
morphisms are inverted to form the derived category. In equivariant topology one does not usually invert
all equivariant maps which are non-equivariant weak equivalences (since this gives only the homotopy
theory of free actions). Instead, we invert only those equivariant maps which are equivalences in all fixed
points.

We may transpose these considerations to sheaves of modules. More precisely,OZar
A is a sheaf of rings

in the Zariski topology andOtp
A is a sheaf of rings in the torsion point topology, and we may consider their

respective categories of modules,OZar
A -mod andOtp

A-mod. These are both abelian categories, and related
by the adjoint pair

i∗ : Otp
A-mod � OZar

A -mod : i∗,

where

i∗N := i−1N⊗
i−1(O

tp
A)
OZar

A .

Lemma 7.6. The unit of the adjunction gives an isomorphismi∗i∗N�N , soOtp
A-modmay be viewed as

a subcategory of the categoryOZar
A -mod. �

Lemma 7.7. The functori∗ is exact.

Proof. It suffices to prove thatOZar
A is flat overi−1O

tp
A, which we may verify at the level of stalks. This

is straightforward sinceOZar
A (U) is flat overi−1O

tp
A(U) = OZar

A (Û) for any open setU. �

Derivedcategoriesare formed fromabeliancategoriesby takingacategoryof differential gradedobjects
and inverting a suitable collection of morphisms. If all homology isomorphisms are inverted we obtain
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D(OZar
A -mod) andD(O

tp
A-mod), but we wish to invert fewer morphisms. The torsion point homology

isomorphisms are those which induce isomorphisms ofH ∗(A; ·⊗O(D)) for all torsion point divisorsD,
and we denote the derived categories obtained by inverting theseDtp(OZar

A -mod) andDtp(O
tp
A-mod).

To actually construct the derived categories we use cellular approximation. This is determined by
specifying a set of spheres(��)�∈A which must be small objects.An object iscellular if it is built from the
spheres�� using arbitrary coproducts and triangles. A mapX −→ Y is aweak equivalenceif it induces
an isomorphism of[��, ·]∗ for all �. A cellular approximationof an objectX is then a weak equivalence
�X −→ X where�X is cellular. We then work with the actual homotopy category of cellular objects. For
us the underlying category is the category of differential graded sheaves ofO-modules in the appropriate
topology and the cells are the sheavesO(D) whereD runs through torsion point divisors.

For clarity, we display the relationship with the conventional derived category of sheaves onA.

Proposition 7.8. The derived categories are related by functors in the commutative diagram

Dtp(O
tp
A-mod) −→ D(O

tp
A-mod)

i∗ ↑↓ i∗ i∗ ↑↓ i∗
Dtp(OZar

A -mod) −→ D(OZar
A -mod)

where the verticals are adjoint pairs with counits giving equivalencesi∗i∗N � N .

Proof. The horizontals are elementary, since any torsion point homology isomorphism is a homology
isomorphism.

Since i∗ and i∗ are exact, they preserves homology isomorphisms, and therefore induces maps of
derived categories. For torsion point homology isomorphisms we make additional arguments. Indeed,
i∗HOM(M, N)=HOM(i∗M, i∗N) so that, takingM =O(−D) we see thati∗(N(D))= (i∗N)(D) and
so i∗ preserves torsion point homology isomorphisms. Finally,i∗(i∗M⊗

O
tp
A

N)�M⊗OZar
A

i∗N , so taking

M = O(D) we see thati∗ preserves torsion point homology isomorphisms as required.�

As remarked before, there is a far greater change in character in the vertical maps changing the topology
than in the horizontal maps changing the inverted morphisms. Even inD(OZar

A -mod) there are continuous
familiesO(P ) of distinct objects.

8. Coordinate data

Our main theorem constructs a cohomology theory of typeA for an elliptic curveA. The construction
depends on a choice of function vanishing at the identity, and the purpose of this section is to make clear
the exact extent of this dependence.

8.1. The coordinate

Because the local ringOe in the torsion point topology is not quite the usual Zariski local ring, we
make explicit the properties we need.

Lemma 8.1. The ideal
Ie = {f ∈ Oe |f (e) = 0}
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of functions vanishing at the identity inOe is principal. The generators ofIe are exactly the functionste
vanishing to first order at e whose zeroes and poles are all at points of finite order.
If te is a generator ofIe then for any non-zerof ∈ K there is an integer n such thatf tn

e ∈ Oe andf tn
e

does not vanish at e.

Proof. Suppose thatte is a function whose zeroes and poles are at points of finite order withte(e) = 0.
Certainlyte ∈ Ie; on the other hand, iff ∈ Ie, thenf (e) = 0 so thatf/te is still regular ate, and only
has poles at points of finite order. Hencef = te · f/te ∈ (te) andIe = (te) as required. To see that this
exhausts the set of generators, we note that a functions ∈ Ie with a zero at a pointP of infinite order
is not a generator. Indeed,Ie contains functionsf which do not vanish atP, and wheneverf = sg, the
functiong has a pole atP.

The final statement is clear sincete is a uniformizing element in the Zariski local ring.�

Definition 8.2. (i) A coordinateonA (at the identity) is a generatorte of the idealIe in Oe of functions
vanishing ate.

(ii) A coordinate divisoris a divisorZe of the form div(te) for some coordinatete. By Abel’s theorem,
a torsion point divisorZe = �P nP (P ) with ne = 1 is a coordinate divisor if and only if�P nP = 0 and
�P nP P = 0.

Remark 8.3. The ringOe is not a local ring in the sense of commutative algebra: althoughIe is maximal,
not all functions outsideIe are invertible. However, the following lemma will provide the good behaviour
we need.

Lemma 8.4. For anys �0 the quotientI s
e /I s+1

e is one dimensional over k, generated by the image oft s
e .

HenceOe/I s
e is s-dimensional, generated by the images of1, te, . . . , t s−1

e . �

We briefly discuss a special way of choosing coordinates.

Definition 8.5. A Weierstrass parametrizationof an elliptic curve is a choice of two functionsxe with a
pole of order 2 at the identity and nowhere else, andye with a pole of order 3 at the identity and nowhere
else. Because we work with the torsion point topology, we also require thatxe andye only vanish at
torsion points. This Weierstrass parametrization determines a coordinatete = xe/ye of Oe.

Remark 8.6. (i) The functionxe is specified up to scalar multiplication by a pair of non-identity points
A, B of finite order withA + B = e by the condition div(xe) =−2(e) + (A) + (B). The functionye is
specified up to scalarmultiplication by three non-identity pointsC, D, E of finite orderwithC+D+E=e

by div(ye) =−3(e) + (C) + (D) + (E). This gives the coordinate divisor

div(te) = (e) + (A) + (B) − (C) − (D) − (E).

(iii) One popular choice of Weierstrass parametrization involves choosing a pointP of order 2. This
determines a choice ofxe andye up to a constant multiple by the conditions

div(xe) =−2(e) + 2(P ) and div(ye) =−3(e) + (P ) + (P ′) + (P ′′),
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whereA[2] = {e, P, P ′, P ′′}. Thus we obtain the coordinate divisor

div(te) = (e) + (P ) − (P ′) − (P ′′).

8.2. The cyclotomic functions

Once we have chosen a coordinate, this determines the choice of a function defining the points of exact
orders.

Lemma 8.7. Given a choicete of coordinate on the elliptic curve A, for eachs �2, there is a unique
functionts with the properties

(1) ts vanishes exactly to the first order onA〈s〉,
(2) ts is regular except at the identitye ∈ A where it has a pole of order|A〈s〉|,
(3) t

|A〈s〉|
e ts takes the value1 at e.

Furthermore, the functionts only depends on the image ofte in� := Ie/I2
e , andmultiplyingte by a scalar

� multipliests by�|A〈s〉|.

Proof. Consider the divisorA〈s〉− |A〈s〉|(e). Note that the sum of the points ofA〈s〉 inA is the identity:
if s �= 2 this is because points occur in inverse pairs, and ifs = 2 it is because theA[2] is isomorphic to
C2×C2. It thus follows from the Riemann–Roch theorem that there is a functionf with A〈s〉− |A〈s〉|(e)

as its divisor. This function (which satisfies the first two properties in the statement) is unique up to
multiplication by a non-zero scalar. The third condition fixes the scalar, and replacing the coordinatete

by te + f t2e has no effect sincets t
2|A〈s〉|
e vanishes ate. �

Remark 8.8. If we choose any finite collection	 = {s1, . . . , ss} of orders�2, there is again a unique
functiont	 with analogousproperties. Indeed, thegoodmultiplicative property of thenormalizationmeans
we may take

t	 =
∏

i

tsi
.

This applies in particular to the setA[n]\{e}.
For some purposes, it is convenient to have a basis for functions with specified poles. We already have

the basis 1, x, y, x2, xy, . . . if all the poles are at the identity. Multiplication by a functionf induces an
isomorphism

f · : �O(D)
�−→�O(D − (f ))

so we can translate the basis we have.

Lemma 8.9. For the divisorD =�s �1n(s)A〈s〉 let t∗(D) :=∏
b�2 t

n(b)
b .Multiplication byt∗(D) gives

an isomorphism

t∗(D)· : H 0(A;O(D))
�−→H 0(A;O(deg(D) · (e))).
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A basis ofH 0(A;O(D)) is given by1/t∗(D) if deg(D) = 0, and by the firstdeg(D) terms in the
sequence

1/t∗(D), x/t∗(D), y/t∗(D), x2/t∗(D), xy/t∗(D), . . .

otherwise. �

8.3. Differentials

On any elliptic curve we may choose an invariant differential, also characterized by the fact that it has
no poles or zeroes. This is well defined up to scalar multiplication, and we would like to make a canonical
choice. Sincete vanishes to the first order ate, its differential is regular and non-vanishing ate, so we
may takeDt to be the invariant differential agreeing with dte ate.

We shall be considering the space�⊗OK of meromorphic differentials: those which can be written
in the formf Dt for a meromorphic functionf.

Warning 8.10. The differentials dts are not generally meromorphic. To give an explicit example, suppose
A is defined byy2 = x3 + ax + b. In this case, the invariant differential is a scalar multiple of dx/y, and
we may taket2 to be a scalar multiple ofy, so that the zeroes of dt2 are those of dy = (3x2 + a) dx/y.
The four points at which 3x2 + a vanishes will not generally be torsion points.

It would be nice to make a construction which depends only on the coordinate divisor and not the
coordinate itself, but we only know how to do this for a generic curve. We shall see that for such a
construction, it suffices to construct for eachsa meromorphic differential with poles to the first order on
each point of orderswhich does not change ifte is multiplied by a scalar.

Fors =1 the expressionDt/te gives a suitable meromorphic differential. Fors �2, the situation is less
straightforward. To start with, by the last clause of 8.7, the differentialDt/ts does change ifte is multiplied
by a scalar. Our next attempt is to note that the differential dts is again regular and non-vanishing at each
pointP of exact orders, and its value atP is thus a non-zero multiple�P of that ofDt, but in general�P

does depend onP. The differential�P Dt/ts is suitable, but it involves making a choice of a particular
pointP of orders. The alternative is to consider the average value

�s = 1

|A〈s〉|
∑

P∈A〈s〉
�P

of the scalars and use the differential�sDt/ts . Provided�s is non-zero, this gives a suitable differential
depending only on the coordinate divisor. However, for eachs there is a finite number of curves with
�s = 0, so it is only for a generic curve that this is legitimate. To avoid this restriction we prefer to make
a choice of coordinate rather than coordinate divisor.

9. Principal parts of functions on elliptic curves

The point of this section is to analyse the sheafO(∞tors)/O of principal parts of functions with poles at
torsion points.We repeat that we are working with sheaves in the torsion point topology, so thatO(∞tors)
is the constant sheaf corresponding to the ringK of functions with arbitrary poles at points of finite order.
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For any effective torsion point divisorD we may use the short exact sequence

0 −→ O −→ O(aD) −→ Q(aD) −→ 0

of sheaves to define the quotient sheafQ(aD) for 0�a�∞. The cohomology ofQ(∞D) is the coho-
mology ofAwith support defined byD.

In fact, we may reduce constructions to the case when the divisorD = A〈s〉 for somes. Evidently,
Q(∞A〈s〉) is a skyscraper sheaf concentrated onA〈s〉, so we may localize atA〈s〉 to obtain

0 −→ Os −→ O(∞A〈s〉)s −→ Q(∞A〈s〉) −→ 0.

Because we use the torsion point topology,

O(∞A〈s〉)s = O(∞A〈s〉)A〈s〉 = O(∞tors) =K.

Sincets is an invertible meromorphic function vanishing to the first order onA〈s〉, the sequence may be
written

0 −→ Os −→ Os[1/ts] −→ Os/t∞s −→ 0.

This gives the basis of a Thom isomorphism for the homology of almost free spectra.

Lemma 9.1. A choice of coordinate gives isomorphisms

O((a + r)A〈s〉)/O(rA〈s〉) = Q((a + r)A〈s〉)/Q(rA〈s〉)�Q(aA〈s〉),
induced by multiplication byt r

s and hence

Q(∞A〈s〉) ⊗ O(rA〈s〉)�Q(∞A〈s〉).
If s �2 the dependence is only through the image ofte in � = Ie/I2

e .

Proof. Since the sheaves are all skyscraper sheaves overA〈s〉, it suffices to observe that for anya,
multiplication byts induces an isomorphism

ts : O((a + 1)A〈s〉)s

�−→O(aA〈s〉)s .

To see this, view the rings as subrings of the ringK of meromorphic functions. Sincets vanishes onA〈s〉
and its poles are at points of finite order other thans, the image lies in the stated subring. Multiplication
by any non-zero function is injective, and to see the map is surjective, we observe that iff ∈ K has no
pole of order more thana onA〈s〉 thenf/ts is a meromorphic function no pole of order more thana + 1
onA〈s〉. �

Note that it is immediate from the Riemann–Roch formula that for 0�a�∞ the cohomology group
H 0(A;Q(aA〈s〉)) is a|A〈s〉| dimensional, andH 1(A;Q(aP )) = 0.

Now we may assemble these sheaves. Indeed, we have a diagram

O −→ O(∞D) −→ Q(∞D)

↓ ↓
O −→ O(∞(D + D′)) −→ Q(∞(D + D′))

of sheaves, and hence a mapQ(∞D) −→ Q(∞(D + D′)).
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Proposition 9.2. If s, s′�1 are distinct, then the natural map

Q(∞A〈s〉) ⊕ Q(∞A〈s′〉) �−→Q(∞(A〈s〉 + A〈s′〉))
is an isomorphism.

Proof. We apply the Snake Lemma to the diagram

O⊕ O −→ O(∞A〈s〉) ⊕ O(∞A〈s′〉) −→ Q(∞A〈s〉) ⊕ Q(∞A〈s′〉)
↓ ↓ ↓
O −→ O(∞(A〈s〉 + A〈s′〉)) −→ Q(∞(A〈s〉 + A〈s′〉))

in the abelian category of sheaves onA. The first vertical is obviously surjective with kernelO. The kernel
of the second vertical is alsoO, since iff andf ′ are local sections ofO(∞A〈s〉) andO(∞A〈s′〉) (i.e., f
only has poles onA〈s〉 andf ′ only onA〈s′〉) thenf +f ′ =0 implies thatf andf ′ are regular. Finally we
must show thatO(∞(A〈s〉 + A〈s′〉)) is the sheaf quotient ofO −→ O(∞A〈s〉) ⊕ O(∞A〈s′〉). However,
this may be verified stalkwise, where it is clear.�

Corollary 9.3. (i) The natural map gives an isomorphism⊕
s

Q(∞A〈s〉) �−→Q(∞tors).

(ii) A choice of coordinatete gives an isomorphism

Ts : Q(∞A〈s〉) ⊗ O(A〈s〉) �−→Q(∞A〈s〉).
(iii) The sheafQ(∞A〈s〉) has no higher cohomology and its global sections are

�Q(∞A〈s〉) =K/{f |f is regular onA〈s〉}. �

Part 4. The construction

In Part 4 we show that the structure of the algebraic model for rationalT-equivariant cohomology
theories matches the structure of sheaves of functions on an elliptic curve so neatly that the construction
of a cohomology theory is effortless. Short as it is, this is the core of the paper.

10. A cohomology theory associated to an elliptic curve

We are now ready to state and prove the main theorem.

Theorem 10.1.Given an elliptic curve A over a field k of characteristic0, and a coordinatete, there is
an associated2-periodic rationalT-equivariant cohomology theoryEA∗

T(·)=E(A, te)∗T(·) of type A, so
that for any representationW withW T = 0we have

ẼA
i

T(SW ) = H i(A;O(−D(W)))
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and

ẼA
T

−i(S
W ) = H i(A;O(D(W)))

for i = 0, 1,where the divisorD(W) is defined by taking

D(W) =
∑

n

anA[n] whenW =
∑

n

anzn with a0 = 0.

This association is invariant under base extension and functorial for isomorphisms of the pair(A, te).
The construction is also natural for quotient mapsp : A −→ A/A[n] in the sense that if the multi-

plicity of p(te) at e is1 (for example ifdiv(te) contains no points of order dividing n), there is a map
p∗ : inf T

T/T[n]E(A/A[n], p(te)) −→ E(A, te) of T-spectra, whereE(A/A[n]) is viewed as aT/T[n]-
spectrum and inflated to aT-spectrum.

Remark 10.2. (i) The elliptic curve can be recovered from the cohomology theory. Indeed, we may form
the graded ring

ẼA
T

0 (S∗z) := {ẼA
T

0 (Saz)}a �0

from the productsSaz ∧ Sbz −→ S(a+b)z, and the elliptic curve can be recovered from the cohomology
theory via

A = Proj(ẼA
T

0 (S∗z)),

as commented in Section 6. Furthermore, this reconstruction is functorial in that any multiplicative natural
transformation of cohomology theories will induce a map of elliptic curves.

(ii) In fact the coordinate can also be recovered from the cohomology theory, by evaluating the theory
on suitable spaces (see Proposition 16.1 below).

(iii) A Weierstrass parametrization ofA can be specified by elements of homology:

xe ∈ ẼA
T

0 (S2z) and ye ∈ ẼA
T

0 (S3z).

Remark 10.3. (i) We have not required thatk is an algebraically closed field. To see the advantage of
this, note that even for the multiplicative group, the individual points of ordern are only defined overk if
k contains appropriate roots of unity. HoweverGm[n] (defined by 1− zn) and hence alsoGm〈n〉 (defined
by the cyclotomic polynomial�n(z)) are defined overQ. Hence equivariantK-theory itself is defined
overQ.

(ii) It is useful to generalize the construction to allowk to be an arbitraryQ-algebra so as to include
various universal cases. There is no obstacle to making the construction in this generality, provided func-
tionste andts can be specified, but the analysis of the resulting cohomology theory is more problematic.
Since the entire construction is invariant under base change (provided we use corresponding coordinate
functions), the case of a field already gives significant information. The present methods are intrinsically
restricted toQ-algebras.

Remark 10.4. One use for the naturality is that any automorphism of the elliptic curve preserving the
coordinatete induces an automorphism of the cohomology theory. For example ifte is defined using a
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pointPof order 2 as in Example 8.6(iii), any rigid Galois automorphism fixingPgives an automorphism
of the theory.

Proof. The basic ingredients of the torsion model of a the cohomology theory associated to an elliptic
curveAare analogous to the affine case described inAppendixA. We will write down a rigid, even object

Mt(EA) = (tF∗ ⊗ V A
q−→ T A)

of the torsion categoryAt (i.e., the structure mapq is surjective andVAandTAare in even degrees). By
5.2 this is intrinsically formal and therefore determines

Ms(EA) = (NA −→ tF∗ ⊗ V A)

with NA = ker(q), and the representing spectrumEA.
We divide the proof into three parts: (1) construction ofVAandTA, (2) construction of the mapq and

(3) verification that the cohomology of spheres is correct.
(1)The vertex and nub: Exactly as in the affine case, the degree 0 part of the vertex

V A0 = �O(∞tors) =K

consists of rational functions whose poles are all at torsion points, however the torsion module is not
simply the quotient of this by regular functions, but rather

T A0 = �(O(∞tors)/O) = �(Q(∞tors)).

Now we use the splitting

Q(∞tors)�
⊕

s

Q(∞A〈s〉)

of 9.3 to separate points of different orders. This gives

T A0 = �Q(∞tors)�
⊕

s

�Q(∞A〈s〉),

where

�Q(∞A〈s〉) =K/{f |f is regular onA〈s〉} =K/Os .

BothVAandTAare zero in odd degrees, and in other even degrees we take

V A2n =K⊗O�n�V A0 ⊗ �n and T A2n = �(K/O⊗O�n)�T A0 ⊗ �n,

where� is the sheaf of Kähler differentials and� is the cotangent space at the identity, and where
exponents refer to tensor powers (rather than exterior powers). We may now describe theR-module
structure onTA. The direct sum splitting

T A =
⊕

s

�Q(∞A〈s〉)
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corresponds to the splitting

R�
∏

s

Q[c]

and

esT A = �Q(∞A〈s〉)
is a Q[c]-module wherec acts as multiplication byts/Dt , wherets definesA〈s〉 as described in 8.7.
For s = 1 this structure does not change ifte is multiplied by a non-zero scalar, so depends only on the
coordinate divisorZe; for s �2 this depends only on the image oft2 in �= Ie/I2

e . Since the order of any
pole is finite,esT A is a torsionQ[c]-module.

Remark 10.5. The torsion moduleTAmay be described without using the coordinate data. Indeed, we
may defineT A′ by giving its idempotent pieces

es(T A′)2n =K/{f ∈ K |ords(f )�n},
and define theQ[c]-action to be projection. AQ[c]-isomorphismT A′�T A is given by the coordinate:(

Dt

ts

)n

: es(T A′)2n −→ es(T A)2n.

We have usedTA rather thanT A′ because the coordinate data does need to be used somewhere, whilst
differentials are used in a more uniform way inTA.

(2) The structure map q: By 4.5 a mapq is determined by its idempotent summands, which can be
easily written down.

Definition 10.6. We define

q : tF∗ ⊗ V A −→ T A =
⊕

s

esT A

by specifying itssth component

q(cw(s)
s ⊗ �) =

(
ts

Dt

)w(s)

�;

up to normalization, this picks out the part of� with poles of order> w(s) on points of orders.

Remark 10.7. Any � ∈ V2n may be written

� = f · (Dt)⊗n

for some meromorphic functionf ∈ K. The formula then becomes

q(cw(s)
s ⊗ f · (Dt)⊗n)s = t

w(s)
s f · (Dt)⊗(n−w(s)).

Lemma 10.8. The definition does determine an R-mapq : tF∗ ⊗ V A −→ T A.
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Proof. Since any function is regular at all but finitely many points, the mapqmaps into the sum. Thus
q(cu ⊗ �) is well defined, and we need to check that taken together they specify anR-map. For this, we
apply 4.5. TakingV = V A andT = T A we note that 10.6 does determine mapsqs , and that they satisfy
the condition. It follows that there is anR-mapqwith these idempotent pieces.�

(3) Cohomology: Now we can check that the resulting homology and cohomology of spheres agrees
with the cohomology of the corresponding divisors on the elliptic curve. Because the use of differentials
is uniform, it is enough to prove the result for representationsWwith W T = 0.

Since we have decided to use the isomorphism[S−w, M] = [S0, �wM], we need to identify the
suspension of the representing objectEA. Applying 5.5 in this case we obtain the following.

Lemma 10.9. Supposew : F −→ Z is zero almost everywhere. The wth suspension of EA is given by

�wEA = (�wNA −→ tF∗ ⊗ V A),

where

�wNA = ker(tF∗ ⊗ V A
qw

−→�wT A)

and for� ∈ V A2n =K⊗ �n

qw(ci(s)
s ⊗ �) = �

(
ts

Dt

)w(s)+i(s)

∈ (K/Os) ⊗ �n−w(s)−i(s) = es(�
wT A)2n−2i(s).

We also use the mnemonic

q(xcw ⊗ �) = qw(x ⊗ �),

despite the fact thatxcw is not an element oftF∗ .

Consider the complex representationW with W T=0 and the corresponding functionw(H)=
dimC(W H ). By 5.7 the homology is given by

ẼA
T

0 (SW ) = ker(q : cw ⊗ V A0 −→ (�wT A)0)

and

ẼA
T

−1(SW ) = cok(q : cw ⊗ V A0 −→ (�wT A)0)

and similarly withW replaced by−W . Since the kernel and cokernel are vector spaces overk, it is no
loss of generality to extend scalars to assume it is algebraically closed. This is convenient because it is
simpler to treat separate points of ordern one at a time.

The following two lemmas complete the proof.

Lemma 10.10. If W is a representation withW T = 0 then

ẼA
T

0 (SW ) = H 0(A;O(D(W))),
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and ifW �= 0,

ẼA
T

0 (S−W ) = 0.

Proof. By definition

q(cw ⊗ f )s = (
ts

Dt
)w(s)f .

First note thatDt is regular and non-vanishing onA〈s〉, so the differential can be ignored for the purpose
of calculating the kernel. Since the functionts vanishes to exactly the first order onA〈s〉, the condition that
f lies in the kernel is that ordP (f )�−w(s) for each pointPof exact orders. SinceD(W)=�P w(sP )(P )

we have

ker(q : cw ⊗ V A0 −→ (�wT A)0) = {f ∈ V A |div(f ) + D(W)�0}
as required.

ReplacingWby−W , the second statement is immediate.�

The calculation of the odd cohomology is less elementary.

Proposition 10.11. If W is a representation withW T = 0 then

ẼA
T

−1(S−W ) = H 1(A;O(−D(W))),

and ifW �= 0,

ẼA
T

0 (SW ) = 0.

Proof. We have to calculate cok(q : c−w ⊗V A0 −→ (�wT A)0). First, we give the concrete description
of H 1(A;O(−D(W))) using adèles from[22, Proposition II.3].

The exact sequence of sheaves

0 −→ O(−D(W)) −→ K −→ Q(−D(W)) −→ 0

induces a cohomology exact sequence ending

K
�−→H 0(A;Q(−D(W))) −→ H 1(A;O(−D(W))) −→ 0.

However the definition ofQ(−D(W)) shows that it is a skyscraper sheaf concentrated on the support of
D(W). Its space of sections isA/A(−D(W)), where

A = {(xs)s | xs ∈ K, and almost allxs ∈ k}
is the space of adèles and

A(−D(W)) = {(xs) ∈ W |ordP (xs) + ords(−D(W))�0}.
Thus cok(�) = A/(A(−D(W)) +K).
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To complete the proof we construct an isomorphismmso that the left hand square in the diagram

K
�−→ H 0(A;Q(−D(W))) −→ H 1(A;O(−D(W))) −→ 0

= ↓ m ↓ � ↓
c−w ⊗ (V A)0

q−→ (�−wT A)0 −→ ẼA
T

−1(S−W ) −→ 0

commutes; the result follows from the 5-lemma. Both the domain and codomain ofm split into pieces
corresponding to the divisorsA〈s〉. If as = dimC(W T[s]), we definemby taking thesth term

ms : A/A(−asA〈s〉) =K/O(−asA〈s〉) −→ K/Os ⊗ �as = es(�
−wT A)0

to be

ms(f ) = f ·
(

Dt

ts

)as

.

Indeed, the definition is forced by the requirement that the square commute, but since the vanishing ofts
definesA〈s〉, ms is an isomorphism. �

Remark 10.12. It is possible to give a more explicit proof of 10.11 as follows. First, one checks any
element(g1, g2, . . .) ∈⊕s esT A is congruent (modulo the image ofqw) to one withg2 = g3 = · · · = 0.
Now, using 8.9, identify a subspace of the correct codimension in the image. Using divisors one sees the
cokernel must be at least this big. Finally, the cokernel is naturally dual toH 0(A;O(D(W)), and hence
naturally isomorphic toH 1(A;O(−D(W))) by Serre duality.

Part 5. Properties ofT-equivariant elliptic cohomology

Now that we have defined the cohomology theoryEA∗
T(·) associated to an elliptic curveA, we discuss

some of its properties, including multiplicativity and a structure reflecting the addition onA.

11. Homotopical multiplicative properties

For the rest of this section we identifyEAwith the corresponding object inAs, so thatEA = (NA −
→ tF∗ ⊗ V A), and there is a short exact sequence

0 −→ NA

−→ tF∗ ⊗ V A

q−→ T A −→ 0.

11.1. The ring structure onEA

Note thatV A =⊕
n K⊗O �n has a commutative and associative product, which therefore induces

such a product ontF∗ ⊗ V A.

Theorem 11.1.The product of functions and differential forms induces a commutative and associative
product on the algebraic model for EA, so EA is a commutative ring spectrum up to homotopy. Using
results of[13] we may choose EA to be a strictly commutative ringT-spectrum.
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Proof. First, note that by 5.3EA is flat, so that tensor product withEAmodels the smash product. It
therefore suffices to show that the product ontF∗ ⊗ V A restricts to a product onNA.

Supposea, b ∈ tF∗ ⊗ V A; we must show that ifq(a) = 0 andq(b) = 0 thenq(ab) = 0. It suffices to
concentrate on the component mapping intoesT A for eachs. The key to this is that for fixedswe may
giveVA the structure of aQ[c]-module by lettingc act asts/Dt . With this definition,c acts invertibly, so
that we have a ring homomorphism

is : Q[c, c−1] −→ V A.

Now qs factors as

Q[c, c−1] ⊗ V A
is⊗1−→V A ⊗ V A −→ V A −→ esT A.

The fact thatqs(ab)=0 if qs(a)=0 andqs(b)=0 now follows since the product of two functions regular
at a point is also regular there.�

11.2. Duality

Now that we have a product structure we can tie up topological and geometric duality in a satisfactory
way.

Lemma 11.2. Spanier–Whitehead duality for spheres corresponds to Serre duality in the sense that the
Serre duality pairing

H 1(A;O(−D(W))) ⊗ H 0(A;O(D(W))) −→ H 1(A;O)

‖ ‖
[S0, S−W ∧ �EA]T ⊗ [S0, SW ∧ EA]T [S0, �EA]T

is induced by the algebraically obvious Spanier–Whitehead pairing

S−W ∧ EA ∧ SW ∧ EA � S−W ∧ SW ∧ EA ∧ EA −→ S0 ∧ EA ∧ EA −→ EA.

Proof. Both maps can be taken to be induced by multiplication of functions and a residue map (see
[22, Chapter II]).

12. Reflecting the group structure of the elliptic curve

The group multiplication on an affine algebraic groupG gives its ring of functionsO a diagonal, and
thusO becomes a Hopf algebra. When we say thatK-theory corresponds to the multiplicative groupGm
we mean that not only isK0

T = Z[z, z−1] the representing ring forGm but also that the diagonal also has
a topological source. Indeed, the multiplication map� : T × T −→ T induces a map

K0
T

�∗−→K0
T×T = K0

T ⊗ K0
T,

which turns out to be the coproduct on the ring of functions onGm. The corresponding situation for
formal groups and complex oriented theories is even more familiar.



1248 J.P.C. Greenlees / Topology 44 (2005) 1213–1279

When we work with an elliptic curve, we again expect the group structure onA to give additional
structure on spaces of functions. However the structure is not just a coproduct, and we extract the relevant
information from Mumford’s work[20]. Indeed, choosing a line bundleL to control the behaviour of
functions, the multiplication� : A×A −→ A would give a map�∗ : H 0(A;L) −→ H 0(A×A; �∗(L)),
but since�∗(L) does not decompose as a tensor product, this is not very helpful. Instead Mumford
considers the map

� : A × A −→ A × A

given by�(x, y)= (x+y, x−y). It then turns out that if we letM =p∗
1L⊗p∗

2L, by the see-saw principle
and the theorem of the square that�∗M�M2 (see[20, p. 320]). Using the Künneth isomorphism, we
obtain a map

�L : H 0(A;L) ⊗ H 0(A;L) = H 0(A × A;M)
�∗−→H 0(A × A;M2)

=H 0(A;L2) ⊗ H 0(A;L2).

Applying this whenL = O(D(W)) for a representationWwith W T = 0 we see that this is a map

�W : ẼA
T

0 (SW ) ⊗ ẼA
T

0 (SW ) −→ ẼA
T

0 (S2W ) ⊗ ẼA
T

0 (S2W ).

By choosingWsufficiently large we can evidently find�∗(f1, f2) for an arbitrary meromorphic functions
f1, f2, and since�∗(f1, f2)(x, y)= (f1(x + y), f2(x − y)), we recoverf1(x + y) by suitable restriction.

We now describe how�W should be realised at the level of spectra. The realization involves using
T × T-equivariant spectra, so proofs lie outside the scope of the present paper. However the picture is
sufficiently compelling to merit a brief account.

Suppose there exists aT×T-equivariant cohomology theory of typeA×A. Constructing such a theory
is significantly easier than constructing aT × T-equivariant theory for an arbitrary abelian surface. To
the representationwi ⊗ zj of T × T we associate the divisor

D(wi ⊗ zj ) = ker(A × A
(i,j)−→A × A),

and extend this to arbitrary representations so that

D(V ⊕ W) = D(V ) + D(W).

The 2-periodic theoryE(A × A)T×T∗ (·) should then come with a spectral sequence

H ∗(A × A;OA×A(D(W)) ⇒ ˜E(A × A)
T×T

∗ (SW ).

Since some line bundles have cohomology in degree 2, this does not determinẽE(A × A)
T×T

∗ (SW ) in
general. However whenOA×A(D(W)) has no cohomology in dimension 2 we find

˜E(A × A)
T×T

0 (SW ) = H 0(A × A;OA×A(D(W))).

Next, the map� : A × A −→ A × A is an isogeny with kernel

�A[2] = {(a, a) | a + a = e}.
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We also consider the corresponding group homomorphism

�̂ : T × T −→ T × T,

defined bŷ�(w, z) = (wz, w/z), which is surjective with kernel

�T[2] = {(z, z) | z2 = 1}.
To minimize confusion, we identify the secondT × T with T × T = (T × T)/�T[2]. The map� should
correspond to a map

�∗i : inf T×T

T×T
E(A × A) −→ E(A × A)

(i for inflation) ofT × T-spectra or, adjointly, to a map

�∗f : E(A × A) −→ E(A × A)�T[2]

(f for fixed point) ofT × T-spectra.

Lemma 12.1. For any representationW ofT × T, the map�f induces

�∗f : E(A × A)T×T
0 (SW ) −→ E(A × A)T×T

0 (SW ).

Proof. The map�∗f induces

�∗f : [S0, SW ∧ E(A × A)]T×T
0 −→ [S0, SW ∧ E(A × A)�T[2]]T×T

0 ,

so it suffices to identify the domain and codomain. By definition

˜E(A × A)
T×T

0 (SW ) = [S0, SW ∧ E(A × A)]T×T
0

so we turn to the codomain and calculate

[S0, SW ∧ E(A × A)�T[2]]T×T
0 = [S−W , E(A × A)�T[2]]T×T

0

= [S−W , E(A × A)]T×T
0

= [S0, SW ∧ E(A × A)]T×T
0

= ˜E(A × A)
T×T

0 (SW ).

TomodelM=p∗
1L⊗p∗

2L with L=O(D(W)) for a representationWof T we takeW=(W⊗1)⊕(1⊗W).
Direct sum of representations corresponds to tensor product of line bundles and to sums of divisors, so if

W corresponds to the line bundleL and the divisorD(W),

then

W corresponds to the line bundlep∗
1L ⊗ p∗

2L and the divisor[D(W) × A] + [A × D(W)].
Viewed as a representation ofT × T by pullback alonĝ� we find

�̂
∗
(W) = �̂

∗
1W ⊕ �̂

∗
2W .
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In particular ifW = zn we find

�̂
∗
(W) = (wn ⊗ zn) ⊕ (wn ⊗ z−n).

Finally, we need to observe that for anyn, the bundles associated to

(wn ⊗ zn) ⊕ (wn ⊗ z−n) and (w2n ⊗ 1) ⊕ (1⊗ z2n)

are isomorphic: this is precisely the same argument as showed�∗M�M2 above. WithL = O(D(W)),
we thus expect a commutative diagram

H 0(A;L)⊗2 = H 0(A × A;p∗
1L ⊗ p∗

2L)
�∗−→ H 0(A × A;p∗

1L2 ⊗ p∗
2L2) = H 0(A;L2)⊗2

↓ ↓
˜E(A × A)

T×T

0 (SW )
�∗f−→ ˜E(A × A)

T×T

0 (SW ). �

13. The completion theorem

By formal completion around the identity, we may associate a formal groupÂ to an elliptic curveA.
In favourable circumstances there is a (non-equivariant) 2-periodic complex oriented cohomology theory
EÂ∗(·) associated tôA, and a Borel theory

EÂ∗
T(X) := EÂ∗(ET×TX).

The purpose of this section is to make explicit the relationship between the equivariant theoryEA∗
T(X)

associated to the elliptic curveA and the Borel theory associated to the formal groupÂ.

Proposition 13.1. The cohomology ofET is concentrated in even degrees, and in degree0 it is the
completion ofOe at the idealIe of functions vanishing at e:

EA0
T(ET) = lim← k

Oe/I k
e .

Proof. Indeed, we may make the calculation

ẼA
∗
T(ET+) = [ET+, EA]∗T = [ET+, EA ∧ ET+]∗T = Hom∗

Q[c](Q[c]∨, e1T A).

Now, shifting into degree 0 we replace the action bycwith the action byte and find this is

Hom∗
Q[te](Q[te]∨,K/Oe) = lim← k

(ann(K/Oe, tk
e ), te) = lim← k

(Oe(k(e))/Oe, te).

Now multiplication by powers ofte gives an isomorphism between the inverse system(Oe(k(e))/Oe, te)

and the inverse system(Oe/I k
e ,projection). �

Since the formal group law on̂A comes fromf (a+b)=F (f (a), f (b)) whenf is a coordinate function,
the formal group law forEÂ can be inferred from the map�∗ for EAdescribed in Section 12.
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There is another less natural approach involving comparison with the Borel theory of the periodic
theory represented by

HP =
∨
n∈Z

�2nH .

This has coefficients

HP 0
T = Q[[y]].

Lemma 13.2. There is an equivalenceEA ∧ ET+ � HP ∧ ET+, and therefore

EA∗
T(X × ET)�HP ∗(ET×TX),

so that in the notation above, EÂ � HP .

Remark 13.3. The additional information inEÂ is in the comparison withEA, and hence in the rela-
tionship between the formal group law and the addition onA.

Proof. First, to see the equivalence we need only show the two theories give homology ofET isomorphic
asQ[c]-modules[8, 4.4.1]. Since, both theories are 2-periodic andEAT∗ (ET) andHP ∗(BT) are divisible,
it suffices to observe that the two theories have isomorphic non-equivariant coefficients.

Now for a based spaceY,

F (ET+ ∧ Y, EA) � F (ET+ ∧ Y, ET+ ∧ EA) � F (ET+ ∧ Y, ET+ ∧ HP )

�F (ET+ ∧ Y, HP ). �

14. The homology and cohomology of universal spaces

From the point of view of equivariant topology, the completion theorem of the previous section is just
one example of a family of calculations. For other universal spaces we obtain analogous results by the
same proof. For simplicity we restrict the statement to the value on a point.

Suppose then that	 is a finite set of positive integers and letF(	) denote the family of subgroups with
orders dividing elements of	 andA[	] denote the set of points with orders dividing elements of	.

Theorem 14.1. (i) (Completion theorem.) The cohomology ofEF(	) is in even degrees and

EA0
T(EF(	)) = H 0(A;O∧

A[	]),

whereA[	] is the set of points with orders dividing elements of	. SinceO∧
A[	] is a skyscraper sheaf, this

is just the sum of the completed local rings at the points ofA[	].
(ii) (Local cohomology theorem.) The homology ofEF(	) is in odd degrees and

EAT
1 (EF(	)) = H 1

A[	](O),

where the cohomology on the right isA[	]-local cohomology.
Proof. The proof of part (i) follows that of 13.1.
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For part (ii) we may use the model

S(∞V (	)) = EF(	) whereV (	) =
⊕
n|	

zn.

The cofibre sequence

S(∞V (	))+ −→ S0 −→ S∞V (	)

and the fact that the Euler class ofzn definesA[n] give the result. �

The calculation of the cohomology ofEF(n)=E(T/T[n]) corresponds to the fact that one may obtain
aT[n]-equivariant formal group law in the sense of[5] by formal completion of the curveA alongA[n],
as described in[9].

15. The Hasse square

We want to combine the localization and completion theorems to give a method of calculation of elliptic
cohomology in terms of Borel theories combined using the geometry of the curve.

The localization theorem is elementary.

Lemma 15.1(Localization theorem). For anyT-space X we have

EAT∗ (X ∧ ẼF) = H∗(XT;�∗
A ⊗OK),

where the grading on the right is that for homology with graded coefficients(i.e., total degree).A similar
result holds in cohomology for finite complexes X.

Proof. Since lim→V O(D(V )) =K, andẼF= lim→V T=0 SV we have

EAT
2d(ẼF) = (�1

A)⊗d ⊗OK. �

We want to apply the completion theorem for the family of all finite subgroups. To do this for arbitrary
complexes it is convenient to introduce the notation

H ∗
T(XC; I ) := HomH ∗(BT+)(H

T∗ (XC); I )

for anyH ∗(BT+)-moduleI, where the grading is that of homomorphisms ofH ∗(BT+)-modules. IfI is
injective, this is a cohomology theory inX, and ifH T∗ (XC) = H∗(XC) ⊗ H∗(BT+) thenH ∗

T(XC; I ) =
H ∗(XC;HomH ∗(BT+)(H∗(BT+), I )).

Lemma 15.2. For anyT-space X

EA∗
T(X ∧ EF+) =

∏
C

H ∗
T(XC; TCA ⊗ �∗

A).

If H T∗ (XC) = H∗(XC) ⊗ H∗(BT+) for all C then

EA∗
T(X ∧ EF+) =

∏
C

H ∗(XC;O∧
C ⊗ �∗

A),

whereO∧
C is the ring obtained as the formal completion ofO atA〈s〉 if C is of order s.
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Proof. The first statement amounts to the fact thatEA∧�EF+ is injective, with coefficientsT A⊗�∗
A.

Now we use the fact that there is a rational splittingEF+ �∨
CE〈C〉 corresponding toT A �⊕

CTCA,
and that[X, E〈C〉∧Y ]T=[XC, E〈C〉∧Y ]T. Passing to the summand corresponding toC, theH ∗(BT+)-
module structure on rings of functions is throughts/Dt . The second statement follows since the short
exact sequence

0 −→ OC −→ K −→ TCA −→ 0

gives an isomorphism

HomH ∗(BT+)(H∗(BT+), TCA ⊗ �∗
A)

= ExtH ∗(BT+)(H∗(BT+),OC ⊗ �∗
A) = O∧

C ⊗ �∗
A. �

We express the homotopy level Hasse square via the associated Mayer–Vietoris long exact sequence.

Proposition 15.3(Hasse square). For anyT-space X there is a long exact sequence

· · · −→ EAn
T(X) −→ H n(XT;K⊗O �∗

A) ×
∏
C

H n
T(XC; TCA ⊗ �∗

A) −→ H n(XT;KF ⊗ �∗
A)

−→EAn+1
T (X) −→ · · · ,

natural in X, whereKF =∏
C O∧

C ⊗K. If H T∗ (XC) = H∗(XC) ⊗ H∗(BT+) then

H n
T(XC; TCA ⊗ �∗

A)�H n(XC;O∧
C ⊗ �∗

A).

Remark 15.4. SinceX is a space, two of the maps in the above long exact sequence give a diagram of
rings

EA∗
T(X) −→ H ∗(XT;K⊗O �∗

A)

↓ ↓∏
C

H ∗
T(XC; TCA ⊗ �∗

A) −→ H ∗(XT;KF ⊗ �∗
A)

When the connecting homomorphism in the long exact sequence is zero, this is a pullback diagram of
rings. For example, this applies if bothH ∗(XT) andH ∗

T(XC) are in even degrees for allC.

Proof. Any T-spectrumE occurs in the Tate homotopy pullback square

E −→ E ∧ ẼF

↓ ↓
F (EF+, E) −→ F (EF+, E) ∧ ẼF

whereF is the family of proper subgroups, and applyingF (X, ·) we obtain the homotopy pullback square

F (X, E) −→ F (X, E ∧ ẼF)

↓ ↓
F (X ∧ EF+, E) −→ F (X, F (EF+, E) ∧ ẼF)

Note that[X, Y ∧ ẼF]T∗ = [XT, �TY ]∗, so that both the right-hand terms can be expressed in terms of
the geometric fixed points ofX. Now takeE = EA and apply the Localization Theorem 15.1 to see that
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	T∗ (F (X, EA ∧ ẼF)) = H ∗(XT;K⊗ �∗
A) and the Completion Theorem 14.1(i) to see that

	T∗ (F (X ∧ EF+, EA)) = EA∗(X ∧ EF+) =
∏
C

H ∗
T(XC;O∧

C).

16. Recovering the coordinate

By showing that the coordinate used in Section 10 can be recovered from the cohomology theory we
show that it is necessary to make such a choice.

To give a full algebraic model of TypeA theories in the sense of 3.1 we would need to show that ifE∗
T(·)

is a cohomology theory of TypeA then there is a unique coordinate so thatE∗
T(·)=E(A, te)∗T(·). However,

it certainly requires certain additional structure on the cohomology theory to do this. First, we need to
assume that the theory is multiplicative (this will mean it is specified by a collection of differentials�s

vanishing to first order at points of exact orders). However to relate the points of different orders we need
to take into account the group structure onA and its reflection in cohomology. We restrict ourselves to
showing the required uniqueness for theories constructed by the procedure of Section 10.

Proposition 16.1. If EA is constructed as in Section10, the coordinatete may be recovered from the
cohomology theory.

Proof. First we will recover the coordinatedivisor, by concentrating on point with trivial isotropy, and
then return to find a suitable coordinate with this divisor by considering isotropy of order 2 and 3.

We evaluate the cohomology on suitable objectsB = (M −→ tF∗ ⊗ U) of As (depending on a
numbern and a representationW). These are certain wide spheres in the sense of[8, 23.3], but we give a
self-contained description here.

Since our concern is mainly with what happens at the identity, we separate the behaviours at and away
from e using idempotents. Indeed, we adopt the convention thatM ′ = e1M, M ′′ = (1 − e1)M and so
forth. Away from the identity we takeB to be an ordinary wedge of spheres

B ′′ = (S0 ∨ �2S−W )′′

with W T=0. By choosing suitable representationsWthis allows us to permit poles away from the identity,
for which we write

�(W)′′ := {� ∈ �⊗OK |ords(�)� − dimC(W Cs ) for s �2}.
The interesting part ofB is what happens at the identity

B ′ = (M ′ −→ Q[c, c−1] ⊗ U).

First we takeU = Q ⊕ �2Q with basisb0, b2 in degrees 0 and 2 (as forced byB ′′). Now takeM ′ to be
theQ[c]-submodule ofQ[c, c−1] ⊗ U generated bya0 = 1⊗ b0 anda2n+2 = c−(n+1) ⊗ b0 + c−n ⊗ b2.

Lemma 16.2. The cohomology of the object B defined above(depending onW and n) is given by

ẼA
0
T(B) =

{
(�, �) ∈ k × �(W)′′ |orde

(
�

Dt

te
+ �

)
�n

}
.
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Remark 16.3. SinceB has geometricT-fixed pointsS0 ∨ S2, the identification with a subset ofK ×
(�⊗OK) is intrinsic.

Proof. Consider a mapB −→ EA given by the diagram

M
�−→ NA

↓ ↓
tF∗ ⊗ U

1⊗�−→ tF∗ ⊗ V A

SinceNA ⊆ tF∗ ⊗V A, the map is determined by theR-map� : M −→ NA. SinceM ⊆ tF∗ ⊗(Q⊕�2Q)

the map� is determined byf = �(b0) ∈ V A0 =K and�= �(b2) ∈ V A2 =�⊗OK. However in order
for (f, �) to determine such a map we need to know the generators ofM map intoNA = ker(q).

Exactly as in 10.10, the condition away frome is thatf is regular away frome and� ∈ �(W)′′. The
condition ate imposes the two conditions that�(c0 ⊗ f ) ∈ NA′

0 and that�(c−(n+1) ⊗ f + c−n ⊗ �) ∈
NA′

2n+2. The first of these showsf = � is constant, and the second gives the stated condition on�.
Now fix � = 1 (say), and consider the set

�n,W (te) =
{
� ∈ �(W)′′ |orde

(
Dt

te
+ �

)
�n

}
.

Finally, supposet andt are two choices of coordinate with�n,W (t) = �n,W (t), then provided the two
sets are non-empty (as we may assume by choice ofW), we deduce

orde

(
Dt

t
− Dt

t

)
�n.

Expressingt andt in terms of a fixed coordinatet0 we havet =ut0 andt =ut0 the condition is equivalent
to requiring thatu(e)/u−u(e)/u vanishes to ordern. Now, since this is true for allnanduandu are both
non-zero ate, it follows thatu/u is the scalaru(e)/u(e). This shows thatEAdetermines the coordinate
divisor.

Now choose a coordinatet0 with the appropriate divisor, and consider which multiplest = �t0 give the
correct cohomology theory. For this we use a similar argument to the above withn = 0, once with the
idempotente1 replaced bye2, and once withe1 replaced withe3. Usinge2, we may pick out� satisfying
the condition

ord2

(
Dt

t2
+ �

)
�0

(this determines�3). Usinge3, we may pick out� satisfying the condition

ord3

(
Dt

t3
+ �

)
�0

(this determines�8). These two together give� as required.
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Part 6. Categories of modules

We are working towards a comparison between the derived categoryDtp(O
tp
A-mod) of tp-sheaves of

OA-modules and a category ofEA-modules. Before this can be useful, we need to describe methods of
calculation, and settle a number of technical difficulties.

17. Algebraic categories of modules

To start with, we work entirely in the algebraic categoryAs with the strictly commutative ringEA
in As.

17.1. Modules overEA

We may consider the categoryEA-mod of left modules over the algebraic model ofEA. In fact a left
EA-moduleM = (P −→ tF∗ ⊗ W) is given by a mapEA ⊗ M −→ M, or more explicitly, a diagram

Fromexampleswesee thatwedonotwish to require the structuremapP −→ tF∗ ⊗W to bemonomorphic,
soweview theNA-modulePas thebasic object.Compatibilitywith theVA-module structure onWimposes
a further condition.

Thus anEA-module is given by a suitably restrictedNA-moduleP. We viewP as a module of sections
over the algebraNAof regular sections.

It is worth making this more explicit for special types of object. IfM=e(W), then the module structure
is simply the structure of aK-module onW.

If M is torsion so thatM = f (T ) thenP =⊕
s Ts where each moduleTsP is a module overNAs ,

which is spanned by elementsci
s ⊗ f with t i

sf regular onA〈s〉. Furthermore, the action ofNAs factors
throughOs = {f |f is regular onA〈s〉}.

17.2. Homological algebra of the category of modules

The purpose of this section is to describe the derived categoryDT(EA-mod) of the algebraic category
of modules, where the subscriptT refers to the fact that only the counterparts of equivariant equivalences
are inverted. We classify its objects up to isomorphism and give a means of calculating maps. Since the
tp-derived category is formed by inverting maps which are homology isomorphisms for all twists, the
maps are calculated in terms of the corresponding relative Ext groups, which we now describe.

With sheaves it is convenient to work with flabby objects rather than injective objects because we invert
cohomology isomorphisms (i.e., isomorphisms of the derived functors of global sections, or Ext∗

O(O, ·)).
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There are enough flabby objects for homological dimension to be visible at the level of abelian categories.
We will work with a corresponding class ofEA-modules.

First we introduce the relevant test objects, namely the spheres and torsion modules

T := {EA ∧ SV |V a complex representation} ∪ {M |�TM = 0}.
The tp-flabbyobjects are then given by

IF := {I |ExtsEA(T , I ) = 0 for all T ∈ T, s �1}.
We next form an injective class by a process of saturation; the tp-monomorphismsare

M := M(IF ) := {f : X −→ Y |f ∗ : HomEA(Y, I ) −→ HomEA(X, I) is epi for allI ∈ IF },
and the tp-injectivesby

I := I (M) := {I |f ∗ : HomEA(Y, I ) −→ HomEA(X, I) is epi for allf ∈ M}.
First we need some examples of tp-flabby objects.

Lemma 17.1. If W is anyK-module, thene(W) is a tp-flabby EA-module.
If I =⊕

s

Is with Is a divisibleOs-module, thenf (I) is a tp-flabby EA-module.

Proof. First, note that modules of the forme(W) admit injective resolutions of the same form, and
similarly for those of formf (I). This means we can settle the question by considering just Hom.

Next, we note that the caseU = 0 of the condition holds (i.e., Exts
EA(EA, N) = 0 for s > 0 for N of

the specified forms). Indeed,

HomEA(EA, N) = HomAs(S
0, N),

so it suffices forN to be injective inAs, which is certainly the case for bothN = e(W) andN = f (I)

with Is beingc-divisible.
For the modulese(W) we use the adjunction

HomEA(M, e(W)) = HomK(V , W),

whereV is the vertex ofM. The result when�TM � 0 is clear since it has zero vertex. The vertex of
SU ∧ EA is independent ofU, the result follows from the caseU = 0.

For the modulesf (I), we use the adjunction

HomEA(M, f (I)) =
∏

s

HomOs (Ms, Is),

whereMs is thesth idempotent summand of the nub ofM. The result is clear sinceIs is injective by
hypothesis.

Lemma 17.2. The objectsI and the morphismsM form an injective class and a monomorphic class.

Proof. By definitionI=I (M), and by saturationM=M(I). It remains to show that for anyEA-module
N there is a mapf : N −→ F in M with F ∈ I.
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For an arbitraryEA-moduleN = (L −→ tF∗ ⊗ V ) we have a mapN −→ E−1N = e(V ). The kernel
K is of the formf (T ) for a torsion moduleN, and we may embed this in a divisible moduleI, giving a
short exact sequence

0 −→ N
i−→ e(V ) ⊕ f (I) −→ f (J ) −→ 0,

wheref (J ) is divisible and hence also tp-flabby.
The fact that the mapi is tp-monomorphic follows sincef (J ) is a test object.

This means that we can do relative homological algebra, and form Ext∗
EA,tp(M, N). Better still, the

proof supplied tp-injective resolutions of length 1.

Corollary 17.3. The tp-injective dimension of any EA-module is�1, so thatExtsEA,tp(M, N) = 0 for
s �2.FurthermoreHomEA,tp(M, N) = HomEA(M, N).

This makes the category very accessible to calculation.

Theorem 17.4. (i) All objects ofDT(EA-mod) are formal, in thatM � H∗(M). Thus homotopy types
in DT(EA-mod) correspond to isomorphism classes of EA-modules.

(ii) For EA-modules M and N there is a short exact sequence

0 −→ Ext1EA,tp(�H∗(M), H∗(N)) −→ [M, N ]EA −→ HomEA(H∗(M), H∗(N)) −→ 0.

The method of proof is standard, and slightly simplified by the fact that anyEA-module can be con-
sidered as an object ofDT(EA-mod) by using the zero differential.

We consider the map

� : [M, N ] −→ HomEA(H∗(M), H∗(N))

given by taking homology. We will show that it is an isomorphism for good tp-flabby modulesN. We
have seen that anyEA-module may be embedded in a good tp-flabby module with tp-flabby quotient.
Now, for an arbitrary differential gradedEA-moduleNwe choose a tp-resolution

0 −→ H∗(N) −→ I0 −→ I1 −→ 0

of its homology, whereI0 and I1 are both good tp-flabby modules. Now letN −→ I0 be the map
corresponding to the first map in the resolution and note that the mapping cone has homologyI1. Up to
isomorphism we therefore have a cofibre sequence

N −→ I0 −→ I1,

andapplying[M, ·]EA weobtainpart (ii) of the theorem.Part (i) now follows, since ifH∗(M)�H∗(M ′)we
may lift this isomorphism to a mapM −→ M ′, which, being a homology isomorphism, is an equivalence.
In particular tp-flabby objects are classified by their homology, so it was reasonable to call the cofibreI1.
It remains to prove that our good tp-flabby modules have the right properties.

Lemma 17.5. If N is one of the modulese(W) andf (T ) in 17.1,the map� is an isomorphism.
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Proof. By definition the functor HomEA(·, H∗(N)) is exact whenN is tp-flabby, so we have a natural
transformation of cohomology theories and it suffices to check it is an isomorphism on a collection of
EA-modules which generate all modules using direct sums and cofibre sequences. By Adams’s projec-
tive resolution argument, it suffices to use the objectsEA ∧ SV , since they are small and detect weak
equivalences. The objectsEA ∧ SV are extended by construction, and we have

	A∗ (EA ∧ SV )�	A∗ (EA) ⊗ 	A∗ (SV ),

and hence a commutative diagram

The result follows from the fact that the objects are injective inAs together with the corresponding
statements there[8, 5.6.7, 5.6.8].

18. Homotopy modules

The equivalence of[8] is only defined at the homotopy level and the equivalence of[23] is not known
to be monoidal at the model category level. The results of[13] do show that we may chooseEA to be
a strictly commutative ring spectrum, and hence there is a model category ofEA-moduleT-spectra, but
since this is not yet published, it seems worth including a brief account of what can be said about modules
up to homotopy: this section will discuss how good a model ofDT(EA-mod) can be obtained by working
with rings and modules up to homotopy.

Modules up to homotopy have notoriously bad formal behaviour, but the low homological dimension
of the algebraic categories means we can nonetheless obtain some useful information. The idea is to use
the category of homotopy modules and homotopy module maps as a model for the homotopy category
of modules. To see the effectiveness of this, we continue to work in the algebraic category.

At the level of objects, the model is good.

Lemma 18.1. Every homotopy EA-module is represented by a strict EA-module. Two homotopy EA-
modules are equivalent if and only if their strict representives are equivalent.

Proof. Any EA-moduleM is obviously a homotopy module. Since the original module may be recovered
via the action ofEA= 	A∗ (EA) on	A∗ (M), the forgetful map is injective on objects. Furthermore, every
object ofAs is formal, so there is an equivalenceM � 	A∗ M, and the action passes to	A∗ (M). Thus any
homotopy moduleM is equivalent to the strict module	A∗ (M), and the forgetful map is surjective.�

Given two homotopy modulesM, N , we define the group of homotopy module maps by

[M, N ]Ho(EA) := {f ∈ [M, N ] |f is a module map up to homotopy}.
The main point to make is that this is a subset of the maps ignoringEA-module structure, so that it is
unlikely to model phenomena of positive filtration. As usual the cofibre of a homotopy module map has
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no canonical structure as a homotopy module. Taking homotopy module maps need not be exact, even if
applied to a cofibre sequence of strict modules.

The best we can do is to attempt to detect homotopy module maps. Given homotopy modules, we
choose strict modulesM, N representing them, and to simplify the notation, we assume they have zero
differential. We then have a diagram

Sinceeverymodulemap inhomology is representedbyastrictmodulemapM −→ N , it is representedbya
homotopymodulemap.Subtracting this, the remaining issue is how to decidewhenamap inducing zero in
homology is a homotopy module map. Certainly, it suffices for it to be in the image of Ext1

EA,tp(�M, N) −
→ Ext1As

(�M, N). When no other elements of Ext1
As

(�M, N) represent homotopy module maps, the
forgetful map

[M, N ]EA −→ [M, N ]Ho(EA)

is surjective, but even then its kernel is

ker[Ext1EA,tp(�M, N) −→ Ext1As
(�M, N)],

which may be non-trivial.

Part 7. An equivalence between derived categories of sheaves and spectra

Having shown that the structure sheafOA of the elliptic curveAgives rise to a commutative ringEA in
As, we show in this part that this extends to an equivalence between their derived categories of modules.

The discussion of modules up to homotopy in Section 18 shows how much of the resulting information
can be transported to the category of spectra without using further technology. However, the results of
[13] show that the strictly commutative ring inAs gives astrictly commutative ringT-spectrum, and
using this additional technology, the present account applies without change to categories of equivariant
EA-modulespectra.

19. Sheaves from spectra

We describe a natural construction of a sheaf overA from aT-spectrum. In Section 22 we show how
it is related to Grojnowski’s construction[14].
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19.1. Sheaves associated to R-modules

An object ofAs is abased R-module in a suitable sense, but it will clarify the later construction to
begin with a construction on arbitraryR-modulesN.

Note first thatwehavedefined suspension functors�wN for any almost constant functionw : F −→ Z,
and ifw(s)�w′(s) for all s there is a map�wN −→ �w′

N which is multiplication bycw′(s)−w(s) on the
sth idempotent summand.

Recall that, for any finite set	 of positive integers,V	 is the set of points ofAwhose orders are in	,
andU	 = A\V	.

Definition 19.1. SupposeN is anR-module and let

E−1
	 N := lim→ w(	)=0

�wN .

Now define a presheaf̃N of R-modules onA by taking

Ñ(U	) := E−1
	 N .

Lemma 19.2. The presheaf̃N is a sheaf.

Proof. First note that, sinceE−1
	 N = E−1

	 R⊗RN , we haveÑ = R̃⊗RN .
Now since any cover has a finite subcover, it suffices to check the sheaf condition onU	∩	′ =U	 ∪U	′ .

SinceE−1
	 R is flat for any	, it suffices to deal with the special caseN = R, where we have an exact

sequence

0 −→ E−1
	∩	′R −→ E−1

	 R ⊕ E−1
	′ R −→ E−1

	∪	′R. �

19.2. Construction of the sheaf

We begin in earnest by defining a functor

MA : As −→ sheaves/A

at the level of abelian categories. We will show that it restricts to a functor

MA : EA-mod−→ OA-mod.

When	 is the set of divisors ofn we think ofV	 as defined by the Euler class ofzn. This motivates
some corresponding definitions in equivariant topology. For each subgroupHwe need the spaceE〈H 〉=
cofibre(E[⊂ H ]+ −→ E[⊆ H ]+), whose distinguishing feature is that itsK-fixed points are contractible
unlessK = H , andS0 if K = H . We consider the setF〈	〉 of subgroups ofT with order in	 and then
form the space

E〈	〉 := eF〈	〉EF+ =
∨

H∈F(	)

E〈H 〉,
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whereeF〈	〉 ∈ map(F, Q) is the idempotent with supportF〈	〉. We may then form the spacẽE〈	〉 using
the cofibre sequence

E〈	〉 −→ S0 −→ Ẽ〈	〉.
The spaceE〈	〉 is modelled inAs by

T (	) =
 ⊕

H∈F〈	〉
I(H) −→ 0


and the spacẽE〈	〉 by

L(	) = (R(∞	) −→ tF∗ ),

whereR(∞	) ⊆ tF∗ consists of elements with poles only onF〈	〉.
Next, we associate a sheafMA(X) in the torsion-point topology with an objectX = (P −→ tF∗ ⊗W)

of As. First recall the notation

P (c0) = {p ∈ P | 
(p) ∈ c0 ⊗ W } = HomAs(S
0, X).

Continuing the analogy with sections, we write

P (∞	) = P⊗RR(∞	)

so that

X ⊗ L(	) = (P (∞	) −→ tF∗ ⊗ W).

Definition 19.3. For any objectX = (P −→ tF∗ ⊗ W) of As the presheafMA(X) is defined by

MA(X)(U	) = HomAs(S
0, X ⊗ L(	)) = P (∞	)(c0).

The restriction associated toU	′ ⊆ U	 is induced by the mapL(	) −→ L(	′) which is the identity on
the vertex.

Lemma 19.4. The presheafMA(X) is in fact a sheaf.

Proof. It suffices to consider the cover ofU	∩	′ by U	 andU	′ , and we need to show there is an exact
sequence

0 −→ MA(X)(U	∩	′) −→ MA(X)(U	) ⊕MA(X)(U	′) −→ MA(X)(U	∪	′).

This is obtained from the short exact sequence

0 −→ L(	 ∩ 	′) −→ L(	) ⊕ L(	′) −→ L(	 ∪ 	′) −→ 0.



J.P.C. Greenlees / Topology 44 (2005) 1213–1279 1263

Indeed, sinceL(	∪ 	′) is flat, we obtain the desired exact sequence by applying the functor HomAs(S
0,

X ⊗ ·).
Lemma 19.5. If X has vertex V then

MA(X)(∞tors) = V .

Proof. SinceMA(X)(U	) = HomAs(S
0, X ⊗ L(	)) andS0 is small, we find

MA(X)(∞tors) = lim→ U	

HomAs(S
0, X ⊗ L(	)) = HomAs

(
S0, lim→ U	

X ⊗ L(	)

)
= V. �

For torsion free spectra we can also identify stalks.

Lemma 19.6. If X is torsion free then the stalk ofMA(X) at a point of order s is given by

MA(X)s = ker(c0 ⊗ V −→ T −→ esT ).

Remark 19.7. It is natural to refer toMA(X)s as the space ofX-meromorphic functions regular ats.

Proof. To calculate the stalk we take a direct limit overU	 containing points of orders, which areU	

with s �= 	. For a torsion freeX

MA(X)(U	) = ker

c0 ⊗ V −→ T −→
⊕
r �=	

erT

 . �

Since direct sums commute with tensor products andS0 is small, we deduce a useful formal property.

Lemma 19.8. The functorMA preserves arbitrary direct sums. �

19.3. The sheaf associated to anEA-module

We show that applying the functor to anEA-module gives a sheaf ofOA-modules.

Lemma 19.9. (i) The functorMA takes EA to the structure sheaf:

MA(EA) = OA.

(ii) The functorMA takes EA-modules toOA-modules, and therefore induces a functor

MA : EA-mod−→ OA-mod.

Proof. Part (i) is clear from our construction of elliptic cohomology.
For part (ii), we need to show that there are structure mapsO(U	) ⊗ MA(X)(U	) −→ MA(X)(U	),

or in other words,

NA(∞	)(c0) ⊗ P (∞	)(c0) −→ P (∞	)(c0).
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However we need only note that,L(	) (like S0) is idempotent in the sense thatL(	) ⊗ L(	) = L(	) so
that the required map is the composite

HomAs(S
0, EA ⊗ L(	)) ⊗ HomAs(S

0, X ⊗ L(	))

⊗−→HomAs(S
0 ⊗ S0, EA ⊗ L(	) ⊗ X ⊗ L(	))

= HomAs(S
0, EA ⊗ X ⊗ L(	)) −→ HomAs(S

0, X ⊗ L(	)).

Compatibility with restriction is clear since the restriction associated toU	′ ⊆ U	 is induced by a map
L(	) −→ L(	′). �

One more special value plays an important role.

Lemma 19.10.The EA-moduleSW ∧ EA is taken to the corresponding line bundle

MA(SW ∧ EA) = OA(D(W)).

Proof. This follows directly from the parallel between topological suspension 4.6 and algebraic twisting
by line bundles. �

20. T-spectra from OA-modules

In this section we adapt the construction ofEAgiven in Section 10 to associate an object ofAs to an
OA-module, and hence provide a functor

SA : OA-mod−→ EA-mod.

In the construction ofEAwe made fundamental use of the fact that the sheafOA is torsion free in the
sense thatO(D) is a submodule ofO(∞tors)=K for all torsion point divisorsD. As a result, the nub is a
submodule oftF∗ ⊗V A, whereV A0 consists of the spaceK of meromorphic functions. For anO-module
Y, it often happens for a non-zero sheafY, that the sheafY(∞tors) of meromorphic sections is zero, so
that the earlier construction would give zero. The construction we give here does specialize to construct
EA, but also deals with torsion sheaves.

20.1. The construction

In topology, the object ofAs associated to aT-spectrumX is obtained from the map

X ∧ DEF+ −→ X ∧ DEF+ ∧ ẼF

by taking equivariant homotopy groups. The key facts are

• X ∧ DEF+ ∧ ẼF � �TX ∧ DEF+ ∧ ẼF and
• the cofibre of the map is theT-free objectX ∧ �EF+
• there is a cofibre sequence

DEF+ −→ DEF+ ∧ ẼF −→ �EF+.
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We make the analogous construction on sheaves, by starting with an analogue of the above cofibre
sequence. Indeed, we considertF∗ ⊗ V A as the constant sheaf ofR-modules, andQ(∞tors) as the sum
of skyscraper sheaves for the modulesesT A. We then define a sheafD by the short exact sequence of
sheaves

D −→ tF∗ ⊗ V A
q−→Q(∞tors)⊗O �∗

of R-modules. Surjectivity ofq follows from the corresponding fact forR-modules. We also note that
neithertF∗ ⊗V A norQ(∞tors) have higher sheaf cohomology. ThusD encapsulates all the cohomology
of spheres.

Remark 20.1. Unlike the topological case, it appears thatD is not the dual of anything. In particular

�HomO(Q(∞tors),O) � HomO(Q(∞tors), Q(∞tors))

is a proper completion ofD. The 0th idempotent piece of its space of sections is of uncountable dimension,
so it is different fromD.

The next step in the construction is to tensor the basic short exact sequence with theO-moduleY to
form

D⊗OY −→ tF∗ ⊗ V A⊗OY
q−→Q(∞tors)⊗OY.

To understand the central term we note thatV A0 =K= O(∞tors).

Lemma20.2. For anyO-moduleY the sheafY(∞tors)=Y⊗O O(∞tors) is constant,and its cohomology
is entirely in degree zero. �

Similarly, the essential thing about the last term is that its cohomology isE-torsion.

Lemma 20.3. The R-module

H i(Y⊗O Q(∞tors)⊗O �∗)

is E-torsion fori = 0 or 1.

Proof. Consider the decompositionQ(∞tors) =⊕
sQ(∞A〈s〉): thesth term is a direct limit of terms

Q(kA〈s〉) whose cohomology is annihilated by invertingts . �

Corollary 20.4. The mapD −→ tF∗ ⊗ V A induces an isomorphism

E−1H i(D⊗OY)�H i(D⊗OO(∞tors)⊗OY) =
{

tF∗ ⊗Y(∞tors)⊗O �∗ for i = 0,

0 for i = 1.
�

Definition 20.5. We now define the functor

SA : OA-mod−→ As

at the level of abelian categories. The object

SA(Y) = (NY −→ tF∗ ⊗ VY)
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of As associated to a sheafY in degree 0 is

H ∗(Y⊗OD) −→ H ∗(Y⊗OD⊗OO(∞tors)).

To be explicit the nub is

NYev = H 0(Y⊗OD)

in even degrees, and

NYod = �−1H 1(Y⊗OD)

in odd degrees. The vertex is entirely in even degrees and

VY0 =Y(∞tors).

Remark 20.6. The fact that this is indeed an object ofAs follows from 20.4. Furthermore, for anyO-
moduleY, the vertexVY is entirely in even degrees. The odd degree part of the nub is entirelyE-torsion.

Since tensor product is compatible with passage to stalks, we may describe the divisible torsion part.

Corollary 20.7. The sheafY⊗OQ(∞tors) is a sum of skyscraper sheaves. Indeed, the stalk at a point
of order s is

Y⊗OQ(∞tors)s =Ys⊗Os esT A0. �

Since direct sums commute with tensor products andO is small, we deduce a useful formal property.

Lemma 20.8. The functorSA preserves arbitrary direct sums. �

20.2. Module structure

The formal nature of the construction gives a module structure rather simply.

Lemma 20.9. (i) The functorSA takesOA to the structure ring spectrum

SA(OA) = EA.

(ii) The functorSA takesOA-modules to EA-modules, and therefore induces a functor

SA : OA-mod−→ EA-mod.

Proof. (i) It is built into the definition that,SA(OA) = EA, and we proved in 11.1 thatEA is a ring.
(ii) The sheaf level construction preserves tensor products, and there is a map

H i(Y) ⊗ H i(Z) −→ H i(Y⊗OZ). �

One more special value will be important.
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Lemma 20.10.The functorSA takes the basic line bundles to spheres:

SA(OA(D(V ))) = SV ∧ EA.

Proof. The correspondence between line bundles and suspensions has been built into the framework 5.5.
Thus, if we takeY= OA(D(V )) we note first thatY(∞tors) =K andY⊗OQ(∞tors) =K/O(D). By
constructionMA(Sev

A Y)(U	) is the spaceO(D)(U	) of functions regular away from	. �

20.3. The functorSA on torsion free sheaves

WheneverY is torsion free in the sense that it is a subsheaf of the constant sheafY(∞tors) then the
spectrumSA(Y) can be constructed exactly as we originally constructedEA.

Definition 20.11. If Y is anO-module we define an object

St
A(Y) = (tF∗ ⊗ VY −→ T Y)

of At . Here

VY0 =Y(∞tors) = lim→ 	
Y(U	)

and

T Y0 = H 0(A;QY),

whereQY is defined by the exact sequence

0 −→ Y −→ Y(∞tors) −→ QY −→ 0.

These are made periodic with differentials as usual:

VY= VY0 ⊗ �∗ and T Y= T Y0 ⊗ �∗.

Now the structure map is defined exactly as before, using the differentialsDt/ts .

Lemma 20.12. If Y is torsion free then

SA(Y)�(NY −→ tF∗ ⊗ VY),

whereNY= ker(q : tF∗ ⊗ VY −→ T Y).

Proof. This is immediate from the defining triangle

Y⊗O D −→ Y⊗O D⊗O O(∞tors)
q−→Y⊗O Q(∞tors)⊗O �∗.

Note first thatY is flat, being a submodule of the flat moduleY(∞tors), so that this is a short exact
sequence of sheaves. It therefore induces a long exact sequence in cohomology. Since the cohomology
of Y(∞tors) is in even degrees, it therefore suffices to show that the mapq induces a surjective map in
cohomology. �
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21. Equivalence ofEA-modules andO-modules

We now have functors relating the algebraic model of spectra and sheaves over an elliptic curve. In this
section we show that these can be combined to give an equivalence between suitable derived categories.

21.1. The derived categories

We recall the constructions in parallel. In both cases we form the derived categories by a process of
cellular approximation as in Section 7.2.

In the topological case, the categoryDT(EA-mod) from Section 17.2 is formed from the category of
differential gradedEA-modules. It is natural to use the cellsEA ∧ T/H+ whereH runs through the set
of closed subgroups ofT. However the cofibre sequence

T/T[n]+ −→ S0 −→ Szn

shows that it is equivalent to use the cellsEA ∧ SV asV runs through complex representations. With
either of these collections of cells, a mapX −→ Y of EA-modules is a weak equivalence if and only if
it induces an isomorphism	H∗ (·) for all closed subgroupsH, which is the usual notion of an equivariant
weak equivalence ofT-spectra (and equivalent to being a homology isomorphism inAs).

In the algebraic case, the categoryDtp(O
tp
A-mod) from Section 7.2 is formed from the category of

differential graded sheaves ofO
tp
A-modules. Motivated by the topological case, we use the cellsO(D(V ))

for representationsV. It is equivalent to use the line bundlesO(D) whereD runs through torsion point
divisors as was done previously.A mapX −→ Y is then a weak equivalence if it induces an isomorphism
of H ∗(A;O(−D)⊗O(·)) for all torsion point divisorsD.

21.2. The equivalence

We are now equipped to state our second main theorem.

Theorem 21.1.The functorsMA : EA-mod−→ OA-mod andSA : OA-mod−→ EA-mod relating the
categories of algebraic EA-moduleT-spectra and sheaves ofO-modules defined in19.3 and 20.5induce
an equivalence

DT(EA-mod) � Dtp(O
tp
A-mod)

of associated derived categories.

Remark 21.2. Neither functor preserves infinite products, so this not an adjoint pair or a Quillen
equivalence.

We begin at the level of abelian categories.

Lemma21.3. There isanatural transformationof functorsMASA −→ 1which isanatural isomorphism
on the line bundlesO(D(V )) for any complex representation V withV T = 0.

Proof. Suppose thatY is a module, and let

Sev
A Y= [H 0(Y⊗O D) −→ H 0(Y⊗O D(∞tors))]
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be the even summand ofSAY. Now

MA(Sev
A Y)(U	) = HomAs(S

0,Sev
A Y⊗ L(	));

this contains the torsion part ofNevY and maps to

ker(c0 ⊗Y(∞tors) −→ H 0(Y⊗OQ(∞tors)) ⊗ R(	)),

which isY(U	). This defines the mapMASAY −→ Y.
Now consider the sheafY=O(D). Combining 19.10 and 20.10, we see thatMASAY�Y in this case,

and sinceO(D) is torsion free, the natural transformation is the identity.

Lemma21.4. There isanatural transformationof functorsSAMA −→ 1which isanatural isomorphism
on the spheresEA ∧ SW for any complex representationW.

Proof. We supposeX = (N

−→ tF∗ ⊗ V ) is anEA-module concentrated in even degrees and construct a

diagram

H 0(D⊗OMA(X))
�n−→ N

↓ ↓
H 0((tF∗ ⊗ V A)⊗OMA(X))

�v−→ tF∗ ⊗ V

Since(tF∗ ⊗V A)⊗OMA(X) is the constant sheaf attF∗ ⊗V , we take�v to be the identity, and it remains
to give a compatible definition for�n. For this we use the structure mapEA ∧ X −→ X of theEA-
moduleX.

The sheafD⊗OMA(X) is associated to the presheaf given by a tensor product of modules over each
open set. By 19.2, the presheafÑ is a sheaf with global sectionsN, so it suffices to construct a map at
the presheaf level. More concretely, we need maps

D(U	)⊗O (U	)MA(X)(U	) −→ Ñ(U	) = E−1
	 N

compatible under restriction. Now the domain is the tensor product ofD(U	) and MA(X)(U	) =
HomAs(S

0, X ⊗ L(	)). The former can be identified with functionsf in NA regular away from	 and
the latter with elementsx ∈ E−1

	 N with 
(x) ∈ c0 ⊗ V . We map this tof · x in N, and notice that this
association isO(U	) bilinear.

Now if we takeX = EA ∧ SW we findMA(X) = O(D(W)) by 19.10 andSAMA(X) = X by 20.10.
We may check the natural transformation is an isomorphism stalkwise. This is obvious forW = 0, and
for any other value, bothMA(X)s andNs are free on the single elementt

−w(s)
s . �

We may now complete the proof of 21.1.

Proof of Theorem 21.1.We have defined the pair of functorsMA andSA at the level of abelian
categories, and hence they preserve actual homotopies at the level of differential graded categories. Ac-
cordingly they induce functors at the level of derived categories by replacing objects with approximations
using spheres or torsion point line bundles. Since both functors take sphere objects to cellular objects the
derived functor construction preserves composites. Hence the functorsMA andSA on derived categories
again provide an equivalence.�
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Corollary 21.5. For an EA-module X, there is a short exact sequence

0 −→ �H 1(A;MA(X)) −→ 	T∗ (X) −→ H 0(A;MA(X)) −→ 0.

Proof. Indeed, from the equivalence of categories the cohomology ofMAX is equal to the homotopy of
X. The exact sequence for the cohomology of an objectY in the derived category of sheaves is obtained
from the Adams resolutionY −→ I0 −→ I1, with Ij flabby. �

22. Relation to Grojnowski’s construction

The first construction of aT-equivariant elliptic cohomology was given by Grojnowski[14]. It is
defined for analytic elliptic curvesA, and takes values inZ/2-graded sheaves overA. We first describe
Grojnowski’s construction and then show that it is related to the sheafMAF (X, EA) in the torsion point
topology in the simplest possible way.

22.1. Grojnowski’s construction

The construction works with ananalyticelliptic curveA overC, presented as

p : C −→ C/� = A

for a lattice� ⊆ C. To eachfiniteT-spaceX it associates a sheaf Groj(X) overA in the analytic topology.
An open setU of A is small if p−1U is the disjoint union of connected componentsV such thatp|V :

V
�−→U is an isomorphism. The construction works with the analytic topology, because the description

needs to deal with small open sets. Accordingly we letOan denote the sheaf of analytic functions onA
with the analytic topology.

Next, for a pointa ∈ A we write

Xa =
{

XT[s] if a is of exact order s,
XT if a is of infinite order,

and we say thata is genericif Xa = XT anda is specialotherwise.
Finally, we say that an open cover{Ua}a∈A of A is adapted to Xif the following five conditions are

satisfied

• a ∈ Ua,
• eachUa is small,
• if a is special anda �= b thena �= Ua ∩ Ub,
• if a andb are both special anda �= b thenUa ∩ Ub = ∅,
• if b is generic, thenUa ∩ Ub is non-empty for at most one speciala.

For any finiteT-complexX, there is a cover adapted toX, and any two admit a common refinement.
We say that the cover isN-discrete if there is at most one point of order dividingN in anyUa. For any
finite T-complexX and anyN, there is anN-discrete cover adapted toX, and any two admit a common
refinement.
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Definition 22.1 (Grojnowski). Given an open cover{Ua}a adapted toX we defineZ/2-graded sheaves
Groj(X)a overUa by

Groj(X)a(U) = H ∗(ET×TXa)⊗C[z]Oan
A (U − a),

whereU − a is obtained by translatingU by−a, and whereOan(U − a) is aC[z]-module sincezcan be
viewed as an analytic function onU − a usingp to identify it with a neighbourhood of 0∈ C.

These sheaves are compatible on intersections. Indeed, since the cover is adapted toX, we need only
observe that the localization theorem gives an isomorphism

Groj(X)a|U�H ∗(ET×TXT)⊗C[z]Oan
A (U − a)

whena �= U . The cocycle condition is easily checked, so the sheaves patch to give a sheaf Groj(X) of
Oan-algebras. This is independent of the adapted cover, since a refinement induces an isomorphism.

If X has aT-fixed basepointx0, the inclusion and projection induce a decomposition

Groj(X) = G̃roj(X) ⊕ Groj(x0),

defining the reduced theory.

Remark 22.2. (i) It is easy to adapt this to give a 2-periodic sheaf valued theory. Indeed, we need only
replaceOanby�∗

an=
⊕

n �n
an, and declare thatc ∈ H 2(BT) acts asz/dz. We will do this without change

of notation, to allow comparison with our 2-periodic constructions.
(ii) The functor Groj(X) is exact. Indeed a cofibre sequenceX′ −→ X −→ X′′ induces a long exact

sequence in Borel cohomology ofa-fixed points, for eacha. Sincez is not a zero-divisor as an analytic
function,⊗C[z]Oan(U − a) preserves exactness. Finally, exactness of sequences of sheaves is detected
stalkwise.

22.2. The derivedMA functor.

Grojnowski’s functor preserves weak equivalences, so we need to apply a homotopy invariant version
of the functorMA. We therefore takeMAF (X, EA), applying the function spectrum functor rather than
the Hom functor. The context makes clear thatMA is to be interpreted as the total derived functor of the
abelian category level functor.

We remark that this gives an exact functor. First note that a cofibre sequenceX′ −→ X −→ X′′ of
basedT-spaces induces a fibre sequenceF (X′, EA) ←− F (X, EA) ←− F (X′′, EA) in the homotopy
category ofEA-modules. Applying the total derived functorMA we get a triangle in the derived category
of Z/2-graded sheaves.

22.3. Comparison

In order to make the comparison we need to use the map

j : tp −→ an

including the sets open in the torsion point topology amongst all open sets. Any sheaf in the analytic
topology is a sheaf in the torsion point topology by restriction and a sheafY in the torsion point topology
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gives a sheafj∗Y in the analytic topology via

(j∗Y)(U) = lim→ U	 ⊇U
Y(U	).

We also use the mapi : j∗O −→ Oan of sheaves of rings, giving a mapi∗ convertingj∗O-modules into
Oan-modules by taking tensor products.

Theorem 22.3.The2-periodic version of Grojnowksi’s sheaf associated to a finite basedT-space X is
equivalent to the sheaf arising from the function spectrumF (X, EA):

G̃roj(X) � i∗j∗MA(F (X, EA)).

Proof. First, we construct a natural map

�X : i∗j∗MA(F (X, EA)) −→ G̃roj(X)

of Oan-algebras.
This corresponds to a map

�′X : j∗MAF (X, EA) −→ i∗G̃roj(X)

of j∗O-algebras. For this we choose a cover{Ua}a∈A adapted toX and construct a system of maps

�′X,a : (j∗MAF (X, EA))|Ua −→ G̃roj(X)a = H ∗(ET+∧TXa)⊗C[z]Oan(Ua − a)

compatible asa varies.
Chooseg so that all points of order�g are generic, and letN = g!. Now choose anN-discrete cover

{Ua}a∈A adapted toX.

Lemma 22.4. The mapXa −→ X induces an isomorphism

j∗MAF (X, EA)(Ua)�j∗MAF (Xa, EA)(Ua).

Proof. Write 	∩U =∅ if U contains no points with order in	, so that	∩U =∅ if and only if U ⊇ U	.
We have

j∗MAF (X, EA)(Ua) = lim→ 	∩Ua=∅
MAF (X, EA)(U	) = [X, Ẽ(H | |H | ∩ Ua = ∅) ∧ EA]0T.

If a is of orders, the quotientX/Xa is built from cellsT/T[n]with nspecial andn �= s. Hencen∩Ua=∅,
and so the cell makes no contribution to the cohomology.�

Now we may define the natural transformation as a composite

j∗MAF (X, EA)(Ua) = j∗MAF (Xa, EA)(Ua) −→ j∗MAF (ET+ ∧ Xa, EA)(Ua)
�−→H ∗(ET+∧TXa)⊗C[z]Oan(Ua − a).

To define�, we use the fact thatEA is almost ordinary (in the sense of 13.2), so that

F (ET+ ∧ Xa, EA) � F (ET+ ∧ Xa, ET+ ∧ EA) � F (ET+ ∧ Xa, ET+ ∧ HP ).
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Composing with projectionHP −→ H , we may now complete the definition, since there are maps

MAF (ET+ ∧ Xa, H)(U	)
�−→H ∗(ET+∧TXa)⊗C[z]Oan(Ua − a)

for each	 so thatU	 ⊇ U .
There are at least two ways to see that�X is an isomorphism for allX. Most directly, we can show that

�X is an isomorphism on stalks. Passing to limits, over neighbourhoodsUa of a, we find

j∗MAF (X, EA)a = lim→ Ua

[X, Ẽ(H | |H | ∩ U	 = ∅) ∧ EA]0T
= [X, Ẽ(H | |H | �= s) ∧ EA]∗T
=EA∗

T(Xa) ⊗ Os

The completion theorem 13.1 shows what happens when we pass toET+ ∧ Xa and then we extend to
analytic germs.

The alternative is to use the fact that both sides are sheaf valued cohomology theories inX. It suffices
to check that the natural map is an isomorphism for a class ofX sufficient to generate a thick category
containing the suspension spectra of all finite complexes.

By definition it suffices to deal with the homogeneous spacesT/T[k]+, and the cofibre sequences

T/T[k]+ −→ S0 −→ Szk

show it suffices to check that� is an isomorphism for the spheresSV . In this case all is well since
G̃roj(SV ) = Oan(−D(V )), andMAF (SV , EA) = O(−D(V )).

In practical terms this gives a means for calculating the cohomology ofX using a spectral sequence
from the sheaf cohomology of the Grojnowksi sheaf.

Corollary 22.5. There is a short exact sequence

0 −→ �H 1(A; G̃rojX) −→ ẼA
∗
T(X) −→ H 0(A; G̃rojX) −→ 0.

Proof. This follows from 21.5 and the fact that the cohomology is unchanged byi∗j∗. �
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Appendix A. The affine case:T-equivariant cohomology theories from additive and multiplicative
groups

The algebraic models of equivariantK-theory and Borel cohomology are easily described[8, 13.1,
13.4]. In this section we express the models as special cases of the general functorial construction of
a cohomology theoryEG∗

T(·) associated to a one dimensional affine group schemeG equipped with a
coordinate.
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The additive group schemeGa and the multiplicative group schemeGm are affine, and therefore the
construction of associated cohomology theories is considerably simpler than that for elliptic curves. It
turns out that the associated 2-periodicT-equivariant theories are concentrated in even degrees and

(EGa)
0
T(X) = H ev(ET×TX)

and

(EGm)0T(X) = K0
T(X),

and models for these theories were given in[8]. We will repeat the answer here in our present language.
There are some features that differ from the elliptic case. Once again, we must specify a coordinateyon

G, which is a function whose vanishing definese, or equivalently, a generator of the augmentation ideal
(y)= ker(O −→ k). However here we may use the differential dy to generate meromorphic differentials.
Next, we must choose functions defining the points of orders for eachs. By definitionG[n] is given
by the vanishing of[n](y). The cyclotomic functions�s are defined recursively by[n](y) =∏

s|n �s .
Once again, d�s need not generate the Kähler differentials. For example ifs = 3 and we consider the
multiplicative group withy =1− z, then�3=1+ z+ z2, and d�3= (1+2z) dz. Since the zero of 1+2z

is not a point of finite order, the function 1+ 2z is not invertible.

Theorem A.1. Given a commutative one-dimensional affine group schemeG over a ring containingQ,
and a coordinate y onG there is a 2-periodic cohomology theoryEG∗

T(·) of typeG.SinceG is affine, the
cohomology theory is complex oriented, EG∗

T is in even degrees andG = spec(EG0
T). The construction

is natural for isomorphisms of(G, y).
The construction is also natural for quotient mapsp : G −→ G/G[n] in the sense that there is a map

p∗ : inflT
T/T[n]E(G/G[n]) −→ EG ofT-spectra,whereEG is viewed as aT/T[n]-spectrum and inflated

to aT-spectrum, and the coordinate onG/G[n] is�a∈G[n]Tay, where y is the coordinated onG andTa

denotes translation by a.

Proof. The construction was motivated in Section 2. The idea is that all the ingredients described in
Section 4 are implicit in the definition of type (3.1).

We will write down a rigid even object

Mt(EG) = (tF∗ ⊗ V G
q−→ T G)

of the torsion categoryAt (i.e., the structure mapq will be surjective andV G andT G will be in even
degrees). By 5.2 this is intrinsically formal and therefore determines

Ms(EG) = (NG −→ tF∗ ⊗ V G)

with NG = ker(q), and the representing spectrumEG.
Writing O= OG for the ring of functions onG, in degree 0 we take

V G0 = O(∞tors)

and

T G0 = O(∞tors)/O.



J.P.C. Greenlees / Topology 44 (2005) 1213–1279 1275

For other degrees we twist by�, taking

V2n = V0 ⊗ �n and T2n = T0 ⊗ �n.

According to 4.5, the mapq : tF∗ ⊗V G −→ T G may be described compactly by giving its idempotent
summands. We take

q(cw(s) ⊗ �)s := (
�s(y)

dy
)w(s)�.

A choice of coordinateygives a generator dy⊗n of �n, and multiplication by dy gives an isomorphism
�n −→ �(n+1). Now � ∈ V2n can be written

� = f · (dy)⊗n

for some functionf ∈ O(∞tors) and

q(cw(s) ⊗ f · (dy)⊗n)s := �s(y)w(s)f · [(dy)⊗(n−w(s))].
Since any functionf only has finitely many poles, we see that this does map into the direct sumT G =⊕

sesT G.
We must explain howT G is a module overR, and whyq is a map ofR-modules. We makeT G into a

module overRby lettingcs act as�s(y)/dy on esT G. Since poles are of finite order,T G is aE-torsion
module. The definition of the mapq shows it is anR-map.

Finally, we must show that the homotopy groups of the resulting object are as required in 3.1. By 5.2
we haveMs(EG) = (
 : NG −→ tF∗ ⊗ V G), whereNG = ker(tF∗ ⊗ V G −→ T G), and we need to
calculate

[SW , EG]T∗ = [Sw, Ms(EG)]∗.
Sinceq is epimorphic,
 is monomorphic, andT G is injective. Thus by 5.2 we have the explicit injective
resolution

0 −→ Ms(EG) =
(

NG

↓
tF∗ ⊗ V G

)
−→

(
tF∗ ⊗ V G

↓
tF∗ ⊗ V G

)
−→

(
T G

↓
0

)
−→ 0.

Now, applying 5.4 withw(T) = 0 we obtain the exact sequence

0 −→ HomAs(S
w, Ms(EG)) −→ c−w ⊗ V G0

q−w

−→(�−wT G)0 −→ ExtAs(S
w, Ms(EG)) −→ 0.

Hence Ext(Sw, Ms(EG)) = 0 sinceq : c−w ⊗ V G −→ T G is surjective. Indeed, any torsion element
t ∈ (�wT G)0�O(∞tors)/O lifts to f ∈ O(∞tors) and hence to 1/cW ⊗ �(W)f . It is immediate from
the definition that ifw(T) = 0,

Hom(Sw, Ms(EG)) = {c−w ⊗ f |f/�(W) regular}.
By construction the divisor associated to the function�(V ) is D(V ), sof/�(V ) is regular if and only if
f ∈ O(−D(V )) as required. �
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For the statement about isogenies, note that ify is a coordinate onG then its norm�a∈G[n]Tay

is a coordinate onG/G[n] (whereTa denotes translation bya). Using these coordinates, we obtain
equivariant spectraEG/G[n] andEG. As a first step to maps between them, note that we have mapsp∗

V :
V (G/G[n]) −→ V G andp∗

T : T (G/G[n]) −→ T G corresponding to pullback of functions. However
p∗

V andp∗
T do not give a map ofT-spectraE(G/G[n]) −→ EG; for example, the non-equivariant part

of E(G/G[n]) corresponds to functions onG/G[n] with support at the identity, and these pull back to
functions onG supported onG[n], which correspond to the part ofEG with isotropy contained inT[n].
The answer is to view the circle of equivariance ofEG asT/T[n], and then to use the inflation functor
studied in Chapters 10 and 24 of[8] to obtain aT-spectrum.

Remark A.2. In the above proof we made use of the fact that the Euler class�(W) exists as a function in
K. This should be contrasted with the elliptic case, where the Euler class is given by different functions
at different points. This corresponds to the fact that elliptic cohomology is not complex orientable, so
that the bundle specified byW is not trivializable.

We make the construction explicit in four cases. Because the differentials occur in the same way for
all s, this has been omitted in the examples, and the mapq translated to degree 0.

Example A.3 (The additive group). The ring of functions onGa is Q[x], and the group structure is
defined by the coproductx *−→ 1⊗ x + x ⊗ 1. We choosex as a coordinate about the identity, zero. The
groupGa[n] of points of order dividingn is defined by the vanishing of�(zn) = nx, so the identity is the
only element of finite order overQ-algebras. This case becomes rather degenerate in that it only detects
isotropy 1 andT.

The cohomology theory associated toGa is 2-periodic Borel cohomology. This is complex orientable,
concentrated in even degrees and in each even degree is the map

tF∗ ⊗ O(∞tors) = tF∗ ⊗ Q[x, x−1] −→ Q[x, x−1]/Q[x] = O(∞tors)/O

s/e(V ) ⊗ f *−→ s · f/�(V ).

HereO=Q[x] and�(zn)= nx. The ringO(∞tors)=Q[x, x−1] of functions with poles only at points of
finite order is obtained by inverting the Euler class ofz.

Example A.4 (The multiplicative group; Greenlees[8, 13.4.4]). The multiplicative group is defined by
Gm(k) = Units(k) with group structure given by the product. Accordingly, the ring of functions onGm
is O = R(T) = Q[z, z−1], and the group structure is defined by the coproductz *−→ z ⊗ z. We choose
y = 1− z as a coordinate about the identity element, 1. The coproduct then takes the more familiar form
y *−→ 1⊗ y + y ⊗ 1− y ⊗ y. The groupGm[n] of points of order dividingn is defined by the vanishing
of �(zn) = 1− zn.

The cohomology theory associated toGm is equivariantK-theory. This is complex oriented, concen-
trated in even degrees and in each even degree is the map

tF∗ ⊗ O(∞tors) −→ O(∞tors)/O

s/e(V ) ⊗ f *−→ s · f/�(V ).
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HereO=Q[z, z−1] and�(zn)=1− zn. The ringO(∞tors) of functions with poles only at points of finite
order is obtained by inverting all Euler classes.

ExampleA.5(The non-split one dimensional torus). The ring of functions on the non-split (non-deployé)
torusGnd isO=Q[a, b]/(a2+b2=1). Onceoneadjoins anelement i with i2=−1, this becomesequivalent
to the multiplicative group (also known as the standard torus). Indeed, we may takez = a + ib to see the
equivalence. From the usual multiplication rule for complex numbers we see that the coproduct is given
by a *−→ a ⊗ a − b ⊗ b andb *−→ a ⊗ b + b ⊗ a. The ideal(1− a, b) of functions vanishing at 0 is not
principal, so there is no coordinate in the previous sense.

Since there is no coordinate, a cohomology theory of typeGnd cannot be complex orientable. For
example the mapS0 −→ Sz induces the inclusionO ←− O(−(e)) of functions vanishing at the identity.
Hence the cohomology ofSz would not be a free module of rank 1.

It is standard thatGnd can be revovered fromGm overQ(i) using an action ofC2. Indeed,C2 acts on
O= Q(i)[z, z−1] by the Galois action onQ(i) and by exchangingzwith z−1. Thusa = (z + z−1)/2 and
b = i(z − z−1)/2 are fixed. The coordinatey = 1− z is not fixed, although 1− a = z−1(1− z)2 is fixed.
Because the coordinatey is not fixed, the action ofC2 onO does not extend to an action onKQ(i).

We may construct a theory of typeGnd in the usual way. We letS denote the multiplicative set of
functions f with zeroes only at points of finite order, and takeK = S−1O. Now takeV0 = K and
T0 =⊕

s H 1
Gnd〈s〉(O). HereH 1

Gnd〈s〉(O) is the local cohomology for the ideal of functions vanishing at
points of order exactlys. Now as before we define

q : tF∗ ⊗ V0 −→ T0.

For this we need to know thatGnd〈s〉 is essentiallydefined by a principal ideal (generated by�s say), so
that we may define

q(cw(s)
s ⊗ f )s = (�s)

w(s)f .

The point is that even thoughGnd〈s〉 is not itself defined by a principal ideal, it is in the appropriate local
ring. For instance, the ideal of functions vanishing at the identity is(1 − a, b). This is not a principal
ideal, but at the level of local cohomology we have

H 1
(1−a,b)(O) = H 1

(1−a,b)(O(1−a,b)) = H 1
(1−a)(O(1−a,b)),

where the second equality follows since

(1− a, b) =√
(1− a) in O(a−1,b),

as one sees explicitly from the equation(1− a)(1+ a) = b2. We therefore take�1 = 1− a and define
�s recursively by the equation

n∗�1 =
∏
s|n

�s .

Example A.6(Formal groups). By way of completeness we also record the analogue for formal groups.
This completes the circle by establishing the universality of the motivation described in Section 2. How-
ever, since we must work overQ, there is little difference from the additive group above. Suppose
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given a commutative one dimensional formal groupĜ over a ringk containingQ, with a coordinate
y. We may identify the ring of functions on̂G with k[[x]], and the group structure is the coproduct
x *−→ F (x ⊗ 1, 1 ⊗ x). The groupĜ[n] of points of order dividingn is defined by the vanishing of
�(zn) = [n](x) so the identity is the only element of finite order overQ-algebras. We may now make the
direct analogue of the construction in A.1. This case becomes rather degenerate in that it only detects
isotropy 1 andT.

The cohomology theory associated to the formal group of a complex oriented 2-periodic cohomology
theoryE is the 2-periodic Borel cohomology ofE. This is concentrated in even degrees and in each even
degree is the map

tF∗ ⊗ O(∞tors) = tF∗ ⊗ E0((x)) −→ E0((x))/E0[[x]] = O(∞tors)/O

s/e(V ) ⊗ f *−→ s · f/�(V ).

HereO = E0[[x]] and�(zn) = [n](x). The ringO(∞tors) = E0[[x]][1/x] = E0((x)) of functions with
poles only at points of finite order is obtained by inverting the Euler class ofz.
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