Internet Appendix for "Dynamic Adverse Selection and Liquidity"

Contents

1 General Dealer Models

We consider a setup that generalizes that in Section 2 in the paper. There is a single risky asset, and time is discrete and infinite. The asset value (or fundamental value) v_{t} follows a general Markov process, with transition density ${ }^{1}$

$$
f_{t}(w, v)=\mathrm{P}\left(v_{t+1}=w \mid v_{t}=v\right), \quad t=0,1,2, \ldots
$$

In the paper, v_{t} follows a random walk: $v_{t+1}=v_{t}+\varepsilon_{t+1}$, and hence the transition density is $f_{t}(w, v)=\mathcal{N}\left(w-v, 0, \sigma_{v}\right)$.

The dealer's uncertainty about the fundamental value is summarized by the public density, which is the density of v_{t} just before trading at t, conditional on all the information available at t, that is, the sequence of actions observed by the dealer at $0,1, \ldots, t-1$. Denote by $\phi_{t}(\cdot)$ the public density, and let μ_{t} be its mean (called the public mean) and σ_{t} its standard deviation (called the public volatility).

At each $t=0,1,2, \ldots$ the dealer observes an action a_{t} that belongs to a general action space $\mathcal{A} .{ }^{2}$ We assume that the action a_{t} depends on the asset value v_{t} and on some random shock η_{t}, and thus it is a mapping that takes $\left(v_{t}, \eta_{t}\right)$ to an element of \mathcal{A}. Let $g_{t}\left(a_{t}, v_{t}, \eta_{t}\right)$ be the density of a_{t} conditional on v_{t} and a random shock η_{t}, where we omit the dependence of a_{t} on ϕ_{t} (or its moments). ${ }^{3}$

[^0]Denote by $\psi_{t}(v \mid a)=\mathrm{P}\left(v_{t}=v \mid a_{t}=a\right)$ the posterior density of v_{t} after observing a_{t}. Using Bayes' rule, we compute:

$$
\begin{align*}
\psi_{t}(v \mid a) & =\frac{\mathrm{P}\left(v_{t}=v, a_{t}=a\right)}{\mathrm{P}\left(a_{t}=a\right)}=\frac{\mathrm{P}\left(a_{t}=a \mid v_{t}=v\right) \cdot \mathrm{P}\left(v_{t}=v\right)}{\int_{v} \mathrm{P}\left(a_{t}=a \mid v_{t}=v\right) \cdot \mathrm{P}\left(v_{t}=v\right)} \\
& =\frac{\int_{\eta} \mathrm{P}\left(a_{t}=a \mid v_{t}=v, \eta_{t}=\eta\right) \cdot \mathrm{P}\left(v_{t}=v\right)}{\int_{v, \eta} \mathrm{P}\left(a_{t}=a \mid v_{t}=v, \eta_{t}=\eta\right) \cdot \mathrm{P}\left(v_{t}=v\right)}=\frac{\int_{\eta} g_{t}(a, v, \eta) \cdot \phi_{t}(v)}{\int_{v, \eta} g_{t}(a, v, \eta) \cdot \phi_{t}(v)} . \tag{IA.1}
\end{align*}
$$

We want to compute the posterior public density $\phi_{t+1}(\cdot)$, which is the density of v_{t+1} just before trading at $t+1$. Suppose the action $a_{t}=a$ was observed at t. Then the posterior public density at $t+1$ is $\phi_{t+1}(w \mid a)=\mathrm{P}\left(v_{t+1}=w \mid a_{t}=a\right)$, which is equal to:

$$
\begin{align*}
\phi_{t+1}(w \mid a) & =\int_{v} \mathrm{P}\left(v_{t+1}=w \mid v_{t}=v, a_{t}=a\right) \cdot \mathrm{P}\left(v_{t}=v \mid a_{t}=a\right) \\
& =\int_{v} \mathrm{P}\left(v_{t+1}=w \mid v_{t}=v\right) \cdot \mathrm{P}\left(v_{t}=v \mid a_{t}=a\right)=\int_{v} f_{t}(w, v) \cdot \psi_{t}(v, a) \tag{IA.2}\\
& =\frac{\int_{v, \eta} f_{t}(w, v) \cdot g_{t}(a, v, \eta) \cdot \phi_{t}(v)}{\int_{v, \eta} g_{t}(a, v, \eta) \cdot \phi_{t}(v)} .
\end{align*}
$$

Note that in the second equation in (IA.2) we are implicitly assuming that the evolution of v_{t} is independent on the action a_{t} undertaken at t.

Thus, we can consider the whole evolution of the game as a Markov chain with state variable $\left(v_{t}, \phi_{t}\right)$. Note that the transition density $f_{t}(w, v)$, the action density $g_{t}\left(a_{t}, v_{t}, \eta_{t}\right)$, and the update equation (IA.2) together describe the evolution of this Markov chain.

A natural concept associated to a Markov chain is the stationary density, which describes how likely it is for each state to eventually occur in the game. This is a well defined concept in most cases, except when the fundamental value is not stationary, e.g., if v_{t} follows a random walk. In that case, nevertheless, one can show that it is still possible to define a stationary density as long as one does not require it to integrate to 1 over v. But when the fundamental value follows a stationary process, the construction of the stationary density is relatively straightforward. In Section 2 of this Internet Appendix we consider a stationary setup in which the fundamental value switches between two values according to a Poisson process. In
that case, we show that the construction of the stationary density reduces to a functional equation, and we show numerically how to solve that equation.

2 Dealer Model with Switching Value

2.1 Environment

The setup is as in Section 2 in the paper, except that the fundamental value is no longer following a random walk, but switches randomly between 0 and 1 with a fixed probability $\nu \in\left(0, \frac{1}{2}\right) .{ }^{4}$ At each $t=0,1, \ldots$ a trader is selected at random from a population with a fraction ρ of informed traders and a fraction $1-\rho$ of uninformed traders. The trader can buy or sell at most one unit of the asset, and trading takes place at the quotes set by a competitive risk-neutral dealer: the ask A_{t} and the bid B_{t}. If the trader at t is uninformed, then he is equally likely to buy or to sell. If the trader at t is informed and observes the value v_{t}, then she submits either (i) buy order if $v_{t}>A_{t}$, (ii) sell order if $v_{t}<B_{t} .{ }^{5}$

2.2 Equilibrium

The advantage of this setup is that densities on $\{0,1\}$ are binomial, and can therefore be described by a single number, $\mu \in[0,1]$, which is the probability that the value is 1 . Thus, if we use our previous notation, the public density ϕ_{t} can be described simply by its mean μ_{t}. Proposition IA. 1 shows how μ_{t} evolves over time, and how the ask and bid are determined.

Proposition IA.1. Suppose the public density before trading at t has mean $\mu_{t} \in(0,1)$. Then at t the ask is $A_{t}=\mu_{t+1, \mathrm{~B}}$ and the bid is $B_{t}=\mu_{t+1, \mathrm{~S}}$, where $\mu_{t+1, \mathcal{O}_{t}}$ is the mean of the public

[^1]density at $t+1$ after an order $\mathcal{O}_{t} \in\{\mathrm{~B}, \mathrm{~S}\}$, and these numbers satisfy:
\[

$$
\begin{align*}
& A_{t}=\mu_{t+1, \mathrm{~B}}=\frac{\nu \frac{1-\rho}{2}\left(1-\mu_{t}\right)+(1-\nu) \frac{1+\rho}{2} \mu_{t}}{\frac{1-\rho}{2}+\rho \mu_{t}} \\
& B_{t}=\mu_{t+1, \mathrm{~S}}=\frac{\nu \frac{1+\rho}{2}\left(1-\mu_{t}\right)+(1-\nu) \frac{1-\rho}{2} \mu_{t}}{\frac{1+\rho}{2}-\rho \mu_{t}} \tag{IA.3}
\end{align*}
$$
\]

The bid-ask spread $s_{t}=A_{t}-B_{t}$ satisfies:

$$
\begin{equation*}
s_{t}=\rho(1-2 \nu) \frac{\frac{1}{4}-\left(\frac{1}{2}-\mu_{t}\right)^{2}}{\frac{1}{4}-\rho^{2}\left(\frac{1}{2}-\mu_{t}\right)^{2}} \tag{IA.4}
\end{equation*}
$$

Proof. See Section 2.3 of this Internet Appendix.
Note that as a function of μ_{t} the bid-ask spread s_{t} is symmetric around $\mu_{t}=\frac{1}{2}$ and has an inverted U-shape. It attains its maximum value $\rho(1-2 \nu)$ when $\mu_{t}=\frac{1}{2}$, and it approaches 0 when μ_{t} is either 0 or 1 . Also, the bid-ask spread is increasing in ρ for a fixed value of μ_{t}. But this does not mean that the average bid-ask spread is also increasing in ρ. In order to compute the average bid-ask spread, one must let μ_{t} evolve over time. When ρ is larger, one expects μ_{t} to be more often closer to either 0 or 1 (the possible values of v_{t}) due to the faster learning by the dealer; and when μ_{t} is closer to 0 or 1 , the bid-ask spread is closer to 0 . Thus, it is not obvious ex ante how the average bid-ask spread should depend on ρ. To settle this issue, we need to determine how μ_{t} evolves over time and how often it reaches certain values. The concept is that of the stationary density.

To formally determine the stationary density, we describe the evolution of the system as a Markov process. The state is given by the pair $\left(v_{t}, \mu_{t}\right) \in\{0,1\} \times(0,1)$. The value v_{t} evolves by switching with probability ν from one value to the other. The mean μ_{t} evolves according to the formulas (IA.3): if $v_{t}=1$, with probability $\rho+\frac{1-\rho}{2}=\frac{1+\rho}{2}$ it becomes $\mu_{t+1, \mathrm{~B}}$ and with probability $\frac{1-\rho}{2}$ it becomes $\mu_{t+1, \mathrm{~S}}$; if $v_{t}=0$, with probability $\frac{1-\rho}{2}$ it becomes $\mu_{t+1, \mathrm{~B}}$ and with probability $\frac{1+\rho}{2}$ it becomes $\mu_{t+1, \mathrm{~B}}$.

The stationary density is a triple $\left(\theta, \lambda_{0}, \lambda_{1}\right)$, where $\theta \in(0,1)$ is a number, and λ_{0}, λ_{1} are
densities on $(0,1)$:

$$
\begin{equation*}
\theta=\mathrm{P}\left(v_{t}=1\right), \quad \lambda_{0}(x)=\mathrm{P}\left(\mu_{t}=x \mid v_{t}=0\right), \quad \lambda_{1}(x)=\mathrm{P}\left(\mu_{t}=x \mid v_{t}=1\right) \tag{IA.5}
\end{equation*}
$$

We show how to compute the stationary density. Let $\varepsilon \in\{+1,-1\}$. Define the functions m_{+} and m_{-}for $x \in(0,1)$ by:

$$
\begin{equation*}
m_{\varepsilon}(x)=\frac{\nu \frac{1-\varepsilon \rho}{2}(1-x)+(1-\nu) \frac{1+\varepsilon \rho}{2} x}{\frac{1-\varepsilon \rho}{2}+\varepsilon \rho x}, \quad \varepsilon \in\{-1,+1\} \tag{IA.6}
\end{equation*}
$$

where for simplicity we denote $m_{+}=m_{+1}$ and $m_{-}=m_{-1}$. Lemma IA. 1 summarizes the properties of m_{ε}.

Lemma IA.1. The functions m_{+}and m_{-}are increasing and bijective between $(0,1)$ and $(\nu, 1-\nu)$, and satisfy $m_{+}(x)>m_{-}(x)$ for $x \in(0,1)$. Each m_{ε} has a unique fixed point $x_{\varepsilon} \in(0,1)$, with $:$

$$
\begin{equation*}
x_{+}=\frac{\rho-\nu+\sqrt{\rho^{2}(1-2 \nu)+\nu^{2}}}{2 \rho}, \quad x_{-}=\frac{\rho+\nu-\sqrt{\rho^{2}(1-2 \nu)+\nu^{2}}}{2 \rho} . \tag{IA.7}
\end{equation*}
$$

Moreover, $x_{+}+x_{-}=1$, and the difference $x_{+}-x_{-}=(1-2 \nu) /\left(\left(1-2 \nu+\frac{\nu^{2}}{\rho^{2}}\right)^{1 / 2}+\frac{\nu}{\rho}\right)$ is positive and increasing in ρ. For any $x \in(0,1)$, the sequence defined by $x_{0}=x$ and $x_{k+1}=m_{\varepsilon}\left(x_{k}\right)$ converges to x_{ε}. The inverse functions n_{+}and n_{-}and their derivatives are, respectively,

$$
\begin{equation*}
n_{\varepsilon}(y)=\frac{(1-\varepsilon \rho)(y-\nu)}{1-2 \nu+\varepsilon \rho(1-2 y)}, \quad n_{\varepsilon}^{\prime}(y)=\frac{\left(1-\rho^{2}\right)(1-2 \nu)}{(1-2 \nu+\varepsilon \rho(1-2 y))^{2}} \tag{IA.8}
\end{equation*}
$$

The inverse functions n_{ε} are increasing and bijective between $(\nu, 1-\nu)$ and (0,1). Each of the functions m_{ε} or n_{ε} takes the interval $\left[x_{-}, x_{+}\right]$into itself.

Proof. See Section 2.3 of this Internet Appendix.
To understand why the image of m_{ε} is in $(\nu, 1-\nu)$, we provide intuition why $m_{\varepsilon}(x)>\nu$ for x very close to 0 . First, note that Proposition IA. 1 implies that the public mean evolves according to $\mu_{t+1}=m_{\varepsilon}\left(\mu_{t}\right)$, with $\varepsilon=+1$ after a buy order or $\varepsilon=-1$ after a sell order. Thus,
even if μ_{t} is very close to 0 , with probability ν the fundamental value at $t+1$ switches from 0 to 1 , hence we expect μ_{t+1} to be larger than ν.

The stationary density essentially describes the long run distribution of μ_{t}, and thus we are interested in the properties of sequences of the form $m_{\varepsilon_{1}}\left(m_{\varepsilon_{2}}\left(\cdots m_{\varepsilon_{t}}\left(\mu_{0}\right) \cdots\right)\right)$ for very large t. But the image of m_{ε} is $(\nu, 1-\nu)$, hence the support of the stationary densities λ_{0} and λ_{1} must be included in $(\nu, 1-\nu)$. As $m_{+}>m_{-}$on $(0,1)$, the support of λ_{0} and λ_{1} must be also included in $\left(m_{-}(\nu), m_{+}(1-\nu)\right)$. Repeating this argument after a sufficiently large sequence of m_{ε}, since m_{ε} has a unique point x_{ε} it follows that the support of λ_{0} and λ_{1} must be included in $\left[x_{-}, x_{+}\right]$. Proposition IA. 2 shows that this is indeed the case.

Proposition IA.2. Let $\theta=\frac{1}{2}$, and let λ_{0} and λ_{1} be two two functions defined on $\left[x_{-}, x_{+}\right]$ and extended by 0 elsewhere on $(0,1)$ that satisfy the system:

$$
\begin{align*}
\lambda_{0}(y)= & (1-\nu) \frac{1-\rho}{2} \lambda_{0}\left(n_{+}(y)\right) n_{+}^{\prime}(y)+(1-\nu) \frac{1+\rho}{2} \lambda_{0}\left(n_{-}(y)\right) n_{-}^{\prime}(y) \\
& +\nu \frac{1+\rho}{2} \lambda_{1}\left(n_{+}(y)\right) n_{+}^{\prime}(y)+\nu \frac{1-\rho}{2} \lambda_{1}\left(n_{-}(y)\right) n_{-}^{\prime}(y) \\
\lambda_{1}(y)= & \nu \frac{1-\rho}{2} \lambda_{0}\left(n_{+}(y)\right) n_{+}^{\prime}(y)+\nu \frac{1+\rho}{2} \lambda_{0}\left(n_{-}(y)\right) n_{-}^{\prime}(y) \tag{IA.9}\\
& +(1-\nu) \frac{1+\rho}{2} \lambda_{1}\left(n_{+}(y)\right) n_{-}^{\prime}(y)+(1-\nu) \frac{1-\rho}{2} \lambda_{1}\left(n_{-}(y)\right) n_{-}^{\prime}(y)
\end{align*}
$$

Then, $\left(\theta, \lambda_{0}, \lambda_{1}\right)$ constitute a stationary density of the model.
Proof. See Section 2.3 of this Internet Appendix.
Proposition IA. 2 shows that the existence of the stationary density reduces to a functional system of equations that can be solved numerically. This can be done by starting with arbitrary densities λ_{0} and λ_{1}, and iterating the equations in (IA.9) until convergence is achieved. Because of symmetry, we expect that $\lambda_{1}(y)=\lambda_{0}(1-y)$. It turns out that the cumulative density $\Lambda_{i}(y)=\int_{0}^{y} \lambda_{i}(u) \mathrm{d} u, i=1,2$, satisfies a simpler equation, which is the same as (IA.9) but with no derivative of n_{ε} in the formula (see equation (IA. 19 below). Thus, we work directly to obtain Λ_{0}, and then compute λ_{0} as its numerical derivative. ${ }^{6}$

[^2]
Figure IA.1: bid-ask Spread with Switching Value.

This figure shows the average bid-ask spread, computed using the stationary density, against the fraction of informed trading (ρ), for two values of the switching probability parameter $\nu \in\{0.01,0.02\}$.

Figure IA. 1 computes the average bid-ask spread as a function of the fraction of informed trading ρ. For each value of ρ, we compute the stationary density using the numerical method described above, and then compute the average bid-ask spread using the weights given by the stationary density: $s_{\text {ave }}=\int_{0}^{1} s(x) \lambda_{0}(x) \mathrm{d} x$ (by symmetry, the same result is produced if we use λ_{1} instead). We do not use values of ρ above 0.6 as the numerical procedure does not work well in that case (see Footnote 6).

As values for the switching parameter we choose $\nu \in\{0.01,0.02\}$. We are interested in small values of ν relative to ρ for two reasons. First, it is more realistic to assume that the value does not change very frequently. Second, one of the goals of this exercise is to compare the effect of informed trading in the switching-value model and compare it with the diffusing-value model. But when ν is large (relative to ρ), the main uncertainty about the fundamental value in the switching-value model arises from the value frequently switching
between 0 and 1, and not so much from the action of informed traders. In particular, in the diffusing-value model the public volatility depends strongly on ρ, while this dependence is small in the switching-value model when ν is large.

By inspecting Figure IA. 1 we see that the average bid-ask spread increases with ρ, but also that the slope becomes less steep for larger values of ρ. The reason is that the dynamic efficiency effect (which in the diffusing-value model exactly cancels the adverse selection effect) here is dampened by the constraint that the value be only 0 or 1 . Indeed, when ρ is low we normally would expect very imprecise knowledge of the dealer, but this imprecision is not allowed to go above 1. Nevertheless, when ρ is large, the dynamic efficiency effect becomes stronger, and as a result the dependence of the average bid-ask spread on ρ is weaker, and the equilibrium approaches the one in the diffusing-value model where the average bid-ask spread is independent of ρ.

2.3 Proofs

Proof of Proposition IA.1. The transition density is binomial: for all $v \in\{0,1\}$, we have:

$$
\begin{equation*}
f_{t}(w, v)=(1-\nu) \mathbf{1}_{w=v}+\nu \mathbf{1}_{w \neq v} \tag{IA.10}
\end{equation*}
$$

Next, we describe the density $g_{t}(a, v)=\mathrm{P}\left(a_{t}=a \mid v_{t}=v\right)$ which is used in equation (IA.1). ${ }^{7}$ Suppose that $A_{t}, B_{t} \in(0,1)$. Then, if $v \in\{0,1\}$ the condition $v>A_{t}$ is equivalent to $v=1$, and the condition $v<B_{t}$ is equivalent to $v=0$. We compute:

$$
\begin{equation*}
g_{t}(\mathrm{~B}, v)=\rho \mathbf{1}_{v=1}+(1-\rho) \frac{1}{2}, \quad g_{t}(\mathrm{~S}, v)=\rho \mathbf{1}_{v=0}+(1-\rho) \frac{1}{2} \tag{IA.11}
\end{equation*}
$$

[^3]Suppose the public density $\phi_{t}(v)$ is binomial with coefficient μ_{t}. As in equation (IA.1), the posterior density of v_{t} conditional on the order $\mathcal{O}_{t} \in\{\mathrm{~B}, \mathrm{~S}\}$ satisfies:

$$
\begin{align*}
& \psi_{t}(v \mid \mathrm{B})=\frac{\left(\rho \mathbf{1}_{v>A_{t}}+\frac{1-\rho}{2}\right) \cdot \phi_{t}(v)}{\int_{v}\left(\rho \mathbf{1}_{v>A_{t}}+\frac{1-\rho}{2}\right) \cdot \phi_{t}(v)}=\frac{\left(\rho \mathbf{1}_{v=1}+\frac{1-\rho}{2}\right) \cdot\left(\left(1-\mu_{t}\right) \mathbf{1}_{v=0}+\mu_{t} \mathbf{1}_{v=1}\right)}{\frac{1-\rho}{2}\left(1-\mu_{t}\right)+\frac{1+\rho}{2} \mu_{t}}, \tag{IA.12}\\
& \psi_{t}(v, \mathrm{~S})=\frac{\left(\rho \mathbf{1}_{v<B_{t}}+\frac{1-\rho}{2}\right) \cdot \phi_{t}(v)}{\int_{v}\left(\rho \mathbf{1}_{v<B_{t}}+\frac{1-\rho}{2}\right) \cdot \phi_{t}(v)}=\frac{\left(\rho \mathbf{1}_{v=0}+\frac{1-\rho}{2}\right) \cdot\left(\left(1-\mu_{t}\right) \mathbf{1}_{v=0}+\mu_{t} \mathbf{1}_{v=1}\right)}{\frac{1+\rho}{2}\left(1-\mu_{t}\right)+\frac{1-\rho}{2} \mu_{t}} .
\end{align*}
$$

We now compute the posterior public density $\phi_{t+1}\left(w \mid \mathcal{O}_{t}\right)=\int_{v} f_{t}(w, v) \cdot \psi_{t}\left(v \mid \mathcal{O}_{t}\right)$:

$$
\begin{align*}
\phi_{t+1}(w \mid \mathrm{B}) & =\sum_{v \in\{0,1\}}\left((1-\nu) \mathbf{1}_{w=v}+\nu \mathbf{1}_{w \neq v}\right) \cdot \frac{\left(\rho \mathbf{1}_{v=1}+\frac{1-\rho}{2}\right) \cdot\left(\left(1-\mu_{t}\right) \mathbf{1}_{v=0}+\mu_{t} \mathbf{1}_{v=1}\right)}{\frac{1-\rho}{2}+\rho \mu_{t}} \\
\phi_{t+1}(w \mid \mathrm{S}) & =\sum_{v \in\{0,1\}}\left((1-\nu) \mathbf{1}_{w=v}+\nu \mathbf{1}_{w \neq v}\right) \cdot \frac{\left(\rho \mathbf{1}_{v=0}+\frac{1-\rho}{2}\right) \cdot\left(\left(1-\mu_{t}\right) \mathbf{1}_{v=0}+\mu_{t} \mathbf{1}_{v=1}\right)}{\frac{1+\rho}{2}-\rho \mu_{t}} \tag{IA.13}
\end{align*}
$$

As $\phi_{t+1}(w \mid \mathrm{B})$ is a density, we have $\phi_{t+1}(w=1 \mid \mathrm{B})+\phi_{t+1}(w=0 \mid \mathrm{B})=1$, and therefore we only need to compute:

$$
\begin{equation*}
\phi_{t+1}(w=1 \mid \mathrm{B})=\nu \cdot \frac{\frac{1-\rho}{2}\left(1-\mu_{t}\right)}{\frac{1-\rho}{2}+\rho \mu_{t}}+(1-\nu) \cdot \frac{\frac{1+\rho}{2} \mu_{t}}{\frac{1-\rho}{2}+\rho \mu_{t}} . \tag{IA.14}
\end{equation*}
$$

Similarly, for $\phi_{t+1}(w \mid \mathrm{S})$ we only need to compute:

$$
\begin{equation*}
\phi_{t+1}(w=1 \mid \mathbf{S})=\nu \cdot \frac{\frac{1+\rho}{2}\left(1-\mu_{t}\right)}{\frac{1+\rho}{2}-\rho \mu_{t}}+(1-\nu) \cdot \frac{\frac{1-\rho}{2} \mu_{t}}{\frac{1+\rho}{2}-\rho \mu_{t}} \tag{IA.15}
\end{equation*}
$$

The density $\phi_{t+1}\left(\cdot \mid \mathcal{O}_{t}\right)$ is binomial, hence its mean $\mu_{t+1, \mathcal{O}_{t}}$ is simply $\phi_{t+1}\left(w=1 \mid \mathcal{O}_{t}\right)$. Thus, if we rewrite the formulas for $\phi_{t+1}(w=1 \mid \mathrm{B})$ and $\phi_{t+1}(w=1 \mid \mathrm{S})$, we obtain:

$$
\begin{equation*}
\mu_{t+1, \mathrm{~B}}=\frac{\nu \frac{1-\rho}{2}\left(1-\mu_{t}\right)+(1-\nu) \frac{1+\rho}{2} \mu_{t}}{\frac{1-\rho}{2}+\rho \mu_{t}}, \quad \mu_{t+1, \mathrm{~S}}=\frac{\nu \frac{1+\rho}{2}\left(1-\mu_{t}\right)+(1-\nu) \frac{1-\rho}{2} \mu_{t}}{\frac{1+\rho}{2}-\rho \mu_{t}} \tag{IA.16}
\end{equation*}
$$

The dealer's pricing conditions are that $A_{t}=\mu_{t+1, \mathrm{~B}}$ and $B_{t}=\mu_{t+1, \mathrm{~S}}$, which proves the equations in (IA.3). Using these equations, one verifies directly that the difference $s_{t}=A_{t}-B_{t}$ satisfies (IA.4).

Proof of Lemma IA.1. The derivative of m_{ε} is $m_{\varepsilon}^{\prime}(x)=\frac{\left(1-\rho^{2}\right)(1-2 \nu)}{(1-\varepsilon \rho+2 \varepsilon \rho x)^{2}}>0$, and one checks that $m_{\varepsilon}(0)=\nu$ and $m_{\varepsilon}(1)=1-\nu$. Hence, m_{ε} is increasing and bijective between $(0,1)$ and $(\nu, 1-\nu)$. We compute the difference $m_{+}(x)-m_{-}(x)=\rho(1-2 \nu) \frac{1-(1-2 x)^{2}}{1-\rho^{2}(1-2 x)^{2}}>0$, hence $m_{+}(x)>m_{-}(x)$ for all $x \in(0,1)$. Also, $x_{+}-x_{-}=\frac{1-2 \nu}{\left(1-2 \nu+\frac{\nu^{2}}{\rho^{2}}\right)^{1 / 2}+\frac{\nu}{\rho}}$, which is increasing in ρ.

We compute $m_{\varepsilon}(x)-x=\frac{\nu(1-\varepsilon \rho)+2(\varepsilon \rho-\nu) x-2 \varepsilon \rho x^{2}}{1-\varepsilon \rho+2 \varepsilon \rho x}$. Hence, $m_{+}(x)=x$ has two solutions $x=\frac{\rho-\nu \pm \sqrt{\Delta}}{2 \rho}$, with $\Delta=\rho^{2}(1-2 \nu)+\nu^{2}$. Similarly, $m_{-}(x)=x$ has two solutions: $x=\frac{\rho+\nu \pm \sqrt{\Delta}}{2 \rho}$. We see that $x_{+}+x_{-}=\frac{\rho-\nu+\sqrt{\Delta}}{2 \rho}+\frac{\rho+\nu-\sqrt{\Delta}}{2 \rho}=1$, and one verifies that $x_{+}, x_{-}>0, \frac{\rho-\nu-\sqrt{\Delta}}{2 \rho}<0$, and $\frac{\rho+\nu+\sqrt{\Delta}}{2 \rho}>1$. This proves that x_{ε} is the unique fixed point of m_{ε} in $(0,1)$. Also, as $m_{\varepsilon}(0)=\nu>0$, we have that $m_{\varepsilon}(x)-x$ is positive on $\left(0, x_{\varepsilon}\right)$ and negative on $\left(x_{\varepsilon}, 1\right)$.

Consider the sequence given by $x_{k+1}=m_{\varepsilon}\left(x_{k}\right)$ for some value $x_{0}>x_{\varepsilon}$. As m_{ε} is increasing and x_{ε} is a fixed point of m_{ε}, we have $x_{1}=m_{\varepsilon}\left(x_{0}\right)>x_{\varepsilon}$, and by induction $x_{k}>x_{\varepsilon}$ for all n. As $m_{\varepsilon}(x)-x$ is negative on $\left(x_{\varepsilon}, 1\right)$, it follows that $x_{k+1}-x_{k}<0$ for all n, that is, the sequence x_{k} is decreasing. Thus, x_{k} is convergent and its limit is x_{ε}. A similar argument works for the case when $x_{0}<x_{\varepsilon}$, and it follows that x_{k} converges to x_{ε} for all initial values $x_{0} \in(0,1)$.

The computation of the inverse function n_{ε} and its derivative is straightforward, as is the fact that n_{ε} is increasing and bijective between $(\nu, 1-\nu)$ and $(0,1)$. Finally, we have $x_{+}=m_{+}\left(x_{+}\right)>m_{+}\left(x_{-}\right)>m_{-}\left(x_{-}\right)=x_{-}$and $x_{+}=m_{+}\left(x_{+}\right)>m_{-}\left(x_{+}\right)>m_{-}\left(x_{-}\right)=x_{-}$, which implies that $m_{\varepsilon}\left(\left[x_{-}, x_{+}\right]\right) \subseteq\left[x_{-}, x_{+}\right]$, and the same argument works for the inverse function n_{ε}.

Proof of Proposition IA.2. The stationary density is determined by one number: $\theta=$ $\mathrm{P}\left(v_{t}=1\right)$, and two densities: $\lambda_{0}(x)=\mathrm{P}\left(\mu_{t}=x \mid v_{t}=0\right)$ and $\lambda_{1}(x)=\mathrm{P}\left(\mu_{t}=x \mid v_{t}=1\right)$. To find θ, we impose the stationarity condition $\theta=\mathrm{P}\left(v_{t+1}=1\right)$. Recall from (IA.10) that the transition density from v_{t} to v_{t+1} is $f_{t}(w, v)=\mathrm{P}\left(v_{t+1}=w \mid v_{t}=v\right)=(1-\nu) \mathbf{1}_{w=v}+\nu \mathbf{1}_{w \neq v}$. We compute $\mathrm{P}\left(v_{t+1}=1\right)=\sum_{v \in\{0,1\}} \mathrm{P}\left(v_{t+1}=1 \mid v_{t}=v\right) \mathrm{P}\left(v_{t}=v\right)=\nu(1-\theta)+(1-\nu) \theta=$ $\theta+\nu(1-2 \theta)$. As this last term is equal to θ, the unique solution is $\theta=\frac{1}{2}$. This equality also implies that $\lambda_{0}(x) \mathrm{d} x=\mathrm{P}\left(\mu_{t}=x, v_{t}=0\right) / P\left(v_{t}=0\right)=2 \mathrm{P}\left(v_{t}=0, \mu_{t}=x\right)$, hence $\mathrm{P}\left(v_{t}=0, \mu_{t}=x\right)=\frac{1}{2} \lambda_{0}(x) \mathrm{d} x$. Similarly, $\mathrm{P}\left(v_{t}=1, \mu_{t}=x\right)=\frac{1}{2} \lambda_{1}(x) \mathrm{d} x$.

Recall that the state variable is the pair $K_{t}=\left(v_{t}, \mu_{t}\right)$. The stationarity condition requires
that $\mathrm{P}\left(K_{t+1}=k^{\prime}\right)=\int_{k} \mathrm{P}\left(K_{t+1}=k^{\prime} \mid K_{t}=k\right) \mathrm{P}\left(K_{t}=k\right)$, therefore:

$$
\begin{align*}
\frac{1}{2} \lambda_{0}(y) \mathrm{d} y & =\int_{\substack{v \in\{0,1\} \\
x \in(0,1)}} \mathrm{P}\left(v_{t+1}=0, \mu_{t+1}=y \mid v_{t}=v, \mu_{t}=x\right) \mathrm{P}\left(v_{t}=v, \mu_{t}=x\right) \tag{IA.17}\\
& =\int_{x \in(0,1)} \quad \begin{array}{l}
\mathrm{P}\left(v_{t+1}=0, \mu_{t+1}=y \mid v_{t}=0, \mu_{t}=x\right) \frac{1}{2} \lambda_{0}(x) \mathrm{d} x \\
\end{array}+\mathrm{P}\left(v_{t+1}=0, \mu_{t+1}=y \mid v_{t}=1, \mu_{t}=x\right) \frac{1}{2} \lambda_{1}(x) \mathrm{d} x
\end{align*}
$$

From (IA.11), the density $g_{t}\left(\mathcal{O}_{t}, v, \mu_{t}\right)=\mathrm{P}\left(\mathcal{O}_{t} \mid v_{t}=v, \mu_{t}=x\right)$ does not depend on μ_{t} and satisfies $g_{t}(\mathrm{~B}, v)=\rho \mathbf{1}_{v=1}+(1-\rho) \frac{1}{2}$ and $g_{t}(\mathrm{~S}, v)=\rho \mathbf{1}_{v=0}+(1-\rho) \frac{1}{2}$. In general, $\mathrm{P}\left(v_{t+1}=\right.$ $\left.w, \mu_{t+1}=y \mid v_{t}=v, \mu_{t}=x\right)=\int_{\mathcal{O}_{t} \in\{\mathrm{~B}, \mathrm{~S}\}} \mathrm{P}\left(v_{t+1}=w, \mu_{t+1}=y \mid \mathcal{O}_{t}, v_{t}=v, \mu_{t}=x\right) g_{t}\left(\mathcal{O}_{t}, v\right)$. From (IA.16), we have $\mu_{t+1, \mathrm{~B}}=m_{+}\left(\mu_{t}\right)$ and $\mu_{t+1, \mathrm{~S}}=m_{-}\left(\mu_{t}\right)$, where m_{+}and m_{-}are defined in (IA.6). Recall that n_{+}and n_{-}are the inverses of m_{+}and m_{-}, respectively. For $y \in(0,1)$ we compute:

$$
\begin{align*}
\lambda_{0}(y) \mathrm{d} y= & \int_{\substack{x \in(0,1) \\
\mathcal{O}_{0} \in\{\mathrm{~B}, \mathrm{~S}\}}}+\mathrm{P}\left(v_{t+1}=0, m_{\mathcal{O}_{t}}(x)=y\left|\mathcal{O}_{t+1}, v_{t}=0, m_{\mathcal{O}_{t}}(x)=y\right| \mathcal{O}_{t}, v_{t}=1, \mu_{t}=x\right) g_{t}\left(\mathcal{O}_{t}, v_{t}=0\right) \lambda_{0}(x) \mathrm{d} x \\
= & \int_{x \in(0,1)} \mathrm{P}\left(v_{t+1}=0 \mid v_{t}=0\right) \mathrm{P}\left(m_{+}(x)=y\right) g_{t}\left(\mathrm{~B}, v_{t}=0\right) \lambda_{0}(x) \mathrm{d} x \\
& +\int_{x \in(0,1)} \mathrm{P}\left(v_{t+1}=0 \mid v_{t}=0\right) \mathrm{P}\left(m_{-}(x)=y\right) g_{t}\left(\mathrm{~S}, v_{t}=0\right) \lambda_{0}(x) \mathrm{d} x \\
& +\int_{x \in(0,1)} \mathrm{P}\left(v_{t+1}=0 \mid v_{t}=1\right) \mathrm{P}\left(m_{+}(x)=y\right) g_{t}\left(\mathrm{~B}, v_{t}=1\right) \lambda_{1}(x) \mathrm{d} x \\
& +\int_{x \in(0,1)} \mathrm{P}\left(v_{t+1}=0 \mid v_{t}=1\right) \mathrm{P}\left(m_{-}(x)=y\right) g_{t}\left(\mathrm{~S}, v_{t}=1\right) \lambda_{1}(x) \mathrm{d} x \\
= & (1-\nu) \frac{1-\rho}{2} \lambda_{0}\left(n_{+}(y)\right) \mathrm{d}\left(n_{+}(y)\right)+(1-\nu) \frac{1+\rho}{2} \lambda_{0}\left(n_{-}(y)\right) \mathrm{d}\left(n_{-}(y)\right) \\
& \left.\left.+\nu \frac{1+\rho}{2} \lambda_{1}\left(n_{+}(y)\right)\right) \mathrm{d}\left(n_{+}(y)\right)+\nu \frac{1-\rho}{2} \lambda_{1}\left(n_{-}(y)\right)\right) \mathrm{d}\left(n_{-}(y)\right), \tag{IA.18}
\end{align*}
$$

where by convention $\lambda_{0,1}\left(n_{\varepsilon}(y)\right)$ is set to 0 when y is outside of $(\nu, 1-\nu)$, the definition interval for n_{ε}. A similar computation produces the recursive equation for $\lambda_{1}(y)$. Putting together the equations for λ_{0} and λ_{1}, we get (IA.9). We also obtain that $\lambda_{0}(y)=\lambda_{1}(y)=0$ when y is outside of $(\nu, 1-\nu)$.

It remains to prove that the support of λ_{0} and λ_{1} is included in the interval $\left[x_{-}, x_{+}\right]$,
where x_{ε} is the unique fixed point of m_{ε} in $(0,1)$. Consider the sequence a_{k} defined by $a_{0}=0$ and $a_{k+1}=m_{-}\left(a_{k}\right)$, and the sequence b_{k} defined by $b_{0}=1$ and $b_{k+1}=m_{+}\left(b_{k}\right)$. From the proof of Lemma IA.1, we know that the a_{k} is increasing and converges to x_{-}, and b_{k} is decreasing and converges to x_{+}. Note that $a_{1}=\nu$ and $b_{1}=1-\nu$. We have proved above that $\lambda_{i}(y)=0$ when y is outside of $\left(a_{1}, b_{1}\right)$ and $i \in\{0,1\}$. Suppose we have already proved that $\lambda_{i}(y)=0$ when y is outside of $\left(a_{k}, b_{k}\right)$ for some integer $k \geq 1$. In the induction step, we show that $\lambda_{i}(y)=0$ when $y \in\left(a_{k}, a_{k+1}\right]$ (and a similar argument works for $\left.y \in\left[b_{k+1}, b_{k}\right)\right)$. We have $n_{-}(y) \in\left(n_{-}\left(a_{k}\right), n_{-}\left(a_{k+1}\right)\right]=\left(a_{k-1}, a_{k}\right]$, hence $n_{-}(y) \leq a_{k}$. But $n_{+}(y)<n_{-}(y)$, hence $n_{+}(y) \leq a_{k}$ as well. ${ }^{8}$ As $n_{\varepsilon}(y)$ lie outside $\left(a_{k}, b_{k}\right)$ for $\varepsilon \in\{-1,+1\}$, we have $\lambda_{i}\left(n_{\varepsilon}(y)\right)=0$ for y outside of $\left(a_{k+1}, b_{k+1}\right)$. Thus, equation (IA.18) shows that $\lambda_{i}(y)=0$ for y outside of $\left(a_{k+1}, b_{k+1}\right)$, and the induction step is finished. Since the intersection of the intervals $\left(a_{k}, b_{k}\right)$ is $\left[x_{-}, x_{+}\right]$, it follows that $\lambda_{i}(y)=0$ for y outside $\left[x_{-}, x_{+}\right]$.

Note that by integrating equation (IA.18) from 0 to y, we obtain the following equation for the cumulative stationary density $\Lambda_{i}(y)=\int_{0}^{y} \lambda_{i}(u) \mathrm{d} u, i \in\{1,2\}$:

$$
\begin{align*}
\Lambda_{0}(y)= & (1-\nu) \frac{1-\rho}{2} \Lambda_{0}\left(n_{+}(y)\right)+(1-\nu) \frac{1+\rho}{2} \Lambda_{0}\left(n_{-}(y)\right) \tag{IA.19}\\
& +\nu \frac{1+\rho}{2} \Lambda_{1}\left(n_{+}(y)\right)+\nu \frac{1-\rho}{2} \Lambda_{1}\left(n_{-}(y)\right)
\end{align*}
$$

and a similar equation for Λ_{1}.

[^4]
[^0]: ${ }^{1}$ As in the paper, we assume that all densities are rapidly decaying at infinity.
 ${ }^{2}$ In the paper, the actions are either a buy or a sell order, that is, $\mathcal{A}=\{B, S\}$. In models of limit order markets, the actions are elements of the set of possible orders, $\mathcal{A}=\{\mathrm{BMO}, \mathrm{BLO}, \mathrm{SLO}, \mathrm{SMO}, \mathrm{NO}\}$.
 ${ }^{3}$ Note that the action a_{t} typically depends also on the dealer's prices, which in turn depend on the public density ϕ_{t}. For instance, in the paper an informed trader who observes v_{t} chooses a buy order if v_{t} is above the ask A_{t}, but the ask itself depends on the public density ϕ_{t}.

[^1]: ${ }^{4}$ We avoid the case $\nu \in\left(\frac{1}{2}, 1\right)$ as less realistic, as it would mean that in each period the value has more than 50% probability of shifting from 0 to 1 or vice versa.
 ${ }^{5}$ Here v_{t} cannot lie in between the bid and the ask: the value is either 0 or 1 , while the ask and bid must lie between these two extreme values.

[^2]: ${ }^{6}$ To obtain better numerical results, we smooth the resulting cumulative density Λ_{0} by using a moving average with parameter $N / 10$, where N is the number of division points (we choose $N=10^{6}$). The results are qualitatively similar when we do not smooth the results, but then the density λ_{0} appears quite discontinuous, especially since for large values of ρ the derivative of λ_{0} at x_{+}and x_{-}approaches infinity.

[^3]: ${ }^{7}$ Technically, g_{t} should also depend on the public density ϕ_{t}, which in the current setup is summarized by its mean μ_{t}. But as we see in (IA.11) below, $g_{t}(a, v)$ does not depend on μ_{t}.

[^4]: ${ }^{8}$ As $m_{+}(x)>m_{-}(x)$ for all $x \in(0,1)$, the inverse functions satisfy the opposite inequality: $n_{+}(y)<n_{-}(y)$ for all $y \in(\nu, 1-\nu)$.

