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Abstract

We study the quoting activity of market makers in relation to trading, liquidity, and expected
returns. Empirically, we find larger quote-to-trade (QT) ratios in small, illiquid, or neglected
firms, yet largeQT ratios are associatedwith low expected returns. The last result is driven by
quotes, not by trades. We propose a model of quoting activity consistent with these facts. In
equilibrium, market makers monitor the market faster (and thus increase the QT ratio) in
neglected, difficult-to-understand stocks. They also monitor faster when their clients are
more precisely informed, which reduces mispricing and lowers expected returns.

I. Introduction

Information is related to a firm’s cost of capital, which is important for firm
shareholders and market participants alike.1 In financial markets, information
is incorporated into prices by market makers, who provide liquidity via quotes
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Dashan Huang, Maureen O’Hara, Rohit Rahi, Daniel Schmidt, and Yajun Wang for their suggestions.
We are also grateful to finance seminar participants at the Stockholm Business School, the Academy of
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University of Chile, the University of Chile, the University of Technology Sydney, and HEC Paris,
as well as conference participants at the 2018 Australasian Finance and Banking Conference, 2018
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ence, 2018 European Finance Association Meeting, 2018 Monash Workshop on Financial Markets,
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1See Diamond and Verrecchia (1991), Easley and O’Hara (2004), and Amihud, Mendelson, and
Pedersen (2005) and references therein.
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(or limit orders), and market takers, who demand liquidity via marketable orders
and generate trades. A natural approach, then, is to study the relation between
information and the cost of capital through the lens of quoting and trading. Quoting
activity, in particular, has attracted the attention of exchanges and regulators
because of its rapid increase in recent years.2

Quoting activity, however, has played a limited role in the academic literature
on price discovery. The reason is that in manymarket-structure models, such as that
of Glosten andMilgrom (1985), the market makers mechanically set their quotes at
the expected asset value given the information contained in trades. In this setup,
there is no expected price appreciation, and hence the expected return (cost of
capital) is 0. Moreover, suppose we define the quote-to-trade (QT) ratio as the
number of quote updates divided by the number of trades. Then, as market makers
set their bid and ask quotes passively in response to trades, the QT ratio is always
equal to 2 (or a higher constant, if one adds exogenous public news to themodel). In
contrast, we show empirically that the QT ratio exhibits various patterns across
stocks, and we summarize these patterns as a list of new empirical stylized facts.

Our first stylized fact (SF1) is that the QT ratio is larger in stocks that are
neglected or difficult to understand (with low analyst coverage, institutional own-
ership, trading volume, or volatility). To illustrate this result, Figure 1 shows the
average number of analysts following a stock and the average trading volume for
10 portfolios sorted by the QT ratio. Firms with lower analyst coverage or lower
trading volume have larger QT ratios than firms with higher analyst coverage or
higher trading volume.

The second stylized empirical fact (SF2) is that the QT ratio has increased
significantly over time, especially after the emergence of algorithmic and high-
frequency trading (HFT) in 2003. This fact is documented by Hendershott, Jones,
and Menkveld (2011) for their proxy of algorithmic trading, the message-to-trade
ratio, but we show that the same pattern works for our QT ratio measure that uses
quote updates at the best bid and ask.

The third stylized empirical fact (SF3) is that stocks with higher QT ratios tend
to have lower expected returns (cost of capital). We regard this as our main result,
and we call it the QTeffect. This result is surprising because stocks with higher QT
ratios are usually smaller andmore illiquid (SF1), and thus onemight expect them to
have a higher cost of capital. Figure 2 illustrates the QTeffect: Stocks with large QT
ratios have low average returns, whether computed in excess of the risk-free rate or
after risk adjusting with the Fama and French (1993) factors. Further empirical
analysis using Fama–MacBeth regressions confirms the QT effect and verifies that
it holds in different subsamples. The fourth stylized empirical fact (SF4) is that the
QT effect appears to be driven by quotes and not by trades.

2Many exchanges have implemented limits on quoting activity. The London Stock Exchangewas the
first to introduce, in 2005, an “order management surcharge” based on the number of orders per trades
submitted. Several exchanges followed: Euronext in 2007 and DirectEdge, Oslo Stock Exchange,
Deutsche Börse, and Borsa Italiana in 2012. In 2014, the Markets in Financial Instruments Directive
(MIFID-II/R) required trading venues to establish a maximum unexecuted order-to-transaction ratio
as one of its controls to prevent disorderly trading conditions (see http://ec.europa.eu/finance/securities/
docs/isd/mifid/rts/160518-rts-9_en.pdf).
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FIGURE 2

Excess Return and Alpha for 10 QT Ratio Portfolios

Figure 2 shows the average return in excess of the 1-month T-bill rate (“Return”) and the alpha with respect to the Fama–
French 3-factor model (“Alpha FF3”) for 10 portfolios sorted on the quote-to-trade (QT) ratio. Portfolio 1 has the smallest QT
ratio, and portfolio 10 has the largest QT ratio. Returns are computed monthly and presented in percentages.
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FIGURE 1

Volume and Analyst Coverage for 10 QT Ratio Portfolios

Figure 1 shows the average U.S. dollar trading volume and the average number of analysts following a stock for 10 portfolios
sorted on the quote-to-trade (QT) ratio. Portfolio 1 has the smallest QT ratio, and portfolio 10 has the largest QT ratio.
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To interpret our empirical findings, we construct a model that focuses on the
quoting activity of market makers and its relation to the cost of capital. Our model
extends themonopolistic dealermodels of Ho and Stoll (1981) andHendershott and
Menkveld (2014), with two changes: First, the dealer learns about the value of the
risky asset via costly monitoring (which generates quote changes). Second, the
order flow is driven by risk-averse investors (that demand a positive risk premium).
The dealer (“she”) sets ask and bid quotes to maximize the expected profit, subject
to a quadratic penalty in her inventory. She monitors the market by getting signals
about the fundamental value according to a Poisson process with a frequency called
themonitoring rate.There is one round of trading, after which the asset liquidates at
a random fundamental value. Trading occurs at the first arrival of a Poisson process
with a frequency normalized to 1.3 Because the dealer optimally changes her quotes
every time she receives a signal, her monitoring frequency is the same as her
quoting frequency, or the quote rate.

In equilibrium, the dealer’s quote rate is decreasing in the monitoring preci-
sion. Indeed, a small precision of the signals obtained from monitoring makes the
dealer monitor more often (and increase her quote rate) in order not to stay far away
from the fundamental value and incur a large expected inventory penalty. This is
consistent with our SF1: The QT ratio (which is an empirical proxy for the quote
rate) is higher in neglected, difficult-to-understand stocks, in which monitoring is
expected to produce imprecise signals.

The dealer’s quote rate is increasing in the monitoring cost. Indeed, when this
cost is small, the dealer can afford to monitor more often in order to maintain the
same precision. There is evidence that monitoring costs have decreased dramati-
cally in recent times (see Hendershott et al. (2011)). This is consistent with our SF2:
QT ratios have increased significantly over time, especially after the emergence of
algorithmic trading and HFT.

We define the cost of capital in the model simply as the price discount, which
is the difference between the dealer’s value forecast and her midquote price (the
midpoint between the bid and ask). A key determinant of the equilibrium price
discount is the investor elasticity, which measures how aggressively investors trade
in response to the dealer’s pricing error. Consider an increase in investor elasticity,
which happens if investors have more precise private signals or if they are less risk
averse. Then, first, the dealer must monitor the market more often (hence, increase
the quote rate) to reduce the pricing error because large errors would make aggres-
sive investors cause large dealer inventories. Second, the dealer must reduce the
pricing discount (hence, reduce the cost of capital) by keeping the midquote closer
to her forecast. Intuitively, this reduction occurs becausemore informed or less risk-
averse investors need a smaller compensation in the form of a smaller price
discount. These facts together imply an inverse relation between the QT ratio and
the cost of capital, which is consistent with our SF3.

Themodel generates two additional empirical predictions, which are borne out
in the data. Our first prediction is that the number of market makers in a stock has an
inverse relation to the stock’s QT ratio. This is surprising because one might think

3Our results are robust if we extend our baseline model to multiple dealers (see Section 4 in the
Supplementary Material) or to multiple trading rounds (see Section 5 in the Supplementary Material).
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that a larger number of market makers generates more quoting activity. However,
in our model, we interpret a larger number of market makers as a smaller inventory
aversion for the representative dealer, and a less inventory-averse dealer can afford
to monitor the stock less often and set a lower quote rate. An extension of the model
to multiple dealers provides additional intuition for our first prediction: Because
dealer quotes are public information, each dealer’s monitoring exerts a positive
externality on the others and thus leads to underinvestment in monitoring in
equilibrium.4

Our second additional prediction is that the number of market makers in
a stock has no relation to the stock’s cost of capital. This prediction depends on
the dealer being in the neutral state, meaning that her initial inventory is such
that there is a 0 expected imbalance between the traders’ buy and sell quantities.5

Intuitively, in the neutral state, the price that balances the incoming order flow is
affected only by the properties of the order flow and not by the characteristics of the
dealer, including her inventory aversion (or the number of dealers if we consider the
case of multiple dealers).

We also examine several alternative explanations for the QT effect. In partic-
ular, we study the role of frictions (e.g., tick size and impediments to arbitrage),
institutional investors and governance, return reversals, and market-structure
events (e.g., Regulation National Market System (Reg NMS)). Although our
analysis supports some of these alternative explanations, they explain only part
of the QT effect. Overall, our model provides a consistent explanation for several
stylized empirical facts (SF1–SF4 and two additional predictions) that describe the
market makers’ quoting behavior and its relation with the cost of capital. Although
alternative explanations for each individual stylized fact may exist, we note that our
model provides a coherent explanation for all of these findings, based on the
production of public information by market makers.

Related Literature

This article contributes to the literature onmarket making.6 Our work is closest
to that of Hendershott and Menkveld (2014). In their setup, the order flow is
exogenously specified, and the equilibrium QT ratio is constant and equal to 2.
Another related article is that by Easley and O’Hara (2004), which analyzes the
relation between information and the cost of capital. One of their main findings is
that more public information leads to a lower cost of capital.7 In their rational-
expectations equilibrium model, however, there are no quotes, and thus our results
cannot be accommodated in their article. A related article is that by Foucault, Röell,
and Sandas (2003), which, in its analysis of NASDAQ professional day traders (the

4In Section 4 in the SupplementaryMaterial, we extend themodel toN dealers and show directly that
the aggregate quote rate is decreasing in N (see Corollary IA.4).

5In Section 5 in the Supplementary Material, we extend the model to multiple trading rounds and
show that the neutral state is the long-term average state, regardless of the initial state.

6See O’Hara (1995) and Hendershott and Menkveld (2014) and references therein.
7Easley and O’Hara (2004) show that the cost of capital is decreasing in the fraction of the public

signals (which in their notation is equal to 1�α) and in the total number of signals (public or private).
The intuition is that in both cases, the uninformed investors can learn better from prices and therefore
view the stock as less risky and demand a lower cost of capital.
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“Small Order Execution System (SOES) bandits”), shares a finding similar to ours:
Newsmonitoring by one dealer generates a positive externality on the other dealers.
In their model, there is also a negative externality because the bandits may discover
that some dealer quotes are stale after one dealer updates her quotes.

Our article has implications for the burgeoning literature on HFT.8 The QT
ratio is often connected to HFT by regulators, practitioners, and academics.9 The
recent dramatic increase in the QT ratio apparent in Figure 3 has been widely
attributed to the emergence of algorithmic trading and HFT (see, e.g., Hendershott
et al. (2011)). In our theoretical framework, this is consistent with a sharp decrease
in dealer monitoring costs. Our main focus, however, is on the relation between the
QT ratio and the cost of capital. Because the QT ratio is frequently used as a proxy
for HFT, one may be tempted to attribute the QTeffect to HFTactivity. Hendershott
et al. (2011) find that algorithmic trading has a positive effect on stock liquidity.

FIGURE 3

Time-Series Evolution of the QT Ratio

Figure 3 shows the base-10 logarithm of the time series of quotes, trades, and the quote-to-trade (QT) ratio
QTi,t ¼ N QUOTESð Þi,t

� �
= N TRADESð Þi ,t
� �

. Graph A shows the monthly time series of the cross-sectional mean, median,
25th percentile, and 75th percentile of the QT variable. Graph B shows the monthly average of the number of quote updates
and the number of trades.
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8See, for example, Menkveld (2016) and references therein.
9In practice, the QT ratio is typically defined with the numerator including not just the updates at the

best quotes but all orders or messages. Exchanges such as NASDAQ classify HFT based on the QT ratio
(see Brogaard, Hendershott, and Riordan (2014)). Among academics, the QT ratio is associated with the
level of algorithmic trading (see Hendershott et al. (2011); Boehmer, Fong, and Wu (2018)), high-
frequency trading (see, e.g., Conrad, Wahal, and Xiang (2015); Brogaard, Hendershott, and Riordan
(2017)), and arbitrage activity (see Foucault, Kozhan, and Tham (2016)).
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Therefore, it is plausible that stocks with higher HFT activity (and therefore higher
QT ratios) are more liquid and thus have a lower cost of capital. This argument,
however, is not consistent with our empirical SF1, which shows that a largeQTratio
is typically found in illiquid, neglected stocks. Moreover, the argument does not
explain why the QTeffect also holds during 1994–2002, when HFT is not known to
have had a significant impact in financial markets (see Section IV.D). We thus find
the HFT explanation of the QT effect unlikely.

The remainder of the article is organized as follows: Section II describes
the data and provides our main empirical results. Section III describes the model,
solves for the equilibrium quote rate and cost of capital, and provides additional
predictions. Section IV investigates alternative explanations of the QT effect.
Section V concludes. All proofs are in the Appendix.

II. Quotes, Trades, and Returns

In this section, we construct our QT ratio (also calledQT) measure and provide
stylized facts on quotes, trades, and stock returns.

A. Data

To construct our QT ratio variable, we use the trades and quotes reported in the
Trade and Quote database (TAQ) for the period June 1994–Dec. 2017.10 Using
TAQ data allows us to generate a long time series of the variable QT at the stock
level in order to conduct asset pricing tests. We retain stocks listed on the NYSE,
AMEX, and NASDAQ for which information is available in TAQ, CRSP, and
Compustat data.

Our sample includes only common stocks (Common Stock Indicator
Type ¼ 0), common shares (share codes 10 and 11), and stocks not trading on a
“when-issued” basis. Stocks that change primary exchange, ticker symbol, or
CUSIP number are removed from the sample (Chordia, Roll, and Subrahmanyam
(2000), Hasbrouck (2009)). To avoid illiquidity issues related to the price level, we
also remove stocks that have a price lower than $2 and higher than $1,000 at the end
of amonth.11 To avoid look-ahead bias, all filters are applied on amonthly basis and
not on the whole sample. There are 10,670 individual stocks in the final sample.

All returns are calculated using bid–ask midpoint prices, following our defi-
nition of the price pt (see Proposition 1) and to reduce market-microstructure noise
effects on observed returns (see Asparouhova, Bessembinder, and Kalcheva
(2010), (2013)).12 All returns are adjusted for splits and cash distributions. We
follow Shumway (1997) in using returns of�30% for the delistingmonth (delisting
codes 500 and 520–584). Risk factors are from Wharton Research Data Services
(WRDS) and Kenneth French’s website for the period 1926–2017. The probability

10Our sample starts in June 1994 because TAQ reports opening and closing quotes but not intraday
quotes for NASDAQ-listed stocks prior to this date.

11The results are quantitatively similar when removing stocks with a price lower than 5 and are
available from the authors.

12Calculating returns from end-of-day prices does not change the results qualitatively. These results
are available from the authors.
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of informed trading (PIN) factor is from Sören Hvidkjaer’s website and is available
from 1984 to 2002. Table IA.1 in the SupplementaryMaterial reports the definitions
and the construction details for all variables, and Table IA.2 in the Supplementary
Material provides the summary statistics.

We define QT as the monthly ratio of the number of quote updates at the best
national price (National Best Bid Offer) to the number of trades. By quote updates,
we refer only to changes either in the ask or bid prices and not to depth updates at the
current quotes.13 Specifically, we calculate the QT variable for stock i in month t as
the following ratio:

QTi,t ¼
N QUOTESð Þi,t
N TRADESð Þi,t

,(1)

whereN QUOTESð Þi,t is thenumber of quote updates in stock iduringmonth t across
all exchanges, andN TRADESð Þi,t is the number of trades in stock i during month t.

B. Stock Characteristics and the Quote-to-Trade Ratio

In this section, we analyze the relation of the QT ratio with various firm-level
characteristics. To alleviate concerns about the effect of market-wide events during
our sample period, we use time fixed effects in our regressions. We also use stock
fixed effects to control for unobservable time-invariant stock characteristics.

To get some perspective about the firms with different QT ratios, we report the
average values of various firm-level characteristics in Table 1. Specifically, each
month, we divide all stocks into decile portfolios based on their QT ratios during
month t. The QT portfolio 1 has the lowest QT, and the QT portfolio 10 has the
highest QT. For each QT decile at time t, we compute the cross-sectional mean
characteristic for month t and report the time-series mean of the average cross-
sectional characteristic.14

Column 5 of Table 1 shows that the average firm size, as measured by market
capitalization, is decreasing in QT. The lowest-QT stocks (stocks in QT decile 1)
have an average market capitalization of $10.8 billion, whereas the highest-QT
stocks (stocks in QT decile 10) have an average capitalization of $0.8 billion.
Column 7 shows that the average monthly trading volume decreases from $1.97
billion for the lowest-QTstocks to $0.06 billion for the highest-QTstocks. Columns
8–10 show the averages of three illiquidity measures: the quoted spread, the relative
spread, and the Amihud (2002) illiquidity ratio (ILR). The highest-QT stocks are
roughly 3 times more illiquid than the lowest-QTstocks. The lowest- QTstocks are
almost 3 times as volatile as the highest-QT stocks, as shown in column 11.

Table 2 formally examines the relation of the QT ratio with various firm
characteristics in a multivariate-regression setting. The dependent variable is the
monthly QT ratio. We present the results from a panel regression with various

13The results are qualitatively similar if QT is defined by using both quote and depth updates in the
numerator. Using only quotes, however, is more consistent with our theoretical model in Section III.A.

14The order of the different characteristics across QT portfolios remains unchanged when we
compute the cross-sectional characteristics for two equal subsamples; see Table IA.3 in the Supplemen-
tary Material.
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TABLE 1

Characteristics of QT Ratio Portfolios

Table 1 presents themonthly average characteristics for 10 quote-to-trade (QT) ratio portfolios constructed inmonth t . Portfolio 1 consists of stockswith the lowest QT ratios inmonth t , and portfolio 10 consists of stocks
with the highest QT ratios. Each portfolio contains on average 290 stocks. Stocks priced below $2 or above $1,000 at the end ofmonth t are removed. The sample period is June 1994–Dec. 2017. For eachQTdecile, we
compute the cross-sectional mean characteristic formonth t . The reported characteristics are computed as the time-seriesmean of themean cross-sectional characteristic. Column2 shows theQT level, columns3 and
4show the number of trades andquote updates in thousands, column5 showsmarket capitalization (MCAP) ($millions), columns6and7 show the share volume (inmillions of shares) andUSDvolume traded ($millions),
columns 8 and 9 show the quoted spread and relative spread (in% of the midquote), column 10 shows the Amihud illiquidity ratio (ILR) (in %), column 11 shows volatility (calculated as the absolute monthly return in%)
(VOLAT), column 12 shows price (PRC), column 13 shows the average book-to-market value measured at the end of the previous calendar year (BM), column 14 shows the average number of analysts following the
stock (ANF), and column 15 shows the average institutional ownership (INST).

QT N(trades) N(quotes) VOLUME SPREAD

Portfolio QT (� 1,000) (� 1,000) MCAP Shares USD Quoted Relative IRL VOLAT PRC BM ANF INST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.4 156 280 10,764 84 1,971 0.118 1.21 2.09 4.01 16.1 0.64 16 0.51
2 3.1 65 356 5,555 24 969 0.142 1.41 2.90 3.29 19.6 0.63 12 0.51
3 4.5 47 377 4,571 16 759 0.158 1.50 3.41 3.02 23.1 0.63 11 0.51
4 5.9 36 376 3,812 12 615 0.178 1.59 3.76 2.84 25.7 0.62 10 0.52
5 7.5 27 349 3,045 9 476 0.206 1.73 4.58 2.73 27.8 0.63 10 0.51
6 9.6 20 313 2,826 7 391 0.244 1.88 6.04 2.58 28.9 0.67 9 0.49
7 13.1 14 259 3,308 7 357 0.232 1.74 5.30 2.12 28.9 0.73 10 0.50
8 19.2 8 207 2,069 4 216 0.245 1.64 4.01 1.75 29.0 0.73 9 0.50
9 34.4 5 160 1,425 3 128 0.285 1.71 4.53 1.59 28.7 0.76 7 0.46
10 177.3 2 137 826 1 56 0.403 2.11 7.34 1.43 30.3 0.99 5 0.39
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specifications for fixed effects and with standard errors clustered at the stock and
month level. Column 1 presents the results without any fixed effects. To control for
unobservable time-invariant stock characteristics, we introduce stock fixed effect in
column 2. To alleviate concerns about the effect of market-wide events during our
sample period (e.g., Autoquote, Reg NMS, changes in the tick size), we use time
fixed effects in column 3. Finally, the regression presented in column 4 includes
both firm and time fixed effects because both play an important role in our analysis.
All nonbinary variables have been standardized, demeaned, and divided by the
standard deviation.

We find that the QT ratio is higher for stocks that have low analyst coverage,
low institutional ownership, low trading volume, and low volatility.15 Generally,
these are stocks that are neglected by analysts or investors and are difficult to
understand/evaluate (see Hong, Lim, and Stein (2000), Kumar (2009)).

TABLE 2

Determinants of the QT Ratio

Table 2 shows panel regressions of the quote-to-trade (QT) ratio on different stock characteristics. The dependent variable is
the monthly QT. The independent variables are as follows: annual number of analysts following the stock (ANF), quarterly
institutional ownership (INST), log-book-to-market as of the previous year-end (BM), and previous-month return (R1), as well
as contemporaneous (monthly) variables of log-market capitalization (MCAP), price (PRC), trading volume (USDVOL)
($millions), Amihud illiquidity ratio (ILR), relative bid–ask spread (SPREAD), and idiosyncratic volatility (IVOLAT)
(measured as the standard deviation of the residuals from a Fama and French (FF3) (1993) model regression of daily raw
returns within each month, as in Ang, Hodrick, Xing, and Zhang (2009)). All nonbinary variables have been standardized,
demeaned, and divided by the standard deviation. Time fixed effects (FE) are at the month-year level. Standard errors are
double-clustered at the stock and month-year level.

1 2 3 4

ANF �0.05∗∗∗ �0.04∗∗∗ �0.01∗∗ �0.02∗∗∗

(�5.07) (�3.79) (�2.55) (�3.04)

INST �0.06∗∗∗ �0.11∗∗∗ 0.01∗∗ �0.08∗∗∗

(�4.94) (�7.84) (2.06) (�7.05)

BM 0.18∗∗∗ 0.17∗∗∗ 0.01 �0.01
(2.93) (2.73) (0.36) (�0.29)

R1 �0.01∗∗∗ �0.01∗∗∗ �0.01∗∗∗ 0.00
(�4.44) (�3.35) (�2.66) (�1.19)

MCAP �0.02 0.00 0.03 0.00
(�0.84) (�0.12) (1.45) (�0.09)

PRC 0.07∗∗∗ 0.08∗∗∗ 0.02∗∗∗ 0.04∗∗∗

(5.83) (5.99) (3.01) (4.69)

USDVOL 0.002 �0.02∗∗∗ �0.01∗∗ �0.02∗∗∗

(�0.63) (�3.42) (�2.37) (�3.10)

ILR 0.02∗∗ 0.00 0.00 0.00
(2.16) (0.10) (0.83) (�0.21)

SPREAD �0.06∗∗∗ 0.00 �0.04∗∗∗ �0.02∗∗∗

(�8.97) (�0.39) (�6.34) (�2.67)

IVOLAT �0.04∗∗∗ �0.02∗∗∗ �0.01∗∗∗ �0.01∗∗∗

(�6.02) (�3.86) (�5.81) (�3.55)

Stock FE No Yes No Yes
Time FE No No Yes Yes

N 805,763 805,763 805,655 805,655
Adj.R2 0.044 0.068 0.292 0.305

15Table IA.4 in the Supplementary Material shows that the results in Table 2 remain robust to the
addition of two control variables: i) the number of registered NASDAQ market makers and ii) several
time dummy variables related to market-wide events, previously subsumed by the time fixed effects.
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Stylized Fact 1 (SF1). Neglected stocks (with low analyst coverage, institutional
ownership, trading volume, and volatility) have higher QT ratios.

This result may appear puzzling, because in neglected stocks, one may expect
a lower QT ratio because market makers have less precise information based on
which to change their quotes. But in our theoretical model, a market maker with less
precise information actually monitors more often to prevent getting a large inven-
tory and therefore generates a higher QT ratio (see Section III.B.2).16

It is common practice among academics, practitioners, and regulators to
associate QT with HFT activity (several examples are given in footnote 9). The
results in Tables 1 and 2 suggest that using QT as a proxy for HFT activity must be
done with caution. For instance, high-frequency traders are known to trade in larger
and more liquid stocks (Hagströmer and Nordén (2013), Brogaard, Hagströmer,
Nordén, and Riordan (2015)). In addition, high-frequency traders are more likely to
trade in stocks with high institutional ownership if HFT activity stems from their
anticipation of agency and proprietary algorithms of institutional investors, such as
mutual funds and hedge funds (O’Hara (2015)). But SF1 shows that the QT ratio is
actually lower in stocks with high institutional ownership. Thus, simply associating
HFT activity with the QT ratio can be misleading.

C. Time Series of Quote-to-Trade Ratios

Graph A of Figure 3 shows the time series of the equally weighted base-10
logarithm of the monthly QT ratio over the sample period. We note the substantial
increase in QT during this time. Graph B is similar to Graph A but displays the
evolution of quotes and trades separately. Graph B shows that the increase in QT is
drivenby theexplosion inquoteupdates.Forexample, in June1994, the total number
of quotes and the total number of trades are roughly equal to each other, at approx-
imately1.1millioneach. InAug.2011, thepeakmonth forbothquotes and trades, the
monthly number of quotes at the best price reached 1,445 million, whereas trades
reached 104 million, an increase 10 times larger for quotes than for trades.17

Stylized Fact 2 (SF2). QT ratios have increased over time.

SF2 can be explained theoretically by a decrease in market-maker monitoring
costs: When these costs are smaller, market makers monitor more often, and hence
the QT ratio increases (see Section III.B.2). Both the empirical fact and its expla-
nation are consistent with previous literature. Hendershott et al. (2011) study a
change in the NYSE market structure in 2003 called Autoquote and argue that this
change resulted in a decrease in monitoring costs among market participants and
especially among algorithmic traders. At the same time, they document an increase

16One alternative view is that the QT ratio is driven by the exogenous arrival of public news. If a
neglected stock is expected to have a low number of trades but a relatively large flow of news (e.g.,
coming from stock index changes), then we should also expect the stock to have a relatively high QT
ratio, which is consistent with SF1. Because we do not incorporate exogenous news in our theoretical
model, we leave an exploration of this alternative view to future research.

17The positive relation between quotes and trades is established in Skjeltorp, Sojli and Tham (2018).
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in their proxy for algorithmic trading, which is close in spirit to our QT ratio.18

Angel, Harris, and Spatt (2011) argue that the proliferation of algorithmic trading
and HFT since 2003 has led to substantial increases in the number of both quotes
and trades.

D. Quote-to-Trade Ratio and Stock Returns

In this section, we study the relation between QT ratios and average stock
returns. We start with an investigation of abnormal expected returns to account for
various risk factors through portfolio sorts and then examine other known cross-
sectional return predictors through Fama–MacBeth regressions.

1. Univariate Analysis

First, we investigate the raw-return differential between the low- and high-QT
stocks. For each time period, we sort stocks into decile portfolios based on their QT
ratios for each month t.We then compute the return in excess of the risk-free rate for
each of these portfolios for month tþ1. Column 1 of Table 3 reports the excess
returns for the 10 portfolios. The QT1 portfolio has a return of 1.59% per month,
and QT10 has a return of 0.77%. The raw excess return of the long–short portfolio
based on QT is 0.83% a month.

This raw-excess-return differential might be driven by compensation for
known risk factors. Therefore, we test whether the return differential between the

TABLE 3

Risk-Adjusted Returns for QT Ratio Portfolios

Table 3 showsmonthly returns (in percentage points) for various portfolios sorted on the quote-to-trade (QT) ratio. We form 10
portfolios based on the QT level in month t , and returns are calculated for each portfolio for month tþ1. Column 1 shows the
averagemonthly portfolio raw return in excess of the risk-free rate (retþ1) for each portfolio at time t þ1. Columns 2–7 report the
risk-adjusted returns (alphas). The alphas reported in the table are the intercepts (risk-adjusted returns) obtained from
regressions of returns on the risk factors. The monthly returns of the QT portfolios are risk-adjusted using several asset
pricing models: the capital asset pricing model (CAPM), Fama and French (FF3) (1993) model, a model that adds the Pástor
and Stambaugh (2003) traded liquidity factor (FF3+PS), a 5-factor model that adds a momentum factor (FF3+PS+MOM), the
Fama and French (FF5) (2015) 5-factor model, and a model that adds the probability of informed trading (PIN) factor for the
period June 1994–Dec. 2002 (FF4+PS+PIN). We show the alpha for the lowest- and highest-QT portfolios and the alpha for
the difference in returns between the low and high portfolios. ∗ , ∗∗, and ∗∗∗ indicate rejection of the null hypothesis that the risk-
adjusted portfolio returns are significantly different from 0 at the 10%, 5%, and 1% levels, respectively.

Risk-Adjusted Returns (%)

r etþ1 CAPM FF3 FF3+PS FF3+PS+MOM FF5 FF3+PS+MOM+PIN

1 2 3 4 5 6 7

α1 1.59∗∗∗ 0.90∗ 1.05∗∗∗ 1.01∗∗∗ 1.64∗∗∗ 0.95∗∗∗ 1.66∗∗∗

α2 1.34∗∗∗ 0.91∗∗ 0.86∗∗∗ 0.85∗∗∗ 1.17∗∗∗ 0.59∗∗∗ 1.17∗∗∗

α3 1.21∗∗∗ 0.76∗ 0.67∗∗∗ 0.63∗∗∗ 0.97∗∗∗ 0.52∗∗∗ 0.98∗∗∗

α4 1.08∗∗∗ 0.62∗ 0.49∗∗∗ 0.50∗∗∗ 0.76∗∗∗ 0.34∗∗∗ 0.76∗∗∗

α5 1.02∗∗∗ 0.63∗ 0.47∗∗ 0.47∗∗ 0.67∗∗∗ 0.25∗∗∗ 0.67∗∗∗

α6 0.95∗∗∗ 0.30 0.08 0.10 0.32∗ 0.19∗∗ 0.31∗

α7 1.03∗∗∗ 0.58∗∗ 0.24 0.22 0.59∗∗∗ 0.21∗∗ 0.60∗∗∗

α8 0.93∗∗∗ 0.48∗∗∗ 0.06 0.04 0.32∗∗ 0.08 0.32∗∗

α9 0.95∗∗∗ 0.44 �0.01 �0.02 0.20 0.18∗∗ 0.18
α10 0.77∗∗∗ 0.40∗∗∗ �0.08 �0.10 0.08 0.01 0.06
α(QT1 � QT10) 0.83∗∗∗ 0.50 1.13∗∗∗ 1.11∗∗∗ 1.56∗∗∗ 0.94∗∗∗ 1.60∗∗∗

18See Figure 1 in Hendershott et al. (2011). Their proxy for algorithmic trading is defined as the
negative of dollar trading volume divided by the number of electronic messages (including electronic
order submissions, cancellations, and trade reports but excluding specialist quoting or floor orders).

Rosu, Sojli, and Tham 2775

https://doi.org/10.1017/S002210902000071X
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . G
roupe H

EC , on 03 D
ec 2021 at 09:27:36 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s .

https://doi.org/10.1017/S002210902000071X
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


low- and high-QT stocks can be explained by the market, size, value, momentum,
liquidity, profitability, and investment factors. Each month, all stocks are divided
into portfolios sorted on QT at time t. Portfolio returns are the equally weighted
average realized returns of the constituent stocks in each portfolio in month tþ1.19

We estimate individual portfolio loadings from the following regression:

rp,tþ1 ¼ αpþ
XJ
j¼1

βp,jXj,tþ εp,tþ1,(2)

where rp,tþ1 is the return in excess of the risk-free rate for month tþ1 of portfolio
p constructed in month t based on the QT level, and X j,t is the set of J risk factors:
excess market return (rMKT), value (rHML), size (rSMB), the additional Fama
and French (2015) factors: profitability (rRMW) and investment (rCMA),Pástor and
Stambaugh (2003) liquidity (rLIQ), momentum (rUMD), and probability of informed
trading (rPIN). Table 3 reports the alphas obtained from the regression in equation
(2).20 We present results from several asset pricing models that include several risk
factors: thecapital asset pricingmodel (CAPM)(market), theFamaandFrench (FF3)
(1993)model (market, size, value), FF3+PS (with the Pástor and Stambaugh (2003)
traded liquidity factor), FF3+PS+MOM (with momentum), FF5 (with profitability
and investment), and FF4+PS+PIN (with probability of informed trading).21

Columns 2–7 in Table 3 report the alphas for the 10 QT-sorted portfolios. We
first focus on the full-sample analysis in columns 2–6. The low-QT portfolio (QT1)
has amonthly alpha (α1) that ranges between 0.90% and 1.64% across various asset
pricingmodels, which is statistically different from 0. The high-QT portfolio alphas
range from �0.10% to 0.40% but are statistically not different from 0 in all spec-
ifications, except the CAPM. This suggests that the high-QT portfolios are priced
well by the factor models. However, the risk-adjusted return difference between the
low-QT and high-QT portfolios is statistically different from 0 and varies between
0.50% and 1.56% per month across the different asset pricingmodels. Table IA.5 in
the Supplementary Material shows that the differences between the low- and high-
QT portfolio alphas are not sensitive to the number of formed portfolios.

Stylized Fact 3 (SF3). Higher QT ratios are associated with lower average stock
returns in the cross section (the QT effect).

This result is puzzling when compared with SF1, which shows that the QT
ratio is higher in neglected stocks and, in particular, in less traded or more illiquid
stocks. In the literature, less traded or illiquid stocks also tend to have higher

19We also conduct the analysis using value-weighted portfolio returns, and the results do not change
quantitatively.

20One can also estimate the individual portfolio loadings from rolling-window regressions to
account for time-varying factor loadings. We construct time-series averages of the alphas obtained from
24-month rolling-window regressions and obtain quantitatively similar results. These results are avail-
able from the authors.

21The PIN factor from Sören Hvidkjaer’s website is available only until 2002; therefore, we restrict
our analysis in the last column of Table 3 to the period 1994–2002. This result is discussed in Section IV
as part of the alternative-hypothesis analysis.
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expected returns, which appears to contradict the QTeffect. To address these issues,
in the next section, we provide amultivariate analysis and control for other variables
that are potentially important in the cross section of stock returns.

Table 3 also reveals an asymmetry in the QT effect. The profitability of the
long–short strategy derives mainly from the long position (the performance of
the low-QT portfolio QT1) rather than from the short position (the performance of
the high-QT portfolio QT10). Therefore, short-selling constraints are not likely to
impede the implementation of a strategy that exploits the main regularity in Table 3.

2. Fama–MacBeth Regressions

To control for other predictive variables of the cross section of returns, we
estimate Fama–MacBeth (1973) cross-sectional regressions of monthly individual
stock risk-adjusted returns on different firm characteristics, including the QT
variable. In addition, the Fama–MacBeth procedure accounts for time fixed effects
that could arise from market-wide events during our sample period.

We use individual stocks as test assets to avoid the possibility that tests may
be sensitive to the portfolio grouping procedure. First, we estimate monthly rolling
regressions to obtain individual stocks’ risk-adjusted returns using a 48-month
estimation window. We use a similar procedure as in Brennan, Chordia, and Sub-
rahmanyam (1998) to obtain risk-adjusted returns:

rai,t ¼ ri,t�
XJ
j¼1

β̂i,j,t�1F j,t,(3)

where ri,t is the monthly return of stock i in excess of the risk-free rate, bβi,j,t�1 is the
conditional beta estimated by a first-pass time-series regression of risk factor j
estimated for stock i by a rolling time-series regression up to t�1, and F j,t is the
realized value of risk factor j at time t. Then, we regress the risk-adjusted returns
from equation (3) on lagged stock characteristics:

rai,t ¼ c0,tþ
XM
m¼1

cm,tZm,i,t�k þ ei,t,(4)

where Zm,i,t�k is the characteristic m for stock i at time t� k, and M is the total
number of characteristics. We use k¼ 1 month for all characteristics.22 The proce-
dure ensures unbiased estimates of the coefficients cm,t, without the need to form
portfolios, because errors in the estimation of the factor loadings are included in the
dependent variable. The t-statistics are obtained using the Fama–MacBeth standard
errors with Newey–West correction with 12 lags.

Table 4 reports the Fama–MacBeth (1973) coefficients for cross-sectional
regressions of individual stock risk-adjusted returns on stock characteristics. We
construct risk-adjusted returns using the Fama–French 3-factor model (market,
size, and value), with the momentum and the Pástor and Stambaugh (2003) traded
liquidity factor. Column 1 includes only the QT ratio. QT has a highly significant

22Table IA.6 in the Supplementary Material shows the estimation results where k¼ 2 for all
conditioning variables with the exception of the past return variables R1 and R212.
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and negative coefficient, implying that stocks with higher QT have lower next-
month risk-adjusted returns. We thus again confirm the QT effect.

Because the QTeffect might be driven by the correlation of QTwith liquidity,
we include two illiquidity proxies in the regression: the bid–ask spread (SPREAD)
and the Amihud (2002) illiquidity ratio (ILR). Column 2 of Table 4 includes QT
and SPREAD, column 3 includes QTand ILR, and column 4 includes QTand both
SPREAD and ILR. The coefficients for both illiquidity proxies are positive and
significant, consistent with higher illiquidity causing higher returns (see Amihud
(2002)). However, the inclusion of these known illiquidity proxies does not reduce
the effect of QT, which remains negative and significant in all specifications in
columns 2–4.

In column 5 of Table 4, we introduce other firm characteristics that affect
expected returns. With these additional control variables, the coefficient for QT
remains negative and highly significant with a t-statistic of �3.85, whereas the
illiquidity proxies SPREAD and ILR become both insignificant. The QT effect
therefore is distinct from the known effects of other variables: spread, ILR, trading
volume, and volatility. The coefficients of control variables are quantitatively
similar to articles using a similar sample period (e.g., Hou and Loh (2016)). The
results are quantitatively unchanged when introducing other control variables, such
as short interest, institutional ownership, or analyst following, in Table IA.7 in the
Supplementary Material. Furthermore, focusing on only the NASDAQ-listed sub-
set or using excess returns, rather than risk-adjusted returns, does not alter the QT
effect. Our results add to the literature that explores how trading activity and
market structure are connected with asset returns (see Amihud and Mendelson
(1986), Amihud (2002), Brennan and Subrahmanyam (1996), Chordia, Roll, and

TABLE 4

Stock Returns and the QT Ratio

Table 4 reports the Fama–MacBeth (1973) coefficients from regressions of risk-adjusted monthly returns on firm
characteristics. The dependent variable is the risk-adjusted return rai,t ¼ r i ,t �

PJ
j¼1βi,j ,t�1F j ,t , where the risk factors F j ,t

come from the FF3+PS+MOM model (market, size, value, momentum and the Pástor and Stambaugh (2003) traded liquidity
factor). The firm characteristics are measured in month t �1. The characteristics included are as follows: quote-to-trade (QT)
ratio (QT); number of quotes (QUOTE); number of trades (TRADE); relative bid–ask spread (SPREAD); Amihud illiquidity ratio
(ILR); log-market capitalization (MCAP); book-to-market ratio (BM), calculated as the natural logarithm of the book value of
equity divided by the market value of equity from the previous fiscal year; previous-month return (R1); cumulative return from
month t �2 to t �12 (R212); idiosyncratic volatility (IVOLAT),measured as the standard deviation of the residuals froma Fama
and French (FF3) (1993) model regression of daily raw returns within each month as in Ang et al. (2009); trading volume
(USDVOL) ($millions); and price (PRC). All characteristics apart from returns are logged, and all coefficients are multiplied by
100. The standard errors are corrected by using the Newey–West method with 12 lags. t-statistics for the QT variable are
presented in parentheses. ∗ , ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

1 2 3 4 5

Constant 0.005∗∗∗ 0.004∗∗∗ 0.014∗∗∗ 0.012∗∗∗ 0.035∗∗∗

QTi ,t�1 �0.172∗∗ �0.199∗∗∗ �0.251∗∗∗ �0.261∗∗∗ �0.156∗∗∗

(�2.23) (�2.91) (�3.61) (�3.59) (�3.85)

SPREADi,t�1 0.166∗∗∗ 0.074∗ 0.021
ILRi,t�1 0.102∗∗∗ 0.081∗∗∗ �0.008
MCAPi ,t�1 �0.136∗

BMi ,t�1 0.032
R1i ,t�1 �3.350∗∗∗

R212i,t�1 0.084
IVOLATi,t�1 �9.525∗∗∗

USDVOLi,t�1 0.052
PRCi ,t�1 �0.345∗∗∗

R2 0.00 0.01 0.01 0.01 0.03
Time series (months) 278 278 278 278 278
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Subrahmanyam (2002), Chordia et al. (2000), Easley, Hvidkjaer, and O’Hara
(2002), and Duarte and Young (2009), among many others).

An important question is whether the QT effect is driven by the number of
quotes or by the number of trades. We explore this question in Table 5. Column
1 shows that when conditioning on quotes and trades as separate explanatory
variables, it is the number of quotes that matters most for risk-adjusted returns.
This effect is economically and statistically large. Introducing other liquidity-based
control variables in columns 2–4 does not affect the statistical significance of the
number of trades and the number of quotes. Column 6 includes all firm character-
istics, as well as liquidity measures as control variables, and shows that the predic-
tive power of QT derives from quotes and not from trades.

Stylized Fact 4 (SF4). The QT predictability is driven by the number of quotes
rather than the number of trades.

This result justifies our modeling choice in Section III to consider the trades as
exogenous and focus instead on the quotes and how they result from the market
makers’ monitoring decisions.

III. Model of Quoting Activity

Our model is close in spirit to the dealer models of Ho and Stoll (1981) and
Hendershott and Menkveld (2014). Because we are interested in the relation
between quoting activity and the cost of capital, we make two key modifications.
First, the dealer learns about the value of the risky asset via costly monitoring,

TABLE 5

Quotes Versus Trades

Table 5 reports the Fama–MacBeth (1973) coefficients from regressions of risk-adjusted monthly returns on firm
characteristics, including the number of quotes and trades. The dependent variable is the risk-adjusted return
rai ,t ¼ r i,t �

PJ
j¼1βi,j ,t�1F j ,t , where the risk factors F j ,t come from the FF3+PS+MOM model (market, size, value,

momentum, and the Pástor and Stambaugh (2003) traded liquidity factor). The firm characteristics are measured in month
t �1. The characteristics included are as follows: number of quotes (QUOTE); number of trades (TRADE); relative bid–ask
spread (SPREAD); Amihud illiquidity ratio (ILR); market capitalization (MCAP); book-to-market ratio (BM), calculated as the
natural logarithm of the book value of equity dividedby themarket value of equity from the previous fiscal year, previous-month
return (R1); cumulative return from month t�2 to t �12 (R212); idiosyncratic volatility (IVOLAT), measured as the standard
deviation of the residuals from an FF3 regression of daily raw returns within each month, as in Ang et al. (2009); dollar volume
(USDVOL); and price (PRC). All characteristics apart from returns are logged, and all coefficients are multiplied by 100. The
standard errors are corrected by using the Newey–West method with 12 lags. ∗ , ∗∗ , and ∗∗∗ indicate statistical significance at
the 10%, 5%, and 1% levels, respectively.

1 2 3 4 5 6

Constant 0.022∗∗∗ 0.021∗∗∗ 0.019∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.021∗∗∗

QUOTEi,t�1 �0.320∗∗∗ �0.337∗∗∗ �0.290∗∗∗ �0.313∗∗∗ �0.130∗∗∗ �0.154∗∗∗

TRADEi,t�1 0.175∗ 0.204∗∗ 0.235∗∗ 0.244∗∗ �0.160 �0.134
SPREADi ,t�1 0.023 0.011 �0.006
ILRi,t�1 0.081∗∗ 0.064∗ �0.003
MCAPi,t�1 �0.159∗∗ �0.143∗∗

BMi,t�1 0.023 0.026
R1i,t�1 �3.496∗∗∗ �3.418∗∗∗

R212i ,t�1 0.069 0.073
IVOLATi,t�1 �7.348∗∗ �8.466∗∗∗

USDVOLi ,t�1 0.346∗∗∗ 0.322∗∗∗

PRCi,t�1 �0.573∗∗∗ �0.534∗∗∗

R2 0.01 0.01 0.01 0.01 0.03 0.03
Time series (months) 278 278 278 278 278 278
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which generates endogenous quote changes. Second, the order flow is generated
by risk-averse investors, which causes a pricing discount in our model and thus
generates a positive cost of capital.

A. Environment

Themarket consists of one risk-free asset and one risky asset. Trading in the risky
asset takes place in a market exchange based on the mechanism described
in the following subsection. There are two types of market participants: i) one monop-
olistic market maker called the dealer (“she”), who monitors the market and sets ask
and bid quotes at which others trade, and ii) traders, who submit market orders.

Assets. The risk-free asset is used as the numeraire and has a 0 return. After
trading takes place, the risky asset liquidates at a value v per share, called the
fundamental value or asset value. The random variable v has a normal distribution
v�N v0,σ2v

� �
, where σv is the fundamental volatility.

Trading. Trading occurs at the first arrival τ in a Poisson process with a
frequency parameter normalized to 1. Upon observing the ask quote a and the
bid quote b, traders submit at τ the following aggregate market orders:

Qb ¼ k

2
v�að Þþℓ�mþ εb, with εb �IIDN 0,ΣL=2ð Þ,

Qs ¼ k

2
b� vð Þþℓþmþ εs, with εs �IIDN 0,ΣL=2ð Þ,

(5)

whereQb is the buy demand andQs is the sell demand. The numbers k, ℓ,m, and ΣL

are exogenous constants. Together,Qb andQs are called the traders’ order flow.The
parameter k is the investor elasticity, ℓ is the inelasticity parameter, and m is the
imbalance parameter. Hendershott and Menkveld (2014) use a similar reduced-
form approach, except that they exogenously set the imbalance parameter m to
0. We endogenize the value of m and other parameters by providing microfounda-
tions for the order flow, and we find that m> 0 when investors are risk averse and
the asset is in positive net supply.

Order Flow Microfoundations. To get more intuition for equations (5), we
provide microfoundations for the order flow. (For more details, see Section 2 in the
Supplementary Material.) First, we assume that the risky asset has a positive net
supply M > 0. There are two types of traders: i) liquidity traders, who submit
inelastic aggregate buy order Lb and aggregate sell order Ls, where both Lb and
Ls have independent and identically distributed (IID) normal distributions
N ℓL,ΣL=2ð Þ, and ii) informed investors with constant absolute risk aversion
(CARA) utility and coefficient of risk aversion A> 0. A mass one of informed
investors starts with an initial endowment in the risky asset that is normally
distributed as N M ,σ2M

� �
. To simplify notation, we redefine the asset value to be

vþu, with u normally distributed asN 0,Σuð Þ. Investors observe the same signal v
before trading and then trade on the exchange at the existing quotes. As a result, we
show in Section 2 in the Supplementary Material that the aggregate order flow
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approaches the form in equation (5) when the endowment volatility σM is large.23

Moreover, the investor elasticity k is proportional to the informed investors’ signal
precision 1=Σu and their risk tolerance 1=A, whereas the imbalance parameter m is
proportional to the net supply M.

DealerMonitoring. The dealer monitors the market according to an indepen-
dent Poisson process with a frequency parameter q> 0 called the monitoring
frequency (or monitoring rate). Let tn be the nth arrival of this process, and let
t0 ¼ 0. Monitoring consists of the dealer receiving a signal sn at each monitoring
time tn for n ≥ 0:

sn ¼ vþ εn, with εn �
IID

0,
1

F qð Þ
� �

:(6)

In the rest of the article, we consider the initial signal s0 at t0 ¼ 0 as the dealer’s prior,
whereas monitoring refers to the subsequent signals sn with n> 0. Note that we
allow the signal precision F to depend on the monitoring rate. Intuitively, if F qð Þ is
increasing in q, monitoring has increasing returns to scale: Monitoring more often
produces more precise signals each time. The cost of monitoring at the rate q is
C qð Þ, and it is paid only once, before monitoring begins at t¼ 0.

Dealer’s Quotes and Objective. A quoting strategy for the dealer is a pair
at,btð Þ of right-continuous functions in t≥0, where at is the ask quote at t, and bt is
the bid quote at t. Let x0 be the dealer’s initial inventory in the risky asset and xend the
inventory after trading. If Qb is the aggregate buy market order and Qs is the
aggregate sell market order, the dealer’s inventory after trading is as follows:

xend¼ x0�QbþQs:(7)

Denote by τ the random trading time, which is exponentially distributed with
a parameter equal to 1. Then, for a given quoting strategy at,btð Þ, the dealer’s
expected utility is equal to the expected profit minus the quadratic penalty in the
inventory and minus the monitoring costs:

E0 x0vþ v�bτð ÞQsþ aτ� vð ÞQb
� �� γx2end�C qð Þ� �

,(8)

where the parameter γ> 0 is the dealer’s inventory aversion.24

Equilibrium Concept. Because the dealer is a monopolist market maker in
our model, the structure of the game is simple. First, the dealer chooses a constant

23In Section 3 in the Supplementary Material, we show that the equilibrium is qualitatively similar if
instead of aggregating the order flow over the whole population, we consider only the optimal orders
from one individual trader selected at random from the population.

24This utility function is justified if the dealer either faces external funding constraints or is risk
averse. The latter explanation is present in Hendershott and Menkveld ((2014), Section 3), where the
dealer maximizes quadratic utility over nonstorable consumption. To solve for the equilibrium, they
consider an approximation of the resulting objective function (see their equation (16)). This approxi-
mation coincides with our dealer’s expected utility in equation (8) when C qð Þ¼ 0.
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monitoring rate q. Second, in the trading game, the dealer chooses the quoting
strategy at,btð Þ such that objective function (8) is maximized.

B. Equilibrium Quoting

We solve for the equilibrium in two steps. In the first step (Section III.B.1), we
take the dealer’s monitoring rate q as given and describe the optimal quoting
behavior. In the second step (Section III.B.2), we determine the optimal monitoring
rate q as the rate that maximizes the dealer’s expected utility.

1. Optimal Quotes

We start by fixing the monitoring rate q. Consider the game described in
Section III.A, with positive parameters k,ℓ,m,ΣL, f ,c,γ. Also, let x0 be the dealer’s
initial inventory. Define the following constants:

h¼ℓ
k
, δ¼m

k

1þ2γk
1þ γk

þ γ
1þ γk

x0:(9)

Proposition 1 describes the optimal quoting strategy of the dealer, which is condi-
tional on the dealer’s value forecast wt. In Section III.B.2, we describe the process
forwt, which is exogenous to the dealer once the initial monitoring decision ismade.

Proposition 1. Suppose the dealer has initial inventory x0 and her forecast at t iswt.
Then the dealer’s optimal quotes at t are as follows:

at ¼ wt�δð Þþh, bt ¼ wt�δð Þ�h,(10)

where h and are as in equation (9). The midquote price pt ¼ atþbtð Þ=2 satisfies:

pt ¼wt�δ¼wt�m

k

1þ2γk
1þ γk

� γ
1þ γk

x0:(11)

To get intuition for this result, suppose the imbalance parameter m is 0.
Furthermore, consider first the particular casewhen the dealer is risk neutral: γ¼ 0. In
that case, the dealer’s inventory x0 does not affect her strategy. Equation (10) implies
that the dealer sets her quotes at equal distance around her forecastwt. Hence, the ask
quote is at ¼wtþh, and the bid quote is bt ¼wt�h, where h is the constant half
spread. The equilibrium value h¼ℓ=k reflects two opposite concerns for the dealer.
If she sets too large a spread, then investors (whose price elasticity is increasing in k)
submit a smaller expected quantity at the quotes.25 If she sets too small a spread,
this decreases the part of the profit that comes from the inelastic part ℓ of traders’
order flow.

When the dealer has positive inventory aversion (γ> 0), her initial inventory
affects the optimal quotes. Indeed, according to equation (10), the quotes at t are
equally spaced around an inventory-adjusted forecast (wt� γx0= 1þ γkð Þ). The
effect of the dealer’s inventory on the midquote price is the “price pressure”

25For example, equation (5) implies that the expected quantity traded at the ask is
Eτ Qb
� �¼ kð Þ= 2ð Þ wτ �aτð Þþℓ, which is decreasing in aτ .
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mechanism identified by Hendershott and Menkveld (2014). To understand this
phenomenon, suppose that the initial inventory is large and positive. To avoid the
inventory penalty, the dealer must reduce the inventory. This implies that the dealer
must lower the quotes to attract more buyers than sellers.

According to equation (11), the midquote price is also decreasing in the
imbalance parameter m. To understand why, suppose the imbalance parameter m
is large, yet the dealer sets the midquote price equal to her forecast (that is, pt ¼wt).
The dealer then expects the sell demand to be much larger than the buy demand.
Thus, in order to avoid inventory buildup and attract more buyers, she must lower
her price well below her forecast.

2. Optimal Monitoring and the Quote Rate

Suppose the dealermonitors themarket at the rate q, whichmeans that at tn, the
nth arrival in a Poisson rate with a frequency q, she receives a signal sn with
precision F qð Þ. The next result describes the evolution of the dealer’s forecast wt

that arises from monitoring.

Lemma 1. Let n ≥ 0 and t∈ tn, tnþ1½ Þ. Then, the dealer’s value forecast is the average
current signal, wt ¼ s0þ⋯þ snð Þ= nþ1ð Þ, and its precision is 1=Var v�wtð Þ¼
nþ1ð ÞF qð Þ.

Intuitively, the forecast changes only when there is a new signal, at the
monitoring time tn. The forecast is clearly the average signal. Because each signal
has the same precision F qð Þ, the precision increases linearly with the number of
monitoring times.

Proposition 1 implies that the dealer’s equilibrium quotes change only when
her forecast changes. Therefore, we interpret the monitoring rate q as the dealer’s
quote rate:

q¼Quote Rate:(12)

Thus far, the description of the equilibrium does not depend on a particular
specification for the precision function F qð Þ or the monitoring function C qð Þ.26
Proposition 3.2.2, however, provides explicit formulas by assuming that

F qð Þ¼ f ln qþ1ð Þ, C qð Þ¼ cq,(13)

where f > 0 is a signal precision parameter and c> 0 is a monitoring cost param-
eter.27

Proposition 2. The dealer’s optimal monitoring rate q satisfies the following:

26In Section 4.1 in the Supplementary Material, we show that the equilibrium remains essentially
the same if we replace the monitoring process at rate q by a unique signal with precisioneF qð Þ¼ qF qð Þð Þ= ln qþ1ð Þð Þ.

27The results are qualitatively the same if we take F qð Þ¼ f or F qð Þ¼ fq, but the formulas are less
explicit. In the proof of Proposition 2, we describe the equilibrium conditions for general F and C.
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q2 ¼ k 1þ kγð Þ
fc

:(14)

Corollary 1 uses the formula in equation (14) to generate some comparative statics
for the quote rate.

Corollary 1. The quote rate q is increasing in investor elasticity k and inventory
aversion γ, and it is decreasing in signal precision f and in monitoring cost c.

If investor elasticity k is larger, investors trade more aggressively on the
pricing error, and the dealer increases her monitoring rate to prevent both adverse
selection and large variation in inventory. To better understand the reasons behind
this increase, we write equation (14) as a sum: q2 ¼ k=ðf cÞþ k2γ= f cð Þ. The first
term (which does not depend on the dealer’s inventory aversion γ) simply reflects
that by increasing her monitoring rate, the dealer reduces the adverse selection that
comes from trading with investors with superior information. The second term
depends on the inventory aversion γ. If this parameter is larger, the dealer is
relatively more concerned about her inventory than about her profit. She then
increases her monitoring rate to stay closer to the fundamental value, such that
her inventory is not expected to vary too much.

If the signal precision parameter f is smaller, the dealer gets noisier signals
every time she monitors; hence, she must monitor the market more often in order to
avoid getting a large inventory. As a result, in difficult-to-understand stocks where
we expect dealers’ signals to be noisier, the quote rate q should be larger. This is
counterintuitive because one could think that the quote rate is actually smaller in
difficult-to-understand stocks. This theoretical result is, however, consistent with
our SF1 in Section II.B that the QT ratio is larger in neglected stocks (with low
analyst coverage, institutional ownership, trading volume, and volatility).

If the monitoring cost c is smaller, the dealer can afford to monitor more often
in order to maintain the same precision, which increases the quote rate. There is
much evidence that monitoring costs have decreased dramatically in recent times
(see Hendershott et al. (2011)). Therefore, according to Corollary 1, we should
also expect a large increase in the QT ratio. This is consistent with our SF2 in
Section II.C that documents a sharp rise in the QT ratio.

C. Pricing Discount and the Cost of Capital

In this section, we analyze the equilibrium cost of capital. We first define
the pricing discount (or simply the discount) at t to be the difference between
th dealer’s forecast wt and the midquote price pt. According to Proposition 1,
the equilibrium discount is always equal to the constant δ from equation (9).
We compute the expected return at t using the midquote price:
Et vð Þ�ptð Þ=pt ¼ wt�ptð Þ=pt ¼ δ=ðwt�δÞ. Therefore, the expected return is in
one-to-one correspondence with the discount. We thus define the cost of capital r
to be equal to the discount:28

28This is standard in 1-period models (e.g., Easley and O’Hara (2004)).
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r¼ δ¼m

k

1þ2γk
1þ γk

þ γ
1þ γk

x0:(15)

Thus, the cost of capital depends on a state variable: the dealer’s initial
inventory x0. In the rest of the article, we assume that x0≥0. Corollary 2 provides
some comparative statics for the cost of capital.

Corollary 2. If x0≥0, then the cost of capital is increasing in the imbalance param-
eter m and decreasing in the investor elasticity k.

Intuitively, if the imbalance parameter m increases, the dealer expects the
difference between the sell and buy demands to increase as well. To attract buyers,
the dealer must lower the price and thus increase the discount. If the investor
elasticity k increases, investors trade more aggressively when the price deviates
from the fundamental value. To stop the inventory from accumulating too much in
either direction, the dealer must raise the price closer to her forecast, which trans-
lates into a lower discount.

Corollary 3 connects the cost of capital to the equilibrium quote rate.

Corollary 3 (Quote Effect). If x0≥0, then holding all parameters constant except for
the investor elasticity k, there is an inverse relation between the discount (or cost of
capital) and the quote rate.

The quote effect in our model is driven by investor elasticity. When k is larger,
Corollary 1 shows that the quote rate q is also larger: Because traders are more
sensitive to the quotes, in order to prevent large fluctuations in inventory, the dealer
must monitor more often. At the same time, when k is larger, the discount is smaller:
Because investors trade more intensely when the price differs from the fundamental
value, in order to prevent an expected accumulation of inventory, the dealermust set
the price closer to her forecast, which implies a lower discount and hence a lower
cost of capital.

If we also consider the microfoundations for the order flow (see Section III.A),
the investor elasticity k is larger when the investors have more precise information.
Therefore, at a more fundamental level, the quote effect is driven by traders’
information precision: More precise investors cause both a larger quote rate and
a smaller cost of capital.

The quote effect is documented empirically in the cross section of stock returns
by SF3 (see Section II.D).29

29One concern remains whether our theoretical explanation is systematic enough to justify the QT
effect: It is possible that the pricing discount in any particular stock is just an idiosyncratic error that
should vanish in the large cross section of stocks. We argue, however, that the price discount is likely to
be driven by systematic variables. Indeed, Corollary 2 shows that a key determinant of the price discount
is the investor elasticity k, which our microfoundations show to be determined by the precision of the
informed investors’ signals. If investors analyze multiple stocks, then their signal precision is likely to
comove across stocks, which makes the investor elasticity systematic.
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D. Neutral State

In this section, we describe the equilibrium when the dealer’s initial inventory
x0 has a particular value:

x0,neutral ¼ m

γk
:(16)

We call this value the dealer’s neutral inventory (or preferred inventory), and
we say that in this case, the system is in its neutral state.30

Corollary 4 shows that in the neutral state the dealer expects her inventory to
stay the same; that is, the expected change in her inventory is 0.

Corollary 4. When the dealer’s inventory is equal to its neutral value, the expected
buy and sell quantities from equation (5) are equal. The equilibrium cost of capital
(discount) is as follows:

δneutral ¼ 2m

k
:(17)

The first statement of Corollary 4, that the traders’ order flow is balanced in the
neutral state, is in fact the reason behind our definition of neutral inventory in
equation (16). The neutral inventory represents the dealer’s bias in holding the risky
asset, and mathematically, it is positive because the imbalance parameter m is
positive. Intuitively, the neutral inventory is positive because the investors are risk
averse, and the risky asset is in positive net supply (see the order flowmicrofounda-
tions described in Section III.A). But the dealer also behaves approximately as a
risk-averse investor because of the quadratic penalty in inventory (see footnote 24).
Therefore, our model becomes essentially a risk-sharing problem, in which the
dealer prefers to hold a positive inventory.

Formally, equations (16) and (17) imply that the neutral (or preferred) inven-
tory x0,neutral 6¼¼m=ðγkÞ is positive and is equal to the product of the half discount
δneutral=2¼m=k and the inverse inventory aversion 1=γ. But the discount is a proxy
for the expected return, and the inverse inventory aversion is a proxy for the number
of market makers.

The dealer’s preferred inventory is decreasing in γ because the dealer prefers to
hold less of the risky asset when she is more inventory averse. The preferred
inventory is increasing in the imbalance parameterm because the dealer can engage
inmore risk sharingwhen the risky asset is in higher supply. The preferred inventory
is decreasing in the investor elasticity k because more aggressive investors hold
relatively more of the risky asset and decrease the share left to the dealer.

A surprising consequence of Corollary 4 is that the discount (or cost of capital)
in the neutral state is independent of the dealer’s inventory aversion γ. One may
indeed expect the discount to be larger if the dealer has a larger inventory aversion γ.
But this is not the case in the neutral state because the neutral discount reflects

30In Section 5 in the Supplementary Material, we extend our model to multiple trading rounds, and
we show that the neutral inventory is equal to the long-term average of the dealer’s inventory, regardless
of its initial value.
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the dealer’s desire to balance the order flow, and therefore only the coefficients of
the order flowmay affect the discount, not the dealer’s characteristics, including the
aversion parameter γ. In the multiple-trade model in Section 5 of the Supplementary
Material, we see that the dealer’s desire to balance the order flow (on average) arises
as an equilibrium result because an imbalanced order flow would result in a
permanent expected accumulation of inventory that would not be optimal.

E. Additional Predictions

In this section, we provide two additional predictions of our model.
Corollary 1 implies that the dealer’s optimal monitoring rate q is increasing in
her inventory aversion γ. As a proxy for the inventory aversion γ of a dealer in a
stock, we use 1=N , whereN is the number of market makers that provide liquidity
in that stock. We expect that a larger number of intermediaries implies a smaller γ
for the representative dealer. We obtain the following empirical prediction:

Prediction 1. The number of market makers in a stock has an inverse relation to the
stock’s QT ratio.

Intuitively, a larger number of market makers can be interpreted as a smaller
inventory aversion γ of the aggregate market maker. But a less averse dealer
monitors the stock less often because she is less concerned about accumulating
inventory. Therefore, the resulting QT ratio is also smaller.

In Section 4 of the Supplementary Material, we provide an extension of
the model to N dealers and show that the inventory aversion of a representative
dealer is 1=N of the individual inventory aversion. In that extension, we also
prove directly that the QT ratio is smaller in the N -dealer case (see Corollary
IA.4). This result provides additional intuition to Prediction 1: Because the
quotes are public information, each market maker’s monitoring exerts a positive
externality on the others and thus leads to underinvestment in monitoring in
equilibrium.

We test this prediction in column 1 of Table IA.4 in the Supplementary
Material. This augments column 4 of Table 2 with the number of registered market
makers in a particular stock (MM) as an explanatory variable. This results in a
smaller sample because the number of market makers is only available for
NASDAQ-traded stocks. Nevertheless, we find that the number of market makers
has a negative effect on the QT ratio. This is surprising because one may think that
competition among market makers results in an increase of the QT ratio.

Corollary 4 implies that in the neutral state, when the traders’ order flow
is balanced, the dealer’s discount (cost of capital) no longer depends on the
dealer’s inventory aversion γ. But the number of market makers is an empirical
proxy for the (inverse) inventory aversion γ. We obtain the following empirical
prediction:

Prediction 2. The number of market makers in a stock has no relation to the stock’s
expected return
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Intuitively, when the dealer’s initial inventory is in the neutral state (where the
expected imbalance between buy and sell quantities is 0) the dealer wants only to
balance the incoming order flow, and hence the pricing discount (or cost of capital)
is affected only by the properties of the order flow and not by the characteristics of
the dealer, including her inventory aversion (or the number of dealers if we consider
the case of multiple dealers).31

We test this prediction in Table IA.8 in the Supplementary Material, which
presents the results of Fama–MacBeth regressions similar to those in Table 4, but
we include the number of registered market makers (MM) in a stock as an explan-
atory variable. Indeed, the introduction of the MM variable does not affect the QT
effect. Moreover, all other explanatory variables have qualitatively similar magni-
tudes and levels of significance as in Table 4.

IV. Alternative Explanations of the QT Effect

In this section, we discuss several alternative explanations of the QTeffect that
involve various frictions (e.g., the tick size and impediments to arbitrage, institu-
tional investors and governance, temporary price effects, and market structure
changes).

A. Tick Size and Impediments to Arbitrage

Yao and Ye (2018) and Albuquerque, Song, and Yao (2021) provide a con-
nection between an impediments-to-arbitrage hypothesis and the QT effect: First,
Yao and Ye find that stocks with a larger tick size relative to price have higher QT
ratios. Second, Albuquerque et al. (2021) find that an exogenous increase in tick
size negatively affects stock prices and is associated with an increase in the cost of
trading. Therefore, the QT effect might be driven in part by the effect of illiquidity
related to the tick size. To investigate this alternative explanation, we follow two
approaches: i) long–short portfolios double-sorted by QT and transaction cost
proxy variables and ii) Fama–MacBeth (1973) regressions for high and low trans-
action cost levels.

To form the long–short portfolio alphas, we first sort stocks into terciles based
on transaction-cost proxies (relative spread, Amihud illiquidity ratio, and turnover)
and then create either three or five QT portfolios within each liquidity tercile. We
examine the alpha from a strategy that, within each liquidity tercile, goes long in
low-QTstocks and short in high-QTstocks. Then, if the illiquidity level explains the
QT effect according to the impediments-to-arbitrage hypothesis, abnormal profits
should concentrate in the most illiquid group, and the size of the risk-adjusted
returns should be of the samemagnitude as the cost of transacting in the U.S. equity

31This result depends on the system being initially in the neutral state, which we argue is a plausible
assumption. Indeed, in an extension with multiple trading rounds, we show that the neutral inventory is
equal to the long-term average of the dealer’s inventory, regardless of its initial value (see Section 5 in the
Supplementary Material).
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market. Moreover, abnormal returns for the other liquidity groups should not be
statistically different from 0.

The results in Panels A and B of Table 6 provide support for the impediments-
to-arbitrage hypothesis. The strongest QT effect occurs among the most illiquid
stocks for relative spread and Amihud illiquidity ratio. The abnormal return for the
most illiquid group is as high as over 100 basis points (bps) and as low as 17 bps for
the most liquid group across the illiquidity proxies. The difference in abnormal
returns across these illiquidity groups implies a difference in average transaction
costs (impediment to trade) of 60 to 90 bps between the illiquid and liquid group of
stocks. However, the results that the abnormal returns for other liquidity groups
remain statistically and economically different from 0 suggest that impediments-to-
arbitrage explain a proportion of the estimated economic effect of the inventory

TABLE 6

Risk-Adjusted Returns for QT Ratio Double-Sorted Portfolios

Table 6 shows themonthly alphas of a long–short strategy for various portfolios double-sorted on a variable of interest and the
quote-to-trade (QT) ratio. The strategy longs low-QT stocks and shorts high-QT stocks within three levels of liquidity and
institutional investors at the end of month t.We first assign all stocks to three portfolios based on their liquidity and institutional
ownership levels. Then, we construct three or five portfolios based on the QT level within each liquidity and institutional
ownership portfolio, and we long the low-QT portfolio and short the high-QT portfolio. The alphas reported in the table are the
intercepts (risk-adjusted returns) obtained from regressions of returns on the risk factors. The monthly returns of the QT
portfolios are risk-adjusted using a 5-factor asset pricing model including the Fama and French (FF3) (1993) model with the
added Pástor and Stambaugh (2003) traded liquidity factor and momentum factor. All portfolio returns are equally weighted.
Panels A–C report the long–short α for the liquidity portfolios with low, medium, and high relative bid–ask spreads, Amihud
illiquidity ratio (ILR), and turnover, respectively. Panel D reports the long–short α for the institutional ownership level. ∗ , ∗∗, and
∗∗∗ indicate rejection of the null hypothesis that the risk-adjusted portfolio returns are significantly different from 0 at the 10%,
5%, and 1% levels, respectively.

3�3 3�5

Portfolios Portfolios

Panel A. Relative Spread
Low 0.27∗ 0.37∗∗

1.68 1.92

Medium 0.48∗∗∗ 0.63∗∗∗

2.77 2.96

High 0.89∗∗∗ 1.19∗∗∗

6.02 6.24

Panel B. ILR
Low 0.17 0.23

1.08 1.31

Medium 0.57∗∗∗ 0.78∗∗∗

3.50 3.79

High 0.83∗∗∗ 1.15∗∗∗

6.41 6.92

Panel C. Turnover
Low 0.64∗∗∗ 0.82∗∗∗

6.02 6.23

Medium 0.55∗∗∗ 0.67∗∗∗

4.09 4.17

High 0.59∗∗∗ 0.86∗∗∗

3.53 4.02

Panel D. Institutional Investors
Low 0.50∗∗∗ 0.72∗∗∗

3.50 3.99

Med 0.51∗∗∗ 0.65∗∗∗

3.52 3.67

High 0.36∗∗∗ 0.45∗∗∗

2.57 2.79
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TABLE 7

Stock Returns and Quote-to-Trade Ratio Across Subgroups

Table 7 reports the Fama–MacBeth (1973) coefficients from regressions of risk-adjustedmonthly returns on firm characteristics for two levels of explanatory variables. The dependent variable is the risk-adjusted return
rai,t ¼ r i,t �

PJ
j¼1βi,j ,t�1F j ,t , where the risk factors F j ,t come from the FF3+PS+MOMmodel (market, size, value, momentum, and the Pástor and Stambaugh (2003) traded liquidity factor). The sample is divided into two

groups of high and low relative spread, Amihud illiquidity ratio (ILR), turnover, and institutional ownership (IO) based on samplemedian values for every time period. Panel A presents the results for low (below-median)
levels, andPanel Bpresents the results for high (above-median) levels of the variables of interest.We exclude SPREAD from the regressions in columns 1 and 2 and ILR for columns 3 and 4. The characteristics included
are as follows: quote-to-trade ratio (QT); relative bid–ask spread (SPREAD); ILR; log-market capitalization (MCAP); book-to-market ratio (BM), calculated as the natural logarithmof the book value of equity dividedby the
market value of equity from the previous fiscal year, previous-month return (R1); cumulative return frommonth t �2 to t�12 (R212); idiosyncratic volatility (IVOLAT), measured as the standard deviation of the residuals
from a Fama and French (FF3) (1993) regression of daily raw returns within eachmonth as in Ang et al. (2009); trading volume in (USDVOL) ($millions); and price (PRC). All characteristics apart from returns are logged,
and all coefficients are multiplied by 100. The standard errors are corrected by using the Newey–West method with 12 lags. t -statistics for the QT variable are presented in parentheses. ∗ , ∗∗ , and ∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

Relative Spread ILR Turnover IO

1 2 3 4 5 6 7 8

Panel A. Low

Constant 0.033∗∗∗ 0.035∗∗∗ 0.032∗∗∗ 0.031∗∗∗ 0.040∗∗∗ 0.037∗∗∗ 0.043∗∗∗ 0.036∗∗∗

QTi ,t�1 �0.194∗∗∗ �0.191∗∗∗ �0.179∗∗∗ �0.189∗∗∗ �0.159∗∗∗ �0.161∗∗∗ �0.184∗∗∗ �0.193∗∗∗

(�2.65) (�2.68) (�2.72) (�2.67) (�4.17) (�3.88) (�4.40) (�4.17)

ILRi ,t�1 �0.027 0.000 0.046∗

SPREADi,t�1 �0.077 0.084∗∗∗ 0.025
MCAPi,t�1 0.016 0.014 �0.005 0.001 �0.250∗∗∗ �0.275∗∗∗ �0.212∗∗∗ �0.203∗∗∗

BMi,t�1 �0.012 �0.010 0.016 0.021 0.083 0.073 0.138 0.137
R1i,t�1 �2.960∗∗∗ �2.888∗∗∗ �2.944∗∗ �2.923∗∗ �5.661∗∗∗ �5.465∗∗∗ �3.684∗∗∗ �3.528∗∗∗

R212i,t�1 0.011 0.012 �0.040 �0.030 0.453∗∗ 0.465∗∗ 0.137 0.149
IVOLATi,t�1 �3.641 �2.937 �8.901∗ �10.302∗ �8.312∗ �15.080∗∗∗ �10.027∗∗ �13.567∗∗∗

USDVOLi,t�1 �0.149 �0.173 �0.106∗ �0.106 0.149∗∗ 0.193∗∗∗ 0.125∗∗∗ 0.172∗

PRCi,t�1 0.004 �0.003 �0.088∗ �0.073 �0.262∗∗∗ �0.250∗∗∗ �0.461∗∗∗ �0.429∗∗∗

R2 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04
Time series (montds) 278 278 278 278 278 278 278 278

Panel B. High

Constant 0.066∗∗∗ 0.064∗∗∗ 0.060∗∗∗ 0.061∗∗∗ 0.038∗∗∗ 0.030∗∗∗ 0.029∗∗∗ 0.036∗∗∗

QTi ,t�1 �0.198∗∗∗ �0.202∗∗∗ �0.218∗∗∗ �0.227∗∗∗ �0.192∗∗ �0.220∗∗∗ �0.160∗∗ �0.176∗∗

�4.841 �4.839 �4.153 �4.056 �2.213 �2.873 �2.333 �2.525

ILRi ,t�1 0.023 �0.013 �0.062∗∗

SPREADi,t�1 �0.014 0.313 �0.132
MCAPi,t�1 �0.356∗∗∗ �0.352∗∗∗ �0.349∗∗∗ �0.350∗∗∗ 0.178 0.161 �0.059 �0.044

(continued on next page)
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TABLE 7 (continued)

Stock Returns and Quote-to-Trade Ratio Across Subgroups

Relative Spread ILR Turnover IO

1 2 3 4 5 6 7 8

Panel B. High (continued)

BMi ,t�1 0.077 0.076 0.043 0.041 �0.017 �0.022 �0.053 �0.047
R1i ,t�1 �3.810∗∗∗ �3.680∗∗∗ �3.759∗∗∗ �3.751∗∗∗ �2.622∗∗∗ �2.621∗∗∗ �3.176∗∗∗ �3.129∗∗∗

R212i,t�1 0.162 0.164∗ 0.185 0.195∗ �0.060 �0.057 �0.029 �0.028
IVOLATi,t�1 �10.604∗∗∗ �11.289∗∗∗ �8.036∗∗ �8.978∗ �0.460∗ �3.954 �2.342 �0.839
USDVOLi,t�1 0.143∗∗∗ 0.160∗ 0.167∗∗∗ 0.156∗ �0.297∗∗ �0.254 �0.027 �0.109
PRCi,t�1 �0.456∗∗∗ �0.452∗∗∗ �0.418∗∗∗ �0.386∗∗∗ �0.336∗ �0.299 �0.178 �0.167

R2 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04
Time series (montds) 278 278 278 278 278 278 278 278
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mechanism, but not all. The results on turnover (see Panel C of Table 6) show that
the QT effect is quite strong across all turnover levels.32

In Table 7, we extend the univariate analysis to a multivariate analysis for
stocks divided into two groups, depending on the median liquidity level in each
month: one group with low liquidity and one group with high liquidity. Then, we
reestimate the Fama–MacBeth regressions as in Table 4. Consistent with the
impediments-to-arbitrage hypothesis, Table 7 shows that the QT effect diminishes
when liquidity is high, but nevertheless, it remains statistically and economically
significant for both subgroups.

Next, we perform a back-of-the-envelope calculation to estimate how large a
transaction cost is needed to eliminate the QT alpha from Table 6. Consider the
Amihud illiquidity ratio, which is a price-impact measure computed as a stock’s
absolute daily return divided by its daily trading volume. For stocks that exhibit the
strongest QTeffect, the average value of this ratio is 0.17 (i.e., a $1M trade triggers a
0.17% price impact). Given a 5-factor alpha of 0.83% in this group, it would take a
trade of 0.83%/0.17% = $4.88 million to eliminate the profit over a single day. This
is a substantial amount for the equity markets, where the average trade size is
approximately $1 million. Moreover, Panel C of Table 6 shows that the QT effect
is strong across stocks with different levels of trading turnover. Our results, there-
fore, suggest that the impediments-to-arbitrage hypothesis provides only a partial
explanation for the QT effect.

B. Institutional Investors and Governance

Institutional investors as equity holders have become more active participants
in the governance ofmodern corporations, whether by “voice” or by exit threat (see,
e.g., Admati, Pfleiderer, and Zechner (1994), Maug (1998), and Gillan and Starks
(2000). Good corporate governance in general increases firm value and reduces
agency costs, leading to lower costs of capital (see, e.g., Becht, Franks, Mayer, and
Rossi (2008); Brav, Jiang, Partnoy, and Thomas (2008)).

Albuquerque et al. (2021) find that long-term institutional investors tend to
hold stocks with larger relative tick size and higher QT ratios. This suggests an
alternative explanation of the QT effect where the QT ratio simply captures the
proportion of institutional investors and level of corporate governance, which has
an inverse relation with the cost of capital.

Thus, the QT effect should be stronger among stocks with lower institutional
holdings and insignificant for stocks with higher institutional ownership. We test
this hypothesis using both univariate and multivariate approaches. We construct
institutional holdings of equity in firm i at the end of the year using 13F files. For the
univariate analysis, we first sort stocks by institutional holdings and examine the
alphas from a strategy that, within each institutional ownership tercile, goes long in
low-QT stocks and short in high-QT stocks.

In Panel D of Table 6, we report the results for portfolios double-sorted on QT
and institutional ownership. The results provide partial support for the institutional

32The results remain quantitatively similar when using other proxies for transaction costs, such as the
quoted spread, number of trades, or dollar traded volume. We do not report these results for brevity, but
they are available from the authors.
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investors hypothesis. We find the strongest QTeffect among stocks with the lowest
institutional ownership. However, the alphas for all institutional ownership terciles
are statistically significant. The abnormal return for stocks with the smallest insti-
tutional ownership is between 47 and 75 bps, and it is between 36 and 45 bps for the
group with the most institutional investors. The difference in abnormal returns
across these groups is consistent with the hypothesis that institutional investors
play a role in reducing the cost of equity. Nevertheless, the abnormal returns across
all institutional ownership groups remain statistically and economically significant.
Thus, we find that institutional ownership dilutes but does not subsume the QT
effect.

In columns 7 and 8 of Table 7, we show the estimated QT effect using Fama–
MacBeth regressions across subsamples with high and low institutional ownership.
Consistent with the univariate analysis, we find that the QTeffect is partly mitigated
by institutional ownership, decreasing by 20 bps between the samples with low and
high institutional ownership. However, the QT effect remains statistically and
economically significant. In additional analysis, column 2 of Table IA.7 in the
Supplementary Material analyzes the QT effect while directly controlling for
institutional ownership. Column 2 of Table IA.7 shows that the magnitude of the
QT effect (in column 5 of Table 4) decreases with the inclusion of the institutional
ownership variable by 0.013%, but QT remains highly statistically and economi-
cally significant.

C. Return Continuations and Reversals

In Section II.D.1, we consider only 1-month holding (portfolio rebalancing)
periods. One could raise the concern that the QTeffect is caused by temporary price
effects. For example, suppose stocks with high or low realized returns attract HFT
activity and get a temporary spike in the QT ratio. This type of explanation implies
that the QTeffect is only a short-term phenomenon. If that were the case, we would
expect stocks to switch across QT portfolios and the alphas of a QT long–short
strategy to decrease over longer holding periods.

To test the reversal hypothesis, we examine the average monthly risk-
adjusted returns (alphas) of the QT long–short strategies for different holding
and formation periods. We use the calendar-time overlapping-portfolio
approach of Jegadeesh and Titman (1993) to calculate postperformance returns.
We assign stocks into portfolios based on QT levels at four different formation
periods and examine the average QT level for these portfolios in month tþ k,
keeping the portfolio constituents fixed for k months, where k ranges from 1 to
12 months. We use four formation periods; that is, we condition on different sets
of information about QT: time t and the 3-, 6-, and 12-month moving average QT
level.

Figure IA.1 in the SupplementaryMaterial shows the long–short alphas from a
5-factor model (Fama–French 3-factor model plus momentum and liquidity) for
strategies that long the low-QT portfolio and short the high-QT portfolio at different
holding horizons and formation periods. The holding horizons reflect the number of
months for which the portfolio constituents are kept fixed after the formationmonth
(i.e., portfolios are rebalanced every k months). We construct the long–short
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strategies for 25 portfolios and examine four different formation periods.33 The
figure shows that the QT effect is very persistent. The 1-month formation and
holding-period portfolio has the highest alpha of 1.00%. Overall, the long/short
alphas after a year of both formation and holding periods are 0.50% per month and
highly statistically significant.

D. Algorithmic Trading and Reg NMS

The emergence of algorithmic trading and the introduction of Reg NMS are
two major events during the sample period that are likely to have important effects
on the U.S. equity market structure.34 Thus, to investigate whether our QTeffect is
robust to these market-structure changes, we verify the QT effect for the different
subsamples defined by these two events.

We first consider the emergence of algorithmic trading. Because Hendershott
et al. (2011) document the proliferation of algorithmic and electronic trading only
after 2003, one might think that the QT effect should hold differently in the
subsample from June 1994 to Dec. 2002 compared with the subsample from Jan.
2003 to Dec. 2017. Indeed, because the QT ratio is often used as a proxy for
algorithmic trading and HFT (see footnote 9), one may argue that the QT effect
is driven by the effect of algorithmic trading on the cost of capital. However, in the
earlier subsample, the QT ratio is less likely to be related to algorithmic trading.
Thus, if we find that the QT effect holds similarly in both subsamples, algorithmic
trading is less likely to be an explanation for the QT effect.

Table IA.9 in the SupplementaryMaterial shows the results of Fama–MacBeth
regressions similar to those in Table 4 but performed over the two subsamples (June
1994–Dec. 2002 and Jan. 2003–Dec. 2017). The effect of the QT ratio on risk-
adjusted returns is large and statistically significant in the pre- and post-2003
period, despite the reduction in power due to the lower number of time-series
observations.

Additional evidence is shown in column 7 of Table 3. In this column, we report
the alphas of 10 portfolios sorted on QT, where alpha is computed according to the
standard risk factors plus a PIN factor. Because the PIN factor is available only until
2002, we are in effect computing the alphas during only the first part of our sample.
We find that during this pre-algorithmic period, the effect of the QT ratio on risk-
adjusted returns is strong and even larger than for the other columns in Table 3,
which are computed using the whole sample.

Next, we investigate the introduction of Reg NMS, which transformed the
market landscape by introducing more competition and led to unprecedented
market fragmentation. Table IA.9 in the Supplementary Material shows the results
of Fama–MacBeth regressions similar to those in Table 4 but performed over two
different subsamples: June 1994–Dec. 2006 and Jan. 2007–Dec. 2017. The effect of
QTon risk-adjusted returns is large and statistically significant in the pre- and post-
2007 period.

33The results are robust to other factor model specifications and to the creation of more portfolios.
These results are available from the authors.

34Table IA.4 in the SupplementaryMaterial shows that the QT ratio increases significantly after both
of these events.
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In conclusion, Sections IV.C and Sections IV.D show that the QT effect holds
at longer predictability horizons and is persistent throughout the sample.

V. Conclusion

This article studies the quoting activity ofmarket makers and how the resulting
QT ratio is related to liquidity, price discovery, and expected returns. Empirically,
we find that the QT ratio is larger in neglected stocks, that is, in stocks with low
analyst coverage, institutional ownership, trading volume, and volatility. Our main
finding, the QTeffect, is that stockswith higherQT ratios have lower average returns.
Despite the fact that the QT ratio has increased significantly over time (especially
since 2003), the QT effect is qualitatively unchanged across sample periods. Further
analysis shows that the QT effect is driven by quotes and not by trades and is robust
after controlling for other variables known to affect returns.

Because the quoting activity of market makers is clearly an important deter-
minant of the QT ratio, we propose a model that incorporates i) the quoting activity
that comes from the market makers’ monitoring of the market and ii) the cost of
capital that comes from risk-averse investors. The model is consistent with our
stylized empirical findings and produces additional predictions that are borne out in
the data: A larger number of market makers lowers the QT ratio but has no effect on
expected returns. In ourmodel, the QTeffect is driven by investors’ aggressiveness:
For example, when investors are more precisely informed, market makers monitor
faster and thus increase the QT ratio but at the same time reduce mispricing and
lower expected returns. Although we rule out several likely alternative interpreta-
tions, we acknowledge that there could be other, nonmutually exclusive explana-
tions for the surprising association between the QT ratio and the cost of capital.

Appendix. Proofs

Proof of Proposition 1. Fix the monitoring rate q> 0. Let ℐτ be the dealer’s
information set just before trading at τ, and by Eτ denote the expectation operator
conditional onℐτ . Let wτ ¼Eτ vð Þ be the current dealer’s forecast of the fundamen-
tal value, and Gτ ¼Var v�wτð Þ the variance of the forecast error. To simplify
notation, in the remainder of this proof, we omit the subscript τ for the forecast
wτ and so on.

We compute the dealer’s expected utility from quoting a,bð Þ at τ. If we define
the following:

h¼ a�b

2
, δ¼w�aþb

2
, e¼ v�w,(A-1)

the quoting strategy is equivalent to choosing h,δð Þ. Equation (5) implies that
traders’ buy and sell demands at t are given, respectively, by Qb ¼ k=2ð Þ v�að Þþ
ℓ�mþ εb andQs ¼ k=2ð Þ b� vð Þþℓþmþ εs, with εb,εs �N 0,ΣL=2ð Þ. If x0 is the
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dealer’s initial inventory, the final inventory xend satisfies xend ¼ x0�QbþQs,
which translates into the following:

xend ¼ x0� kδþ2mþ ε, ε¼�keþ εs� εb �IID N 0,k2GþΣL

� �
:(A-2)

Substituting Qb and Qs in the dealer’s objective in equation (8), and ignoring
monitoring costs, we get Eτðx0vþ k=2ð Þ a� vð Þ2� k=2ð Þ v�bð Þ2þ ℓ�mð Þ a�ð
vÞþ ℓþmð Þ v�bð Þ� γx2endÞ. We decompose Eτ v�bð Þ2 ¼Eτ v�wþw�bð Þ2 ¼
Gþ w�bð Þ2, and similarly Eτ a� vð Þ2 ¼Gþ a�wð Þ2. Also, Eτ x2end

� �¼
x0� kδþ2mð Þ2þ k2GþΣL

� �
. Using the notation in equation (A-1), the dealer’s

maximization problem is equivalent to the following:

max
h,δ

x0w� kG� kδ2� kh2þ2ℓhþ2mδ� γ x0� kδþ2mð Þ2� γ k2GþΣL

� �� �
:(A-3)

The first-order condition in equation (A-3) with respect to h implies
h¼ℓ=k, which shows that the optimal half spread satisfies equation (9). The
first-order condition in equation (A-3) with respect to δ implies δ¼
γx0= 1þ kγð Þ þ m=kð Þ 1þ2kγð Þ= 1þ kγð Þð Þ, which shows that the optimal discount
satisfies equation (9). The second-order conditions are satisfied for both h and δ.
Themaximum expected utility the dealer can achieve (ignoringmonitoring costs) is
as follows:

Umax ¼ x0wþℓ2

k
� k 1þ kγð ÞG� γΣLþm2�2γkmx0� γkx20

k 1þ kγð Þ :(A-4)

Note that this formula is linear in the forecast w; hence, by the law of iterated
expectations, it is time consistent and well defined as a value function. □

Proof of Lemma 1. In general, the forecast is the average signal with weights given
by the precision of each signal. But the precision of each signal is the same:
1=Var ε0ð Þ¼F qð Þ. Hence, the forecast is the equal-weighted average signal:
wt ¼ vþ ε0þ⋯þ εnð Þ= nþ1ð Þ. The variance of the forecast error is
Var v�wtð Þ¼Var ε0þ⋯þ εnð Þ= nþ1ð Þð Þ¼Var ε0ð Þ=ðnþ1Þ; hence, the forecast
precision is 1=Var v�wtð Þ¼ nþ1ð ÞF qð Þ. □

Proof of Proposition 2. Recall that we consider the initial signal s0 as the dealer’s
prior, whereas the other signals sn with n> 0 result from monitoring. Trading has
frequency 1, and monitoring has frequency q. Hence, at each time before trading
occurs, the probability that monitoring occurs before trading is q= qþ1ð Þ, whereas
the probability that trading occurs before monitoring is 1= qþ1ð Þ. Denote by n
the event in which exactly n monitoring times occur before trading. The ex
ante probability (before monitoring starts at t¼ 0) of event n is

q= qþ1ð Þð Þn 1= qþ1ð Þð Þ¼ qn= qþ1ð Þnþ1. In that case, Lemma 1 implies that the
forecast variance is Gn ¼ 1=ð nþ1ð ÞF qð ÞÞ. Thus, the ex ante expected forecast
variance is:
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G qð Þ¼Var v�wnð Þ¼
X∞
n¼0

qn

qþ1ð Þnþ1

1

nþ1ð ÞF qð Þ¼
ln qþ1ð Þ
qF qð Þ ,(A-5)

where the last equality comes from the Taylor series: ln 1�αð Þ¼
�P∞

n¼0α
nþ1= nþ1ð Þ, with α¼ q= qþ1ð Þ. When F qð Þ¼ f ln qþ1ð Þ, we get

G qð Þ¼ 1= fqð Þ.
Consider general functions G qð Þ and C qð Þ. Then, equation (A-4) from the

proof of Proposition 1 implies that the dealer’s maximum expected utility (account-
ing for the monitoring costsC qð Þ is of the formUmax ¼D� k 1þ kγð ÞG qð Þ�C qð Þ,
where D is a constant that does not depend on q. The first-order condition with
respect to q is equivalent to �k 1þ kγð ÞG0 qð Þ�C0 qð Þ¼ 0. Thus, the first-order
condition for q is as follows:

�C0 qð Þ
G0 qð Þ¼ k kγþ1ð Þ:(A-6)

The second-order condition for a maximum is k kγþ1ð ÞG00 qð ÞþC00 qð Þ> 0, which
is satisfied if the functions G and C are convex, with at least one of them strictly
convex.

We now use the specification F qð Þ¼ f ln qþ1ð Þ and C qð Þ¼ cq and compute
the optimal q. Because G qð Þ¼ 1= fqð Þ, equation (A-6) implies that q satisfies
fcq2 ¼ k kγþ1ð Þ, which proves the first part of equation (14). Because G is strictly
convex, the second-order condition is satisfied. One verifies that F qð Þ¼ fq
and F qð Þ¼ f correspond, respectively, to G qð Þ¼ ln qþ1ð Þ= fq2

� �
and

G qð Þ¼ ln qþ1ð Þ= fqð Þ, which are strictly convex functions as well. □

Proof of Corollary 1. By visual inspection of equation (14), it is clear that q is
increasing in k and γ and decreasing in f and c. □

Proof of Corollary 2. Equation (15) implies that the cost of capital (discount) is
equal to m=kð Þ 1þ2γkð Þ= 1þ γkð Þð Þþ γ= 1þ γkð Þð Þx0. This is clearly increasing in
m. The derivative with respect to k is � m 2γ2k2þ2γkþ1

� �� �
=
�
k2 1þ γkð Þ2�

���
γ2=

�
1þ γkð Þ2��x0, which is negative if x0≥0. □

Proof of Corollary 3. Suppose we hold all parameters constant except for k.
According to Corollary 2, the discount δ is decreasing in k. At the same time, the
quote rate q is increasing in k (see Corollary 1). This proves the inverse relation
between δ and q. □

Proof of Corollary 4. Equation (17) follows by simply substituting equation
(16) in equation (15) and applying Proposition 1 to show that these values
correspond to the equilibrium. It remains only to show that the neutral inventory
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x0 ¼m=ðγkÞ indeed balances the expected order flow. We use the notation
from the proof of Proposition 1. From equation (5), it follows that in
equilibrium, Qb�Qs ¼ k v� aþbð Þ=2ð Þð Þ�2mþ εb� εs. As Eτ vð Þ¼w and
w� aþbð Þ=2¼ δ, we have Eτ Qb�Qs

� �¼ kδ�2m. Thus, when δ is equal to its
neutral value, δneutral ¼ 2m=k, the order flow is balanced (i.e., Eτ Qb

� �¼Eτ Q
sð Þ).

But equation (9) shows that x0 and δ are in one-to-one correspondence. Thus, if δ is
equal to its neutral value, x0 is also equal to its neutral value. Hence, when
x0,neutral ¼m=ðγkÞ, the expected order flow is balanced, and this completes the
proof. □

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/
10.1017/S002210902000071X.
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