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Abstract

Does a larger fraction of informed trading generate more illiquidity, as measured by

the bid-ask spread? We answer this question in the negative in the context of a dynamic

dealer market where the fundamental value follows a random walk, provided we consider

the long run (stationary) equilibrium. More informed traders tend to generate more

adverse selection and hence larger spreads, but at the same time cause faster learning

by the market makers and hence smaller spreads. These two effects offset each other in

the long run. In a more general setup with public news, the offsetting result depends

on the persistence of news.
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1 Introduction

A traditional view of market liquidity, going at least as far back as Bagehot (1971), posits that

one of the causes of illiquidity is adverse selection: “The essence of market making, viewed

as a business, is that in order for the market maker to survive and prosper, his gains from

liquidity-motivated transactors must exceed his losses to information motivated transactors.

[...] The spread he sets between his bid and asked price affects both: the larger the spread,

the less money he loses to information-motivated, transactors and the more he makes from

liquidity-motivated transactors.”

This intuition has later been made precise by models such as Glosten and Milgrom (1985,

henceforth GM85), in which a competitive risk-neutral dealer sequentially sets bid and ask

prices in a risky asset, and makes zero expected profits in each trading round. Traders are

selected at random from a population that contains a fraction ρ of informed traders, and must

trade at most one unit of the asset. The asset liquidates at a value v that is constant and is

either 0 or 1. In equilibrium, the bid-ask spread is wider when the informed share ρ is higher:

there is more adverse selection, hence the dealer must set a larger bid-ask spread to break

even.

This intuition, however, must be modified once we consider the dynamics of the bid-ask

spread. A larger informed share also means that orders carry more information, which over

time reduces the uncertainty about v and thus puts downward pressure on the bid-ask spread.

We call this last effect “dynamic efficiency.” This effect is already present in GM85, who

observe that a larger informed share causes initially a larger bid-ask spread, but also causes

the bid-ask spread to decrease faster to its eventual value, zero, when v is fully learned.

A natural question is then: to what extent does dynamic efficiency reduce the traditional

adverse selection? To answer this question, we extend the framework of GM85 to allow v

to move over time according to a random walk vt. To obtain closed-form results, we assume

that the increments of vt are normally distributed with volatility σv, called the fundamental

volatility. We chose a moving value for two reasons. First, this is a realistic assumption in

modern financial markets, where relevant information arrives essentially at a continuous rate.

Second, we want to study the long-term evolution of the bid-ask spreads, and this long-term
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analysis is trivial when vt is constant, as the dealer eventually fully learns v. Note that we

are interested in the long run because (as we show later) in the short run the equilibrium is

similar to GM85, but in the long run it converges to the stationary equilibrium, which has

novel properties.

This new approach, however, increases the complexity of the model. While in GM85

the dealer’s uncertainty is summarized by a single number (the probability that v = 1), in

our model the dealer’s uncertainty is summarized by a probably density function, called the

“public density.” To simplify, we assume the dealer can compute correctly only the first

two moments of the density, called “public mean” and “public volatility,” while the higher

moments are ignored. With this assumption, we show that the equilibrium can be computed

in closed form and converges to a unique stationary equilibrium. Moreover, we numerically

show that the exact equilibrium (when the dealer computes the whole density function) stays

fairly close to the approximate equilibrium. Thus, in the rest of the paper, we drop the term

“approximate” when referring to the equilibrium.

The first property of the stationary equilibrium is that the public volatility (which is a

measure of the dealer’s uncertainty about vt) is constant. The second property is that the

informed share is inversely related to the public volatility. The intuition is simple: when the

informed share is low, the order flow carries little information, and thus the public volatility

is large.

A surprising property of the stationary equilibrium is that the informed share (i.e., the

fraction ρ of informed traders) has no effect on the bid-ask spread. To understand this result,

consider a small informed share, e.g., 1%. Suppose a buy order arrives, and the dealer chooses

how much to update the public mean (in equilibrium this update is half of the bid-ask spread).

There are two opposite effects. First, it is very unlikely that the buy order comes from an

informed trader (with only 1% chance). This is the “adverse selection effect”: a low informed

share makes the dealer less concerned about adverse selection, which leads to a smaller update

of the public mean, and hence decreases the bid-ask spread. But, second, if the buy order

does come from an informed trader, a large public volatility translates into the dealer knowing

that, on average, the informed trader must have observed a value far above the public mean.
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This is the “dynamic efficiency effect”: a low informed share leads to a larger update of the

public mean, and hence increases the bid-ask spread. At the other end, a large informed share

means that the dealer learns well about the asset value (the public volatility is small), and

therefore the bid-ask spread tends to be small.

The two opposite effects exactly offset each other in a stationary equilibrium. To under-

stand why, consider an equilibrium which is not necessarily stationary. With no order flow at

t, the dealer’s uncertainty (public volatility) would increase from t to t+1, as the asset value

diffuses. But the order flow at t contains information and hence reduces the uncertainty at

t + 1. In a stationary equilibrium, the uncertainty increase caused by diffusion must cancel

the uncertainty decrease caused by order flow. Thus, as the value diffusion is independent

of the informed share, the information content of the order flow must also be independent of

the informed share. But, the information content of the order flow (i.e., the resulting updates

after buy or sell orders) determines the size of the bid-ask spread. Hence, in a stationary

equilibrium, the bid-ask spread is independent of the informed share.

Our next result is that, for any initial public volatility, the equilibrium converges to the

stationary equilibrium.1 E.g., suppose the initial public volatility is very large. Then, initially

the order flow is very informative to the dealer, and the public volatility starts decreasing

toward its stationary value. The same is true for the bid-ask spread, which in a nonstationary

equilibrium is always proportional to the public volatility. This phenomenon is similar to the

GM85 equilibrium, except that in their model v is constant, and hence the stationary public

volatility and bid-ask spread are both 0. This shows that the nonstationary equilibrium (the

“short run”) resembles GM85, while the stationary equilibrium (the “long run”) is different

and produces novel insights.

Studying the equilibrium behavior after various types of shocks provides a few testable

implications. First, consider a positive shock to the informed share ρ (e.g., the stock be-

comes researched by more hedge funds). Then, the adverse selection effect suddenly becomes

stronger, and as a result the bid-ask spread temporarily increases. In the long run, though,

the bid-ask spread reverts to its stationary value, which is independent of ρ. At the same time,

1This convergence is not obvious, as it is possible in principle for the public volatility to grow indefinitely.
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the public volatility gradually decreases to its new, lower level, as the public is eventually less

uncertain about vt when there are more informed traders.

Second, consider a negative shock to the current public volatility (e.g., public news about

the current asset value). Then, the bid-ask spread follows the public volatility and drops

immediately, after which it increases gradually to its old stationary level. Third, consider

a positive shock to the fundamental volatility (e.g., all future uncertainty about the asset

increases). Then, the bid-ask spread follows the public volatility and increases gradually to

its new stationary level.

Based on our results, the picture on dynamic adverse selection that emerges is that liq-

uidity is more strongly affected not by the informed share (the intensive margin), but by the

fundamental volatility (the extensive margin). By contrast, price discovery (measured by the

public volatility) is strongly affected by both the informed share and fundamental volatility.

This suggests that the presence of privately informed traders can be more precisely identified

by proxies of the current level of uncertainty, rather than by illiquidity measures such as the

bid-ask spread (which is used by Collin-Dufresne and Fos, 2015).

Related Literature

Our paper contributes to the literature of dynamic models of adverse selection.2 To our

knowledge, this paper is the first to study the effect of stationarity in dealer models of the

Glosten and Milgrom (1985) type.3 By contrast, several stationary models of the Kyle (1985)

type are analyzed for instance by Chau and Vayanos (2008) and Caldentey and Stacchetti

(2010). The focus of these models, however, is not liquidity but price discovery: in the

continuous-time limit the market becomes strong-form efficient, as the insider trades infinitely

aggressively on infinitesimal value changes.4 Note that in these papers there is a single insider,

and thus one cannot use them to study the effect of more informed trading on liquidity.

Our main result, that more competition among informed traders can lead to better liq-

2See, e.g., the surveys of Vives (2008) and Foucault, Pagano, and Röell (2013) and the references therein.
3Glosten and Putnins (2016) study the welfare effect of the informed share in the Glosten and Milgrom

(1985) model, but they do not consider the effect of stationarity.
4In both these models, the continuous-time limit does not exist, as one obtains an indeterminacy (infinite

multiplied by 0). However, the illiquidity, i.e., the price impact coefficient, remains finite and constant, just
as it does in the Kyle (1985) model.
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uidity, points to a few related papers. Vives (1995) provides a non-stationary model of the

Kyle (1985) type with a fixed value and a continuum of risk averse insiders. As the number

of trading (“tâtonnement”) rounds increases, price quotations become more informative, the

market is deeper, and the informed agents react by trading more intensely and revealing their

private information faster. This effect is similar to the dynamic efficiency effect in GM85 or

in our model. The difference is that we prove the improvement in liquidity in a stationary

model, and we measure illiquidity by the bid-ask spread (instead of the Kyle lambda measure

in Vives (1995)). Roşu (2020) provides a model of a limit order market in which informed

traders can choose between providing liquidity (with a limit order) and demanding liquidity

(with a market order). In that paper, a larger informed fraction of informed trading con-

tributes to better liquidity, in part because informed traders can also supply liquidity (and in

equilibrium they do). The effect is however, not strong. Lester, Shourideh, Venkateswaran,

and Zetlin-Jones (2018) proposes a different channel and a different result from ours. They

show that more frequent trading (or more competition among dealers) makes traders’ behav-

ior less dependent on asset quality, and as a result dealers learn about the asset quality more

slowly, and set wider bid-ask spreads to compensate for the increase in uncertainty.

The paper speaks to the literature on the identification of informed trading and in par-

ticular on the identification of insider trading. Collin-Dufresne and Fos (2015, 2016) show

both empirically and theoretically that times when insiders trade coincide with times when

liquidity is actually stronger (and in particular bid-ask spreads decline). They attribute this

finding to the action of discretionary insiders who trade when they expect a larger presence

of liquidity (noise) traders. During those times the usual positive effect of noise traders on

liquidity dominates, and thus bid-ask spreads decline despite an increase in informed trading.

By contrast, our effect works even when the noise trader activity is constant over time, as

long as there is enough time for the equilibrium to become stationary.

The paper is organized as follows. In Section 2, we describe the model. In Section 3,

we analyze the baseline model (where the trading frequency is equal to 1) and show the

existence of an exact equilibrium. We next analyze the (approximate) equilibrium and show

that it converges to a unique stationary equilibrium. In Section 4, we discuss several model
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assumptions, as well as the robustness of our main results. Section 5 concludes. All proofs

are in the Appendix. The Internet Appendix contains a discussion of general dealer models,

and an application to a model in which the fundamental value switches randomly between 0

and 1.

2 Environment

The model is similar to the dealer market model in GM85, except that the fundamental value

moves according to a random walk:

vt+1 = vt + εt+1, with εt
IID∼ N (0, σv) , (1)

where the parameter σv > 0 is called fundamental volatility. There is a single risky asset, and

time is discrete and infinite. Trading in the risky asset takes place at each time t = 0, 1, 2, . . .

and is done against the existing quotes. Just before trading at t, a dealer posts two quotes:

the ask price At and the bid price Bt. Thus, a buy order at t executes at At, while a sell

order at t executes at Bt. The dealer (referred to in the paper as “she”) is risk neutral and

competitive, and therefore makes zero expected profits from each trade.

The buy or sell orders are submitted by a trading population with a fraction ρ ∈ (0, 1) of

informed traders and a fraction 1 − ρ of uninformed traders. At each t, a trader is selected

at random from the population willing to trade, and can trade at most one unit of the asset.

An uninformed trader at t is always willing to trade and is equally likely to buy or to sell.

An informed trader at t who observes the value vt either (i) submits a buy order if vt > At,

(ii) submits a sell order if vt < Bt, (iii) is not willing to trade if vt ∈ [Bt, At]. If case (iii)

occurs, an uninformed trader is selected at random, as this type of trader is always willing to

trade.5

The dealer’s uncertainty about the fundamental value is summarized by the “public den-

5Note that in GM85 both types of traders are always willing to trade: the informed because v is always
outside the bid-ask spread, and the uninformed for exogenous reasons. In our model, an informed trader is
not willing to trade when the value vt is within the spread, hence in that situation, an uninformed trader
takes advantage of the opportunity and trades. In Section 4.1, we endogenize the reasons to trade and provide
more discussion on these assumptions.
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sity,” which is the density of vt just before trading at t, conditional on all the order flow

available at t, that is, the sequence of orders submitted before t. Denote by ϕt the public

density, by µt its mean (called the “public mean”) and by σt its standard deviation (called

the “public volatility”).

For tractability, we assume that at each time t the dealer approximates the public density

with a normal density such that the first two moments are correctly computed. Thus, if the

correct posterior density ϕt has mean µt and volatility σt, the dealer replaces it with the

normal density ϕa
t (·) = N (·, µt, σt). One interpretation for this assumption is that the dealer

faces a very large cost of computing moments of order higher than 2.

To examine the robustness of our results, we also define the “exact equilibrium,” in which

the public density is correctly computed. In that case, we assume that the initial density ϕ0

is rapidly decaying at infinity.6

The timeline of the model at t is as follows: First, the fundamental value changes to vt.

Second,the dealer sets the ask quote At and the bid quote Bt. Third, a trader is selected from

the population and trading takes place at the quotes set by the dealer.

3 Equilibrium in the Baseline Model

We consider the baseline model, in which the trading frequency isK = 1, i.e., the fundamental

value changes in each trading round t ∈ N = {0, 1, 2, . . .}. We first show the existence of the

exact equilibrium, after which we focus on the main (approximate) equilibrium in which the

dealer always approximates the public density with a normal density. These two equilibria

are compared in Section 4.3.

3.1 Exact Equilibrium

We prove the existence of the exact equilibrium of the model in two steps. First, for each

t ∈ N we start with an public density ϕt, an ask At, a bid Bt < At, and compute the public

6A function f is rapidly decaying (at infinity) if it is smooth and satisfies limv→±∞ |v|Mf (N)
0 (v) = 0, where

f (N) is the N -th derivative of f . The space S of rapidly decaying functions is called the Schwartz space. Any
normal density belongs to S, and the convolution of two densities in S also belongs to S.
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density ϕt+1 after a buy or sell order. Second, for any public density ϕt we show that there

exists an “ask–bid pair” (At, Bt), i.e., an ask At and a bid Bt that satisfy the dealer’s pricing

conditions which require that her expected profit from trading at t is 0. We show numerically

that the ask–bid pair (At, Bt) is unique, provided that the initial density is a particular normal

density called the stationary density.

Let ϕt be the public density of vt before trading at t, and let At > Bt be, respectively, the

ask and bid at t (not necessarily satisfying the dealer’s pricing conditions). Suppose a buy or

sell order Ot ∈ {B, S} arrives at t. Let 1P be the indicator function, which is 1 if P is true

and 0 if P is false. Conditional on vt = v, the probability of observing a buy order at t is:

gt(B, v) = ρ1v>At +
ρ
2
1v∈[Bt,At] +

1−ρ
2
. (2)

To see this, consider the following cases:

� If v ∈ [Bt, At], the informed traders are not willing to trade, and an uninformed trader

submits a buy order with probability 1
2
. Then, gt(B, v) = ρ× 0 + ρ

2
× 1 + 1−ρ

2
= 1

2
.

� If v /∈ [Bt, At], an informed trader (chosen with probability ρ) submits a buy order with

probability 1v>At , while an uninformed trader (chosen with probability 1− ρ) submits

a buy order with probability 1
2
. Then, gt(B, v) = ρ1v>At +

ρ
2
× 0 + 1−ρ

2

Similarly, the probability of observing a sell order at t is:

gt(S, v) = ρ1v<Bt +
ρ
2
1v∈[Bt,At] +

1−ρ
2
. (3)

Proposition 1 describes the evolution of the public density.

Proposition 1. Consider a rapidly decaying public density ϕt, and an ask–bid pair with

At > Bt. After observing an order Ot ∈ {B, S}, the density of vt is ψt(v|Ot), where:

ψt(v|B) =

(
ρ1v>At +

ρ
2
1v∈[Bt,At] +

1−ρ
2

)
· ϕt(v)

ρ
2
(1− Φt(At)) +

ρ
2
(1− Φt(Bt)) +

1−ρ
2

,

ψt(v|S) =

(
ρ1v<Bt +

ρ
2
1v∈[Bt,At] +

1−ρ
2

)
· ϕt(v)

ρ
2
Φt(At) +

ρ
2
Φt(Bt) +

1−ρ
2

,

(4)
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where Φt is the cumulative density function corresponding to ϕt. The public density at t + 1

is rapidly decaying, and satisfies:

ϕt+1(w|Ot) =

∫ +∞

−∞
ψt(v|Ot)N (w − v, 0, σv)dv =

(
ψt(·|Ot) ∗ N (·, 0, σv)

)
(w), (5)

where “∗” denotes the convolution of two densities.

Proposition 1 shows how the public density evolves once a particular order (buy or sell)

is submitted at t. Note, however, that this result does not assume anything about the ask

and bid other than At > Bt, so in principle these can be chosen arbitrarily. In equilibrium,

however, these prices must satisfy the dealer’s pricing conditions, namely that the dealer’s

expected profits at t must be 0.

Next, we impose these conditions and we show how to determine the equilibrium ask and

bid. Then, Proposition 1 allows us to describe the whole evolution of the public density,

conditional on the initial density ϕ0 and the sequence of orders O0,O1, . . . that have been

submitted.

Let ϕt be the public density of vt before trading at t. We define an “ask–bid pair” (At, Bt)

as a pair of ask and bid satisfying the pricing conditions of the dealer. As the dealer is risk

neutral and competitive, the pricing conditions are: (i) the ask At is the expected value of

vt conditional on a buy order at t, and (ii) the bid Bt is the expected value of vt conditional

on a sell order at t. Using the previous notation, the dealer’s pricing conditions are that At

is the mean of ψt(v|B), the posterior density of vt after observing a buy order at t; and Bt is

the mean of ψt(v|S), the posterior density after observing a sell order at t. Thus, the dealer’s

pricing conditions are equivalent to:

At =

∫ +∞

−∞
vψt(v|B)dv, Bt =

∫ +∞

−∞
vψt(v|S)dv. (6)

For future use, we record the following straightforward result.

Corollary 1. The pair (At, Bt) is an ask–bid pair if and only if the following equations are
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satisfied:

At = µt+1,B, Bt = µt+1,S, with µt+1,Ot =

∫ +∞

−∞
wϕt+1(w|Ot)dw, Ot = {B, S}. (7)

To analyze the existence of an ask–bid pair, first we introduce some notation. Suppose µt

is the mean of ϕt. For (A,B) ∈ (µt,∞)× (−∞, µt), define the functions:

F (A,B) =
Θt(A) + Θt(B)

A− µt

− 1 + ρ

ρ
+ Φt(A) + Φt(B),

G(A,B) =
Θt(A) + Θt(B)

µt −B
− 1− ρ

ρ
− Φt(A)− Φt(B),

(8)

where Φt is the cumulative density associated to ϕt, and Θt is defined by:

Θt(v) =

∫ v

−∞
(µt − w)ϕt(w)dw. (9)

The function Θt is strictly positive everywhere and approaches 0 at infinity on both sides.7

Proposition 2 shows that the existence of an ask–bid pair is equivalent to solving a 2× 2

system of nonlinear equations.

Proposition 2. Consider a rapidly decaying public density ϕt, with mean µt. Then, the

existence of an ask–bid pair is equivalent to finding a solution (A,B) ∈ (µt,∞)× (−∞, µt) of

the system of equations:

F (A,B) = 0, G(A,B) = 0. (10)

A solution of (10) always exists.

Thus, Proposition 2 shows that an ask–bid pair exists for any public density ϕt. Unique-

ness, however, is not guaranteed, as one could in principle manufacture a public density for

which there is more that one corresponding ask–bid pair. Nevertheless, Result 1 shows nu-

merically that the ask–bid pair is unique if the initial public density is the stationary density

N (·, µt, σ∗), where σ∗ is defined as in (18).

7As ϕt is rapidly decaying, Θt(−∞) is equal to 0. The definition of µt implies that Θt(+∞) =
∫ +∞
−∞ (µt −

w)ϕt(w) = µt −
∫ +∞
−∞ wϕt(w) = 0. Also, Θ′

t(v) = (µt − v)ϕt(v), hence Θt(v) is increasing below µt and
decreasing above µt. As Θt(±∞) = 0, the function Θt is strictly positive everywhere.
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Result 1. Suppose the initial public density is ϕ0(·) = N (·, µ0, σ0), with σ0 = σ∗, the sta-

tionary volatility defined as in (18). Then the ask–bid pair is unique at all t, regardless of the

realized order flow.

We discuss the numerical verification of this result in the Appendix. The idea is to use the

fact that the existence of an ask–bid pair is equivalent to solving the equation A− f(A) = 0

for some smooth function of A, and show numerically that the derivative of f is less than 1

everywhere.

We finish the analysis of the exact equilibrium with a brief discussion about stationarity.

Numerically, it appears that, regardless of the starting density, the exact equilibrium converges

to a stationary one. However, proving any formal result about stationarity would be extremely

difficult. To understand why, consider the space S of pairs (v, ϕ), where v is a real number

(the fundamental value) and ϕ a rapidly decaying density (the public density). Then, our

exact equilibrium generates a Markov chain on the infinite-dimensional space S: the transition

from vt to vt+1 is governed by the random walk equation (1), and the transition from ϕt to

ϕt+1 is governed by equation (5), where the correct ask and bid prices are determined as in

Proposition 2 and the numerical Result 1. We can then define a stationary equilibrium as a

distribution ψ on S which is invariant under the Markov transition. Note that ψ is a density

on a product space that includes other densities, hence is infinite-dimensional. In Section 2

in the Internet Appendix, we consider a much simpler model in which the fundamental value

is either 0 or 1, and it switches every period between these two values with probability

ν < 1/2. Then, the public density reduces to a single number, but even in that case, finding

a stationary density on S is not straightforward and can be solved only numerically. Given

all these difficulties, in Section 3.2 we introduce an approximate equilibrium as our main

equilibrium concept, and we show that everything can be computed in closed form.

3.2 Main Equilibrium

By assumption, at each t ∈ N the dealer approximates the public density with a normal

density such that the first two moments are correctly computed. Specifically, suppose that
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the dealer regards vt to be distributed as:

ϕa
t (v) = N (v, µt, σt). (11)

After the dealer observes an order Ot at t, denote by ϕt+1(w|Ot) the exact density of vt+1

conditional on the past order flow including Ot, and by µt+1,Ot and σt+1,Ot its mean and

standard deviation, respectively. Then, before trading at t + 1 the dealer regards vt+1 to be

distributed as:

ϕa
t+1(w|Ot) = N

(
w, µt+1,Ot , σt+1,Ot

)
. (12)

Thus, we assume that the dealer continues to consider the public density as ϕt = ϕa
t at each

t ∈ N. The accuracy of this approximation is discussed in Section 4.3.

3.2.1 Evolution of the Public Density

We introduce a new parameter, δ, which is an increasing function of the informed share ρ:

δ = g−1(2ρ) ∈ (0, δmax), with δmax = g−1(2) ≈ 0.647, (13)

where g : [0,∞) → [0,∞) defined by g(x) = x
N (x,0,1)

is one-to-one and increasing.8

Proposition 3 shows the evolution of the public mean and volatility, as well as of the

bid-ask spread.

Proposition 3. Suppose the public density at t = 0, 1, 2, . . . is ϕt(v) = N (v, µt, σt). After

observing Ot ∈ {B, S}, the posterior mean at t+ 1 satisfies:

µt+1,B = µt + δσt, µt+1,S = µt − δσt. (14)

The posterior volatility at t+ 1 does not depend on the order Ot, and satisfies:

σt+1 =
√

(1− δ2)σ2
t + σ2

v . (15)

8See the proof of Proposition 3.
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The ask and bid quotes are unique and satisfy:

At = µt + δσt, Bt = µt − δσt, st = At −Bt = 2δσt. (16)

We now investigate whether the public density reaches a steady state, in the sense that its

shape converges to a particular density. As the mean µt evolves according to a random walk,

we must demean the public density and focus on its standard deviation σt. Proposition 4

shows that the public volatility σt converges to a particular value, σ∗, regardless of the initial

value σ0.

Proposition 4. For any t = 0, 1, 2, . . . the public volatility satisfies:

σ2
t = σ2

∗ +
(
σ2
0 − σ2

∗
)
(1− δ2)t, (17)

where:

σ∗ =
σv
δ

=
σv

g−1(2ρ)
. (18)

For any initial value σ0 and any sequence of orders, the public volatility σt monotonically

converges to σ∗, and the bid-ask spread monotonically converges to:

s∗ = 2σv. (19)

Thus, Proposition 4 shows that in the long run the equilibrium approaches a particular

stationary equilibrium, which we analyze next.

3.2.2 Stationary Equilibrium

We define a “stationary equilibrium” to be an equilibrium in which the public volatility σt is

constant. According to Proposition 4, if the initial density is ϕ0(v) = N (v, µ0, σ∗), then all

subsequent public densities have the same volatility, namely the stationary volatility σ∗. We

now analyze the properties of the stationary equilibrium.

Corollary 2. In the stationary equilibrium, the public volatility σ∗ is decreasing in the in-

formed share ρ, while the bid-ask spread s∗ does not depend on ρ. Both σ∗ and s∗ are increasing
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in the fundamental volatility σv.

Intuitively, an increase in the fundamental volatility σv raises the public volatility as the

dealer’s knowledge about the fundamental value becomes more imprecise. It also increases

the adverse selection overall for the dealer, hence she increases the bid-ask spread. Moreover,

a decrease in the informed share ρ means that the order flow becomes less informative, and

therefore the dealer’s knowledge about the fundamental value is more imprecise (σ∗ is large).

The surprising result is that the stationary bid-ask spread is independent of ρ. This is

equivalent to the public mean update being independent of ρ. Indeed, the public mean evolves

according to:

µt+1,B = µt + σv, µt+1,S = µt − σv. (20)

Thus, the bid-ask spread is s∗ = (µt + σv) − (µt − σv) = 2σv. To understand the intuition

behind this result, consider the case when ρ is low. Suppose the dealer observes a buy order

at t. As ρ is low, there are two effects on the size of the public mean update. The first effect

is negative: the trader at t is unlikely to be informed, which decreases the size of the update.

This is the traditional adverse selection effect from models such as GM85. The second effect

is positive: when the trader at t is informed, he must have observed a large fundamental

value vt, as the uncertainty in vt (measured by the public volatility σ∗) is also large. This we

call the “dynamic efficiency effect”: more informed traders create over time a more precise

knowledge about the fundamental value, and thus reduce the effect of informational updates.

In a stationary setup, the dynamic efficiency effect exactly cancels the adverse selection

effect, and as a result the size of the public mean updates due to order flow is independent of

ρ. To understand why, consider an equilibrium which is not necessarily stationary. If there

was no order flow at t, then the dealer’s uncertainty (the public volatility) would increase

from t to t+1 as the fundamental value diffuses. But there is order flow at t, which provides

information to the dealer and hence reduces uncertainty at t+1. In a stationary equilibrium

the public uncertainty stays constant. Thus, as the increase in uncertainty due to value

diffusion is independent of the informed share ρ, the decrease in uncertainty due to order flow

should also be independent of ρ. But an order flow information content that is independent

of ρ translates into the size of public mean updates also being independent of ρ.
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Formally, the decrease in uncertainty due to the order Ot at t can be evaluated by com-

paring the prior public density ϕt(v) and the posterior density ψt(v|Ot). One measure of the

decrease in uncertainty is how much the public mean is updated after a buy or sell order

(which are equally likely). But (20) implies that this update is ±σv, which from the point

of view of the information at t is a binary distribution, with standard deviation σv which is

indeed independent of ρ. Note that we have also essentially proved the following result.

Corollary 3. In the stationary equilibrium, the volatility of the change in public mean is

constant and equal to σv.

This result is in fact true quite generally. Indeed, in Appendix B we prove that for any

filtration problem in which the variance remains constant over time the volatility of the change

in public mean must equal the fundamental volatility.

3.2.3 Liquidity Dynamics

In this section we analyze the evolution of the public volatility and the bid-ask spread after a

shock to either the public volatility σt, the fundamental volatility σv, or the informed share ρ.

We are also interested in how quickly the equilibrium converges to the stationary equilibrium.

In general, the speed of convergence of a sequence xt that converges to a limit x∗ is defined

as the limit ratio:

S = lim
t→∞

|x2t − x2∗|
|x2t+1 − x2∗|

, (21)

provided that the limit exists. Corollary 4 computes the speed of convergence for several

variables of interest.

Corollary 4. The public volatility, public variance and bid-ask spread have the same speed of

convergence:

S =
1

1− δ2
. (22)

Moreover, S is increasing in the informed share ρ.

Corollary 4 shows that the variables of interest have the same speed of convergence S,

and we can thus call S simply as the “convergence speed” of the equilibrium. Another result
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of Corollary 4 is that a larger informed share ρ implies a faster convergence speed of the

equilibrium to its stationary value. This is intuitive, as more informed trading helps the

dealer make quicker dynamic inferences. Note that when ρ = 1, equation (13) implies that

δ = g−1(2) ≈ 0.647, thus the maximum value of δ is less than 1. Therefore, the maximum

convergence speed is finite.

We now consider the effect of various types of shocks to our stationary equilibrium. In the

first row of Figure 1 we show the effects of a positive shock to the informed share, meaning

that ρ suddenly jumps to a higher value ρ′. This generates an increase in δ, which jumps

to its new value δ′ = g−1(ρ′), and it also generates a drop in the stationary public volatility,

which is now σ′
∗ = σv/δ

′. Nevertheless, as there is no new information above the fundamental

value, the current public volatility σt remains equal to its old stationary value, σ∗ = σv/δ.

Proposition 4 shows that the public volatility starts decreasing monotonically toward its

stationary value σ′
∗. Note that according to Corollary 4 the speed of convergence to the new

stationary equilibrium is S ′ = 1/(1−δ′2), which is higher than the old convergence speed. We

also describe the evolution of the bid-ask spread, which according to Proposition 3 satisfies

st = 2δ′σt. Initially, the bid-ask spread jumps to reflect the jump to δ′. But then, as σt

converges to σ′
∗ = σv/δ

′, the bid-ask spread starts decreasing to s∗ = 2σv, which does not

depend on ρ.

To summarize, after a positive shock to ρ, the public volatility starts decreasing mono-

tonically to its now lower stationary value, while the bid-ask spread initially jumps and then

decreases monotonically to the same stationary value (that does not depend on ρ). Intuitively,

a positive shock to the informed share leads to a sudden increase in adverse selection for the

dealer, reflected in an initially larger bid-ask spread, after which the bid-ask spread reverts

to its fundamental value, which is independent of informed trading. At the same time, more

informed trading leads to more precision for the dealer in the long run, which is reflected in

a smaller public volatility.

In the second row of Figure 1 we show the effects of a negative shock to the public volatility,

meaning that σt suddenly drops from the stationary value σ∗ to a lower value. This drop can

be caused for instance by public news about the value of the asset vt. Then, according to
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Figure 1: Public Volatility and bid-ask Spread after Shocks.
This figure shows the effect of three types of shocks on the public volatility σt, and on the bid-ask

spread st (each shock occurs at t0 = 100). The initial parameters are: σv = 1, and ρ = 0.1 (hence

δ = 0.0795, σ∗ = 12.573, s∗ = 2). In the first row, the informed share ρ jumps from 0.1 to 0.2 (hence

σ∗ drops from 12.573 to 6.345). In the second row, the public volatility drops from σ∗ = 12.573 to

half of its value (6.286). In the third row, the fundamental volatility jumps from 1 to 2.
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Proposition 4, the public volatility increases monotonically back to the stationary value. The

bid-ask spread is always proportional to the public density: st = 2δσt, hence st also drops

initially and then increases monotonically toward the stationary value s∗. Intuitively, public
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news has the effect of helping the dealer initially to get a more precise understanding about

the fundamental value. This brings down the bid-ask spread, as temporarily the dealer faces

less adverse selection. But this decrease is only temporary, as the value diffuses and the

same forces increase the public volatility and the bid-ask spread toward their corresponding

stationary values, which are the same as before.

In the third row of Figure 1 we show the effects of a positive shock to the fundamental

volatility, meaning that σv suddenly jumps to a higher value σ′
v. This implies that every value

increment vt+1 − vt now has higher volatility, but the uncertainty in vt, which is measured

by the public volatility σt, stays the same.9 Proposition 4 shows that the stationary public

volatility changes to σ′
∗ = σ′

v/δ, and the stationary bid-ask spread changes to s′∗ = 2σ′
v.

Therefore, the public density increases monotonically from the initial stationary value to

the new stationary value, and the same is true for the bid-ask spread. Intuitively, a larger

fundamental volatility increases overall adverse selection for the dealer, and as a result both

the public density and the bid-ask spread eventually increase.

4 Robustness and Extensions

In this section we discuss various assumptions of the model, as well as the robustness of

our main result, that the dynamic efficiency effect is strong enough to overcome the adverse

selection effect.

4.1 Informed and Uninformed Traders

In this section, we discuss the agents’ motivation to trade in the baseline model when the

trading frequency is K = 1. A standard way to endogenize uninformed trading is to assume

that these traders possess a relative private valuation u and trade only when u is above the

cost of trading. In this setup, the cost of trading is equal to half the bid-ask spread, which

according to Proposition 4 is equal to the fundamental volatility σv. Thus, if we set u = σv,

the uninformed traders are indifferent between trading and not trading. E.g., if a trader

9One can mix this type of shock with a shock to the public volatility σt, which was already analyzed.
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expects the value to be µt, the trader is indifferent between doing nothing (and getting a

utility of 0) and buying at the ask price, which costs At − µt = σv but yields an offsetting

private valuation u = σv.

To endogenize informed trading, we assume that traders that become informed a cost c of

acquiring information which must be paid at t before observing the value vt. Recall that in the

stationary equilibrium (vt−µt)/σ∗ has the standard normal distribution. Also, equation (18)

implies that σv/σ∗ = δ, where δ = δ(ρ) is the increasing function of ρ from equation (13).

Thus, the expected profit of an informed trader before observing the value at t is:

Π(ρ) = Et(vt − At|vt > At) · P(vt > At) + Et(Bt − vt|vt < At) · P(vt < Bt)

= 2σ∗ Et

(vt − µt

σ∗
− At − µt

σ∗

∣∣∣ vt > At

)
· P
(vt − µt

σ∗
>
At − µt

σ∗

)
= 2

σv
δ

(∫ ∞

δ

xϕ(x)dx− δ
)
·
(
1− Φ(δ)

)
=

2σv(ϕ(δ)− δ)Φ(−δ)
δ

,

(23)

where ϕ(·) is the standard normal density and Φ(·) its cumulative density function. It is

straightforward to check that Φ(ρ) is decreasing in ρ, which intuitively means that a larger

fraction of informed traders leads to a smaller ex ante profit for each informed trader. There-

fore, with free entry, if the informed traders’ ex ante profit Φ(ρ) is higher than the information

acquisition cost c, the fraction of informed traders should rise until Φ(ρ) = c, when the in-

formed traders become indifferent between trading and not trading.

The discussion above shows that the informed share ρ is in one-to-one correspondence of

the information acquisition cost c. We can therefore interpret a change in ρ as originating

from an exogenous change in the cost c. This is useful, e.g., when interpreting the results

in Section 3.2.3, where we analyze the effects on liquidity of an unexpected change in the

informed share ρ.

Note that the parameters of the model can be set such that all traders, informed or not,

are indifferent between trading and not trading. This provides microfoundations for orderly

trade in our model.

Finally, we discuss what happens when an informed trader observes a fundamental value

vt between the ask and the bid. In that case, by assumption an uninformed trader jumps in
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and trades at t. This assumption is made for convenience, since otherwise it is possible to

have no trade at t, which would inform the dealer that vt lies in the interval [Bt, At] and would

considerably lower the public volatility. One way to avoid this somewhat artificial situation is

to note that ρ is likely to be small in practice. In that case, a calculation as in equation (23)

shows that the probability that vt is in the interval [Bt, At] is equal to Φ(δ)−Φ(−δ) ≈ 2ϕ(0)δ,

which is also small, and therefore unlikely to influence much the overall results.

4.2 Fundamental Value and Learning

In this section, we analyze the robustness of our main result under different specifications for

the fundamental value and for the dealer’s learning process. Recall the intuition for why the

dynamic efficiency effect offsets the adverse selection effect in the baseline model when the

trading frequency is K = 1 (see Section 3.2.2): Suppose ρ is low and the dealer observes a

buy order at t. A low ρ means that the buyer is unlikely to be informed, which implies that

the update of public mean (and hence the dealer’s bid-ask spread) should be small. This is

the adverse selection effect. However, in the rare case when the buyer is actually informed,

he must have observed a large fundamental value vt, since the uncertainty in vt (measured by

the public volatility σ∗) is also large. This is the dynamic efficiency effect.

Note that for this offsetting argument to fully work, the public volatility σ∗ must be very

large when ρ is very small. This is possible only if the range of the fundamental value is not

restricted to become very large. Such restrictions can occur in two ways:

(i) The fundamental value is directly assumed to be bounded;

(ii) The signals received by the dealer essentially bound the dealer’s uncertainty.

4.2.1 Alternating Value

The situation (i) above occurs if we require the fundamental value to lie in a bounded interval

such as [0, 1].10 We analyze such a model in Section 2 in the Internet Appendix, where the

fundamental value is either 0 or 1 (as in Glosten and Milgrom, 1985), and it switches every

10This setup of course cannot occur if the fundamental value follows a random walk.
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period between these two values with probability ν < 1/2. In that case, the dynamic efficiency

effect no longer offsets the adverse selection effect. Nevertheless, even if ρ is small, as long

as ρ is large relative to the switching parameter ν, the dynamic efficiency effect is relatively

strong, and as a result the dependence of the average bid-ask spread on ρ is weaker, and the

equilibrium approaches the one in the diffusing-value model where the average bid-ask spread

is independent of ρ.

A similar result is likely to hold in a model in which the fundamental value follows a

mean-reverting process, as the fundamental value is, in some sense, more bounded in the

mean-reverting case than in the random walk case. Note, however, that the random walk

case is more plausible under the interpretation of the fundamental value vt as the expected

liquidation value using all possible available information (including private information) at

t: Indeed, in that case, the value increments are independent with respect to all previous

information, and therefore vt is the sum of many independent increments, which is essentially

the definition of a random walk.

4.2.2 Public News

The situation (ii) above occurs if at each t the dealer receives a signal about the level vt.

Receiving signals, however, is not by itself enough to bound the dealer’s uncertainty about

vt. Indeed, we next consider an extension of our model in which, in addition to observing

the order flow, at each t the dealer receives a signal about the increment vt − vt−1. In that

case, the main result goes through. The reason is that the dealer’s uncertainty about the

level vt becomes large when ρ is small: the dealer only learns about vt once, after which she

learns only about future value increments. If, by contrast, although perhaps less realistically,

the dealer received at every t signals about the level vt, then the uncertainty would remain

bounded even when ρ was very small, and the main result would no longer hold.

Suppose that before each t ∈ N, the dealer receives a signal ∆st = st − st−1 about the

increment ∆vt = vt − vt−1, of the form:

∆st = ∆vt +∆ηt, with ∆ηt = ηt − ηt−1
IID∼ N

(
·, 0, ση

)
. (24)
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Let µt and σt be respectively the public mean and public volatility just before trading at t ∈ N

(but after the signal ∆st is observed). Note that this extension generalizes the model in Sec-

tion 2: when ση approaches infinity, it is as if the dealer receives no signal at t. Proposition 5

shows the evolution of the public mean and volatility, as well as the stationary volatility and

bid-ask spread.

Proposition 5. For any t = 0, 1, 2, . . . the public mean and volatility satisfy:

µt+1 = µt ± δσt +
σ2
v

σ2
v + σ2

η

∆st+1, σ2
t = σ2

∗ +
(
σ2
0 − σ2

∗
)
(1− δ2)t, (25)

where δ = g−1(2ρ), as in equation (13), and

σ∗ =
σvη
δ

with σvη =
σvση√
σ2
v + σ2

η

. (26)

For any initial value σ0 and any sequence of orders, the public volatility σt monotonically

converges to σ∗, and the bid-ask spread monotonically converges to:

s∗ = 2σvη. (27)

Proposition 5 is essentially the same result as Proposition 4, except that the fundamental

volatility σv is replaced here by σvη. The parameter σvη represents the increase in dealer

uncertainty from t to t+1, conditional on her receiving the signal ∆st+1.
11 When ση is 0, the

dealer learns perfectly the increment ∆v, hence even if the dealer does not know the initial

value v0, she ends up by learning vt almost perfectly (she also learns about vt from the order

flow). When ση approaches infinity, the dealer receives uninformative signals, σvη approaches

σv, and the equilibrium behavior is described as in Proposition 4.

The stationary bid-ask spread s∗ is twice the parameter σvη. Thus, the bid-ask spread

is increasing in the news uncertainty parameter ση, and ranges from 0 (when ση = 0) to

2σv (when ση = ∞). The relation between the bid-ask spread and ση is intuitive: with more

imprecise news, the dealer is more uncertain about the asset value, and sets a larger stationary

11Indeed, its square σ2
vη is equal to the conditional variance Var

(
∆vt+1|∆st+1

)
.
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bid-ask spread.

Note that even in this more general context the stationary bid-ask spread s∗ does not

depend on the informed share ρ. The intuition is the same as for Proposition 4, and is

discussed at the end of the proof of Proposition 5. This intuition is based on the general

result (proved in Appendix B) that for any filtration problem in which the variance remains

constant over time, the variance of the change in public mean must equal the fundamental

variance. But the latter variance is independent of ρ, as is the variance of the signal ∆s,

hence the bid-ask spread is also independent of ρ.

4.3 Comparison with the Exact Equilibrium

In this section, we analyze in more detail the evolution of the public density ϕt when the

dealer is fully Bayesian. In particular, we are interested in computing the average shape of

the public density over all possible future paths of the game.12 Note that when computing the

average shape of a density, we consider the average of the various densities after demeaning

them. We then show numerically that this average exists and we compare it to the stationary

public density described in Section 3.2.2, which is a normal density with mean 0 and standard

deviation equal to σ∗ = σv/δ.

We thus demean the variables and densities involved in the previous formulas, and in

addition we normalize them by σ∗:

Ãt =
At − µt

σ∗
, B̃t =

Bt − µt

σ∗
, ṽt =

vt − µt

σ∗
, ϕ̃t(ṽ) = σ∗ϕt(µt + σ∗ṽ),

Φ̃t(ṽ) =

∫ ṽ

−∞
ϕ̃t(w)dw, ψ̃t(ṽ|Ot) = σ∗ψt(µt + σ∗ṽ|Ot).

(28)

With this new notation, the equations (4) and (5) from Proposition 1 imply the following

result.

12As we see in Internet Appendix (Sections 1 and 2), one expects a well defined stationary density for the
continuous time Markov chain associated to our game. The only problem is that the fundamental value vt is
no longer stationary in our case, but follows a random walk. One can show that it is still possible to define
a stationary density as long as one does not require it to integrate to 1 over v. But we are interested in the
simpler problem of computing the marginal stationary density of vt − µt, which we solve numerically.
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Figure 2: Exact Normalized Public Density after Series of Buy Orders.
Each of the 6 graphs represents the evolution of the normalized public density ϕ̃t after t = 0,

t = 1 and t = 5 buy orders. The initial normalized public density in all cases (at t = 0) is the

standard normal density with mean 0 and volatility 1. The 6 graphs correspond to the informed

share ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}.

Corollary 5. Consider a rapidly decaying public density ϕt with normalization ϕ̃t, and an

ask–bid pair (At, Bt) with normalization (Ãt, B̃t). After observing an order Ot ∈ {B, S}, the
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normalized density at t+ 1 is ϕ̃t+1(w̃|Ot), where:

ϕ̃t+1(w̃|B) =

∫ +∞

−∞
N
(w̃ − ṽ + Ãt

δ

) (
ρ1ṽ>Ãt

+ ρ
2
1ṽ∈[B̃t,Ãt]

+ 1−ρ
2

)
· ϕ̃t(ṽ)

ρ
2
(1− Φ̃t(Ãt)) +

ρ
2
(1− Φ̃t(B̃t)) +

1−ρ
2

dṽ,

ϕ̃t+1(w̃|S) =

∫ +∞

−∞
N
(w̃ − ṽ + B̃t

δ

) (ρ1ṽ<B̃t
+ ρ

2
1ṽ∈[B̃t,Ãt]

+ 1−ρ
2

)
· ϕ̃t(ṽ)

ρ
2
Φ̃t(Ãt) +

ρ
2
Φ̃t(B̃t) +

1−ρ
2

dṽ.

(29)

Figure 2 displays the normalized public density after t = 0, t = 1, and t = 5 buy orders

for various values of the informed share ρ. We notice by visual inspection that the normalized

public density is close to the standard normal density even after a sequence of 5 buy orders

(this sequence happens with probability 2−5, which is approximately 3.13%). The deviation

of the normalized public densities from the standard normal density is at its smallest level

when the informed share ρ is either small or large, and it peaks for an intermediate value ρ

near 0.2. When ρ is small, the order flow is uninformative, hence the posterior is not far from

the prior. When ρ is large, the order flow is very informative, hence the posterior depends

strongly on the increment, which is normally distributed.

Table 1: Average Normalized Public Density after Series of Random Orders.
For each informed share ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, consider 200 random series of 20 orders

chosen among buy or sell with equal probability, and denote by ϕ̃S the normalized public den-

sity computed after observing the series S = 1, 2, . . . , 200. The table displays four estimated mo-

ments of the average ψ = ϕ̃1+ϕ̃2+···+ϕ̃200

200 : the mean µ =
∫ +∞
−∞ xψ(x)dx, the standard deviation

σ =
(∫ +∞

−∞ (x−µ)2ψ(x)dx
)1/2

, the skewness
∫ +∞
−∞

(x−µ
σ

)3
ψ(x)dx, and the kurtosis

∫ +∞
−∞

(x−µ
σ

)4
ψ(x)dx.

It also displays the average bid-ask spread normalized by s∗ = 2σv (N.Spread).

ρ 0.01 0.1 0.3 0.5 0.7 0.9

Mean -0.000 0.000 -0.001 -0.001 -0.010 -0.002

St.Dev. 1.000 1.002 1.039 1.056 1.041 1.009

Skewness -0.001 0.018 0.016 -0.003 -0.012 -0.009

Kurtosis 3.005 3.419 4.587 4.597 4.089 3.343

N.Spread 1.003 0.966 0.959 0.988 1.014 1.004
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It turns out, however, that the stationary shape of the public density is not precisely

normal, but it has “fat tails,” that is, its fourth centralized moment (kurtosis) is larger than

3. Table 1 displays, for each ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, several moments of the average

normalized density computed after 200 different random paths. As the starting density (at

t = 0) is standard normal for all the different ρ, we need to make sure that we choose a path

length long enough for the average density to stabilize. Numerically, we see that it is enough

to choose t = 20.13 Thus, in Table 1 we display the first four centralized moments for the

average normalized public density at t = 20, computed over 200 random paths.

The first three moments of the average density at t = 20 are similar to the moments of the

standard normal density: the mean and the skewness (centralized third moment) are close to

0, and the standard deviation is close to 1. The kurtosis, however, is larger than 3, indicating

that the stationary public density has indeed fat tails. Nevertheless, the deviation from the

standard normal density is not large, especially when ρ is small or large. Moreover, the last

row in Table 1 implies that the average bid-ask spread in each case is quite close to s∗ = 2σv,

which is the stationary value in the approximate Bayesian case: see equation (19). Thus, we

argue that the normal approximation made in Section 3.2 is reasonable, especially when it

comes to our main liquidity measure, the bid-ask spread.

The question remains how different the normalized public density can be from the average

density. This question is already discussed tangentially in Figure 2, where we observe the

normalized public density after five buy orders. But to understand this issue in more detail,

we choose one particular value of the informed share, ρ = 0.1, for which the normalized public

density after five buy orders appears more different than the normal density. Figure 3 displays

the normalized public density after each of the 200 random series of 20 orders, along with the

average density. Then, the results in Table 1 and Figure 3 can be summarized by observing

that the normalized public density does not deviate too far from its average value, and in

turn this average value does not deviate too far from the standard normal density.

More important for our purposes, however, is to compare the average bid-ask spread in the

exact equilibrium with the stationary bid-ask spread s∗ = 2σv from equation (19). Result 1

13We have checked that the average density at t = 20 is in absolute value less than 0.01 apart from the
average density at t = 25 or t = 30.
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Figure 3: Normalized Public Density after Series of Random Orders.
For an informed share ρ = 0.1, consider 200 random series of 20 orders chosen among buy or sell with

equal probability, and denote by ϕ̃S the normalized public density computed after observing the series

S = 1, 2, . . . , 200. The table displays the densities ϕ̃S , as well as their average ψ = ϕ̃1+ϕ̃2+···+ϕ̃200

200 .

The average density is displayed with a thick dashed line.

shows that these two values are numerically the same for all the informed share we considered.

Result 2. When the trading frequency is K = 1, the average bid-ask spread is constant and

equal to s∗ = 2σv. When K > 1, the average bid-ask spread is decreasing in the informed

share ρ.

We discuss the numerical verification of this result in the Appendix.

5 Conclusion

In this paper we have presented a dealer model in which the asset value follows a random walk.

The stationary equilibrium of the model has novel properties, and is affected by two opposite

effects: First, under the traditional adverse selection effect, the dealer sets higher bid-ask

spreads to protect from a larger number of informed traders. Second, under the dynamic

efficiency effect, the dealer learns faster from the order flow when there are more informed
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traders, and this reduces the bid-ask spread.

Our main finding is that the dynamic efficiency effect is strong enough to offset the adverse

selection in the baseline case, when the trading frequency is equal to 1. In that case, the

stationary bid-ask spread no longer depends on the informed share (the fraction of traders

that are informed). If the trading frequency is larger than 1, the dynamic efficiency effect

dominates the adverse selection effect, and the average stationary bid-ask spread is decreasing

in the informed share. The strength of this dependence is increasing in the trading frequency,

as dynamic efficiency has more time to reduce the bid-ask spread.

The nonstationary equilibria converge to the stationary equilibrium, regardless of the

initial state. The evolution of the nonstationary equilibrium after various types of shocks

provides additional testable implications of our model. For instance, after a positive shock to

the informed share (e.g., if more informed investors start trading in that stock) the bid-ask

spread jumps but then it decreases again to its stationary level. This type of liquidity resilience

occurs purely for informational reasons, without any additional market maker jumping in to

provide liquidity.

Appendix A. Proofs of Results

Proof of Proposition 1. Using Bayes’ rule, the posterior density of vt after observing O

is:

ψt(v|O) =
P(Ot = O | vt = v) · P(vt = v)∫
v
P(Ot = O | vt = v) · P(vt = v)

=
gt(O, v) · ϕt(v)∫
v
gt(O, v) · ϕt(v)

, (A1)

where
∫
v
F (v) is shorthand for

∫ +∞
−∞ F (v)dv. Substituting gt(O, v) from (2) and (3) in the

above equation, we obtain (4).

Let f(w, v) = P(vt+1 = w|vt = v) = N (w − v, 0, σv) be the transition density of vt. To
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compute the posterior density of vt after observing Ot = O, note that:

ϕt+1(w|O) =

∫
v

P(vt+1 = w | vt = v,Ot = O) · P(vt = v | Ot = O)

=

∫
v

P(vt+1 = w | vt = v) · P(vt = v | Ot = O) =

∫
v

f(w, v) · ψt(v|O),

(A2)

which proves (5).

To simplify notation, we omit conditioning on the order Ot. From (4), it follows that

the posterior density ψt is equal to ϕt multiplied by a piecewise constant function. The

prior density ϕt is rapidly decaying, hence it is bounded. Therefore ψt is also bounded and

continuous, although it is no longer smooth. Nevertheless, when we convolute ψt(·) with

N (·, 0, σv) the result ϕt+1 becomes smooth. Indeed, the N ’th derivative dNϕt+1(w)/dw
N

involves differentiating the smooth function N (w − v, 0, σv) under the integral sign. As the

remaining term ψt(v) is bounded, the integrals are well defined, and hence ϕt+1 is a smooth

function. The fact that ϕt+1 is also rapidly decaying can be seen in the same way, using again

the fact that ψt is bounded.

Proof of Corollary 1. By definition of the ask–bid pair, At is the mean of the posterior

density of vt after observing a buy order at t. But the increment vt+1 − vt has zero mean and

is independent of the previous variables until t. Therefore, At is also the mean of the posterior

density of vt+1 after observing a buy order at t. Similarly, Bt is the mean of the posterior

density of vt+1 after observing a sell order at t. This proves the equations in (7).

Proof of Proposition 2. Define the following function:14

Ht(v) =

∫ v

−∞
wϕt(w)dw = vΦt(v)−

∫ v

−∞
Φt(w)dw. (A3)

Note that Ht(−∞) = 0 and Ht(+∞) =
∫∞
−∞wϕt(w)dw = µt. Also, note that:

Θt(v) = µtΦt(v)−Ht(v). (A4)

14In the formula for Ht we use integration by parts, and also the fact that limv→−∞ vΦt(v) = 0. To prove
this last fact, suppose v = −x with x > 0. Since ϕt is rapidly decaying, ϕt(−x) < Cx−3 for some constant C.

Then xΦt(−x) = x
∫ −x

−∞ ϕt(w)dw < xCx−2

2 , which implies limx→∞ xΦt(−x) = 0.
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To prove the desired equivalence, start with an ask–bid pair (At, Bt). This pair must

satisfy the dealer’s pricing conditions: At is the mean of ψt(·|B), and Bt is the mean of

ψt(·|S). Using the formulas in (4) for ψt(v|O), we compute:

At =
ρ
(
µt −Ht(At)

)
+ ρ

2

(
Ht(At)−Ht(Bt)

)
+ 1−ρ

2
µt

ρ
2
(1− Φt(At)) +

ρ
2
(1− Φt(Bt)) +

1−ρ
2

,

Bt =
ρHt(Bt) +

ρ
2

(
Ht(At)−Ht(Bt)

)
+ 1−ρ

2
µt

ρ
2
Φt(At) +

ρ
2
Φt(Bt) +

1−ρ
2

.

(A5)

Using (A4), we compute the following differences:

At − µt =
ρ
2
Θt(At) +

ρ
2
Θt(Bt)

ρ(1− Φt(At)) +
ρ
2
(Φt(At)− Φt(Bt)) +

1−ρ
2

,

µt −Bt =
ρ
2
Θt(At) +

ρ
2
Θt(Bt)

ρΦt(Bt) +
ρ
2
(Φt(At)− Φt(Bt)) +

1−ρ
2

.

(A6)

As Θt is strictly positive everywhere (see Footnote 7), we have the following inequalities:

At > µt > Bt, or equivalently At ∈ (µt,+∞) and Bt ∈ (−∞, µt). The equations (A6) can be

written as:

F (At, Bt) = 0, G(At, Bt) = 0, (A7)

where the functions F and G are defined in (8). Conversely, suppose we have a solution

(At, Bt) of (A7), with At > µt > Bt. Then, this pair satisfies the equations in (A6), which

are the dealer’s pricing conditions. Thus, (At, Bt) is an ask–bid pair.

We now show that a solution of (A7) exists. The partial derivatives of F and G are:

∂F

∂A
= −Θt(A) + Θt(B)

(A− µt)2
,

∂F

∂B
=

A−B

A− µt

ϕt(B),

∂G

∂A
= −A−B

µt −B
ϕt(A),

∂G

∂B
=

Θt(A) + Θt(B)

(µt −B)2
.

(A8)

From (8) we see that F (A,B) has well defined limits at B = ±∞, which follows from the

formulas: Θt(±∞) = 0, Φt(−∞) = 0, and Φt(+∞) = 1. Thus we extend the definition of

F for all B ∈ R̄ = [−∞,+∞]. Now fix B ∈ R̄. We show that there is a unique solution

A = α(B) of the equation F (A,B) = 0. From (A8) we see that ∂F
∂A

< 0 for all A ∈ (µt,∞).
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From (8) we see that when A ↘ µt, F (A,B) ↗ ∞; while when A ↗ ∞, F (A,B) ↘

−1+ρ
ρ

+ 1 + Φt(B) = −1
ρ
+ Φt(B) < 0 (recall that ρ ∈ (0, 1)). Thus, for any B there is

a unique solution of F (A,B) = 0 for A ∈ (µt,∞). Denote this unique solution by α(B).

Differentiating the equation F
(
α(B), B

)
= 0 implies that for all B the derivative of α(B) is

α′(B) = −∂F
∂B

(α(B), B)/∂F
∂A

(α(B), B) > 0. Define A = α(−∞) and A = α(µt). The results

above imply that both A and A belong to (µt,∞), and α is a bijective function between

[−∞, µt] and [A,A].

A similar analysis shows that for all A ∈ R̄, there is a unique solution B = β(A) of the

equation G(A,B) = 0. Moreover, the function β is increasing, and if we define B = β(µt) and

B = β(∞), it follows that both B and B belong to (−∞, µt), and the function α is bijective

between [µt,∞] and [B,B].

Next, define the function f : R̄ → R̄ by:

f(A) = α
(
β(A)

)
. (A9)

Consider the set:

S = {(A,B) | A− f(A) = 0 , B = β(A)}. (A10)

It is straightforward to show that S coincides with the set of all ask–bid pairs. Indeed,

(A,B) ∈ S is equivalent to A = α(B) and B = β(A), which, from the discussion above, is

equivalent to F (A,B) = 0 and G(A,B) = 0. Therefore, the existence of an ask–bid pair is

equivalent to there being at least one solution of A− f(A) = 0.

We now show that the equation A−f(A) = 0 has at least one solution. The function f(A)

is increasing and bijective between [µt,∞] and [α(B), α(B)]. As B,B ∈ (−∞, µt), it follows

that [α(B), α(B)] ⊂ (A,A) ⊂ (µt,∞). When A ↘ µt, A − f(A) → µt − α(B) < 0, while

when A↗ ∞, A− f(A) → ∞− α(B) > 0. Thus, there exists a solution of A− f(A) = 0 on

(µt,∞).

Verification of Result 1. If f(A) = α(β(A)) as in equation (A9), the proof of Propo-

sition 2 shows that every ask–bid pair (A,B) corresponds to a solution of the equation

A−f(A) = 0. Thus, to prove uniqueness it is sufficient to prove that the derivative of f is less
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than 1 everywhere. Numerically, we verified this inequality for each ρ ∈ {0.1, 0.2, . . . , 0.9},

and 1000 random sequences of orders of length up to 200. (Recall that ϕ0 is assumed to be

the stationary density N (·, 0, σ∗).)

Proof of Proposition 3. Denote by ϕ(·) = N (·, 0, 1) the standard normal density, and by

Φ(·) its cumulative density. Consider the function g : [0,∞) → [0,∞) defined by g(x) = x
ϕ(x)

.

As the derivative of ϕ is ϕ′(x) = −xϕ(x), the derivative of g is g′(x) = 1+x2

ϕ(x)
> 0 for all

x. Moreover, g(0) = 0 and limx→∞ g(x) = ∞, hence g is increasing and a one-to-one and

mapping of [0,∞).

Consider t ∈ N. As usual, ϕt(·) denotes the density of vt just before trading at t, and

ψt(·|Ot) denotes the density of vt after trading at t. By assumption, ϕt is normal with mean

µt and volatility σt:

ϕt(v) =
1

σt
ϕ

(
v − µt

σt

)
= N (v, µt, σt). (A11)

Define the normalized ask and bid, respectively, by:

at =
At − µt

σt
, bt =

Bt − µt

σt
. (A12)

We now compute the mean and volatility of ϕt+1(·|Ot). As the increment vt+1−vt ∼ N (0, σ2
v)

is independent of past variables, the mean and volatility of ϕt+1(·|Ot) satisfy:

µt+1,Ot =

∫
v

v ψt(v|Ot), σ2
t+1,Ot

= σ2
v +

∫
v

(
v − µt+1,Ot

)2
ψt(v|Ot). (A13)

From (4), we have ψt(v|B) =
ρ1v>At+

ρ
2
1v∈[Bt,At]

+
1−ρ
2

ρ
2
(1−Φt(At))+

ρ
2
(1−Φt(Bt))+

1−ρ
2

ϕt(v). With the change of variables

z = v−µt

σt
, we compute the posterior mean conditional on a buy order:

µt+1,B = µt +

∫ +∞

−∞
(v − µt)

ρ1v>At +
ρ
2
1v∈[Bt,At] +

1−ρ
2

ρ
2
(1− Φt(At)) +

ρ
2
(1− Φt(Bt)) +

1−ρ
2

1

σt
ϕ
(
v−µt

σt

)
dv

= µt + σt

∫ +∞

−∞
z

ρ1z>at +
ρ
2
1z∈[bt,at] +

1−ρ
2

ρ
2
(1− Φ(at)) +

ρ
2
(1− Φ(bt)) +

1−ρ
2

ϕ(z) dz

= µt + σt
ϕ(−at) + ϕ(−bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

.

(A14)
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Similarly, the posterior mean conditional on a sell order is:

µt+1,S = µt − σt
ϕ(at) + ϕ(bt)

Φ(at) + Φ(bt) +
1−ρ
ρ

, (A15)

To compute σ2
t+1,Ot

, we notice that:

∫
v

(
v − µt

)2
ψt(v|Ot) =

∫
v

(
v − µt+1,Ot

)2
ψt(v|Ot) +

(
µt+1,Ot − µt

)2
, (A16)

where we use the fact that
∫
v

(
v − µt+1,Ot

)
ψt(v|Ot) = 0. Using (A13) and (A16), a similar

calculation as in (A14) implies that the posterior variance conditional on a buy order satisfies:

σ2
t+1,B − σ2

v +
(
µt+1,B − µt

)2
=

∫
v

(
v − µt

)2
ψt(v|B)

= σ2
t

∫ +∞

−∞
z2

ρ1z>at +
ρ
2
1z∈[bt,at] +

1−ρ
2

ρ
2
(1− Φ(at)) +

ρ
2
(1− Φ(bt)) +

1−ρ
2

ϕ(z) dz

= σ2
t

(
1 +

atϕ(at) + btϕ(bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

)
.

(A17)

Similarly, the posterior variance conditional on a sell order satisfies:

σ2
t+1,S − σ2

v +
(
µt+1,S − µt

)2
= σ2

t

(
1 − atϕ(at) + btϕ(bt)

Φ(at) + Φ(bt) +
1−ρ
ρ

)
. (A18)

We now use the fact that at and bt are the normalized ask and bid. Equation (7) implies

that the ask is At = µt+1,B and the bid is Bt = µt+1,S. If we normalize these equations, we

have at =
µt+1,B−µt

σt
and bt =

µt+1,S−µt

σt
. Using (A14) and (A15), we obtain:

at =
ϕ(−at) + ϕ(−bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

, bt = − ϕ(at) + ϕ(bt)

Φ(at) + Φ(bt) +
1−ρ
ρ

, (A19)

We show that this system has a unique solution. We use the notation from the proof of

Proposition 2, adapted to this particular case. For (a, b) ∈ (0,∞)× (−∞, 0), define F (a, b) =

ϕ(a)+ϕ(b)
a

− Φ(−a) − Φ(−b) − 1−ρ
ρ

and G(a, b) = ϕ(a)+ϕ(b)
−b

− Φ(a) − Φ(b) − 1−ρ
ρ
. As in the

proof of Proposition 2, for b ∈ [−∞, 0] define α(b) as the unique solution of F (α(b), b) = 0;
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and for a ∈ [0,∞] define β(a) as the unique solution of G(a, β(a)) = 0. For a ∈ (0,∞),

define f(a) = α(β(a)). We show that any solution a of the equation a − f(a) = 0 must

satisfy a < 1. Let b = β(a). Since a = α(b), by definition F (a, b) = 0. As in the proof of

Proposition 2, one shows that F is decreasing in a, and that F (0, b) = +∞ > 0. As b < 0,

F (1, b) = ϕ(1)−Φ(−1)+ϕ(b)−Φ(−b)− 1−ρ
ρ
< ϕ(1)−Φ(−1)+ϕ(0)−Φ(0) ≈ −0.0177 < 0. As

F (a, b) = 0 and F is decreasing in a (and a is positive), we have just proved that a ∈ (0, 1).

A similar argument (adapted to the function G) shows that b = β(a) ∈ (−1, 0).

As in equation (A9), define f(a) = α
(
β(a)

)
. We need to show that the equation a−f(a) =

0 has a unique solution in (0,∞). By contradiction, suppose there are at least two solutions

a1 < a2, and suppose a1 is the smallest such solution and a2 the largest. As f is continuous

and takes values in some compact interval [b, b] (see the proof of Proposition 2), a1 and a2

are well defined. Also, since f is increasing, f is a bijection of [a1, a2]. The argument above

then shows that both a1 and a2 are in (0, 1). If we prove that f ′ < 1 on [a1, a2], it follows

that a − f(a) is increasing on [a1, a2] and cannot therefore be equal to 0 at both ends. This

contradiction therefore proves uniqueness, as long as we show that indeed f ′ < 1 on (0, 1).

Let a ∈ (0, 1) and denote b = β(a) and a′ = α(b). Then by the chain rule f ′(a) = α′(b)β′(a).

Differentiating the equations F (α(b), b) = 0 and G(a, β(a) = 0, we have α′(b) = ϕ(b)(a′−b)a′

ϕ(a′)+ϕ(b)
and

β′(b) = ϕ(a)(a−b)(−b)
ϕ(a)+ϕ(b)

. Both these derivatives are of the form ϕ(x1)(x1+x2)x1

ϕ(x1)+ϕ(x2)
with x1, x2 ∈ (0, 1).

This function is increasing in x2, hence it is smaller than ϕ(x1)(x1+1)x1

ϕ(x1)+ϕ(1)
, which is increasing in

x1, hence smaller than 1, which is the value corresponding to x1 = 1. Thus, f ′ < 1 on (0, 1)

and the uniqueness is proved.

To find the unique solution, note that by symmetry we expect at = −bt. If we impose

this condition, we have Φ(at) + Φ(bt) = Φ(−at) + Φ(−bt) = 1. Therefore, we need to solve

the equation at = 2ρϕ(at) for at > 0, or equivalently g(at) =
at

ϕ(at)
= 2ρ. But equation (13)

implies that g(δ) = 2ρ, hence at = δ. The solution of (A19) is then:

at = −bt = δ, or At = µt + δσt, Bt = µt − δσt, (A20)
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which proves equation (16). Therefore, the posterior mean satisfies:

µt+1,B = µt + δσt, µt+1,S = µt − δσt, (A21)

which proves equation (14).

Equation (A21) also implies that (µt+1,Ot − µt)
2 = δ2σ2

t for Ot ∈ {B, S}. As at = −bt,

equations (A17) and (A18) imply that σ2
t+1,Ot

− σ2
v + δ2σ2

t = σ2
t . Thus, the posterior variance

satisfies:

σ2
t+1,B = σ2

t+1,S = (1− δ2)σ2
t + σ2

v , (A22)

which proves equation (15).

Proof of Proposition 4. From (13), it follows that δ < δmax ≈ 0.647, hence δ < 1. Equa-

tion (15) implies that the public variance evolves according to σ2
t = (1−δ2)σ2

t−1+σ
2
v for any t ≥

0 (by convention, σ−1 = 0). Iterating this equation, we obtain σ2
t = (1− δ2)tσ2

0 +
1−(1−δ2)t

δ2
σ2
v .

Using σ∗ = σv

δ
, we obtain σ2

t = σ2
∗ + (1 − δ2)t(σ2

0 − σ2
∗), which proves (17). As δ ∈ (0, 1), it

is clear that σ2
t converges monotonically to σ2

∗ for any initial value σ0. The bid-ask spread

satisfies st = 2σtδ, hence it converges to 2σ∗δ = 2σv

δ
δ = 2σv = s∗.

Proof of Corollary 2. Following the proof of Proposition 4, recall that g is increasing on

(0,∞). Its inverse g−1 is therefore also increasing, and σ∗ = σv/g
−1(2ρ) is decreasing in ρ.

The dependence on σv is straightforward.

Proof of Corollary 3. Conditional on the information at t, each order (buy or sell) is

equally likely. Therefore, the change in the public mean µt+1,Ot −µt has a binary distribution

with probability 1/2, which has standard deviation equal to σv, which is the fundamental

volatility.

Proof of Corollary 4. Equation (15) shows that the public variance σ2
t evolves according

to σ2
t+1 = (1 − δ2)σ2

t + σ2
v . Taking the limit on both sides, we get σ2

∗ = (1 − δ2)σ2
∗ + σ2

v .

Subtracting the two equations above, we get σ2
t+1 − σ2

∗ = (1− δ2)(σ2
t − σ2

∗), which proves the

speed of convergence formula (22) for the public variance. As σ2
t −σ2

∗ = (σt−σ∗)(σt+σ∗), the
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formula (22) is true for the public volatility as well. Finally, the bid-ask spread is st = 2δσt,

which proves (22) for the bid-ask spread.

Proof of Proposition 5. The only difference from the setup of Section 2 is that after trad-

ing at t (but before trading at t+ 1) the dealer receives a signal ∆st+1 = ∆vt+1 +∆ηt+1. By

notation, just before trading at t, vt is distributed as N (·, µt, σt). We thus follow the proof of

Propositions 3 and 4, and infer that after trading at t the dealer regards vt to be distributed as

N (·, µ′
t, σ

′
t), where µ

′
t = µt±δσt and σ′2

t = (1−δ2)σ2
t .

15 After observing ∆st+1 = ∆vt+1+∆ηt+1,

the dealer computes E
(
∆vt+1|∆st+1

)
= σ2

v

σ2
v+σ2

η
∆st+1 and Var

(
∆vt+1|∆st+1

)
=

σ2
vσ

2
η

σ2
v+σ2

η
= σ2

vη.

Hence, after observing the signal, the dealer regards vt+1 to be distributed as N (·, µt+1, σt+1),

with:

µt+1 = µ′
t +

σ2
v

σ2
v + σ2

η

∆st+1, σ2
t+1 = σ′2

t + σ2
vη = (1− δ2)σ2

t + σ2
vη. (A23)

The recursive equation for σt is the same as (15), except that instead of σv we now have σvη.

Then, the same proof as in Propositions 3 and 4 can be used to derive all the desired results.

Note that equation (25) implies that the change in public mean is ∆µt+1 = ±δσt +
σ2
v

σ2
v+σ2

η
∆st+1. Thus, in the stationary equilibrium, Var(∆µt+1) = δ2σ2

∗ +
σ4
v

(σ2
v+σ2

η)
2 (σ

2
v + σ2

η) =

σ2
vη +

σ4
v

σ2
v+σ2

η
= σ2

v = Var(∆vt+1). This verifies the result in Appendix B that in any stationary

filtration problem the variance of the change in public mean must equal the fundamental

variance. Moreover, the half spread is equal to δσ∗ = σvη, which does not depend on the

informed share ρ.

Proof of Corollary 5. This follows directly from equations (4) and (5) from Proposition 1,

making the change of variables from equation (28).

Verification of Result 2. To compute the average bid-ask spread in the exact equilibrium,

we consider each value of the informed share ρ ∈ {0.1, 0.2, . . . , 0.9}, and consider M = 1000

random sequences of orders of length up to 200. We start with the stationary public density

ϕ0 = N (·, 0, σ∗), and for each m ∈ {1, 2, . . . , 1000} we compute the bid-ask corresponding to

the final density ϕt=200. The length parameter (200) is taken large enough so that it gives

15The sign ± is plus if a buy order is submitted at t, and minus if a sell order is submitted at t.
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enough time for the exact equilibrium to be stationary. (We verify this is by checking that

the average public density for t > 100 does not change.) We then compute the average

bid-ask spread sρ, along with its standard deviation, and then construct a 95% confidence

band around the mean by using the standard deviation of the bid-ask spread series. We then

verify that for all the values of ρ considered, the theoretical value s∗ = 2σv is within the error

band.

Appendix B. Stationary Filtering

We show that in a filtration problem that is stationary (in a sense to be defined below) the

variance of value changes is the same as the variance of the public mean changes. Let vt be

a discrete time random walk process with constant volatility σv. Suppose each period the

market gets (public) information about vt. Let It be the public information set available at

time t. Denote by µt = E(vt|It) = Et(vt) the public mean at time t, i.e., the expected asset

value given all public information. This filtration problem is called stationary if the public

variance is constant over time:

Vart(vt) = Vart+1(vt+1). (B1)

Proposition 6 gives a necessary and sufficient condition for the filtration problem to be sta-

tionary.

Proposition 6. The filtration problem is stationary if and only if:

Var(vt+1 − vt) = Var(µt+1 − µt). (B2)

Proof. Since µt = Et(vt), we have the decomposition vt = µt + ηt, where ηt is orthogonal

on the information set It. Moreover, Var(ηt) = Vart(vt). Similarly, vt+1 = µt+1 + ηt+1, and

Var(ηt+1) = Vart+1(vt+1). Thus, the stationary condition reads Var(vt+1−µt+1) = Var(vt−µt).
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We can decompose vt+1 − µt in two ways:

vt+1 − µt = (vt+1 − µt+1) + (µt+1 − µt)

= (vt+1 − vt) + (vt − µt).
(B3)

We verify that these are orthogonal decompositions. The first condition is that cov(vt+1 −

µt+1, µt+1 − µt) = 0, i.e., that cov(ηt+1, µt+1 − µt) = 0. But ηt+1 is orthogonal on It+1,

which contains µt+1 and µt. The second condition is that cov(vt+1 − vt, vt − µt) = 0. But vt

has independent increments, so vt+1 − vt is independent of vt and anything contained in the

information set at time t. (This is true as long as the market does not get at t information

about the asset value at a future time.)

The total variance of the two orthogonal decompositions in (B3) must be the same, hence

Var(vt+1 − µt+1) + Var(µt+1 − µt) = Var(vt+1 − vt) + Var(vt − µt). But being stationary is

equivalent to Var(vt+1 − µt+1) = Var(vt − µt), which is then equivalent to Var(vt+1 − vt) =

Var(µt+1 − µt).
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