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1 General Dealer Models

We consider a setup that generalizes that in Section 2 in the paper. There is a single risky

asset, and time is discrete and infinite. The asset value (or fundamental value) vt follows a

general Markov process, with transition density1

ft(w, v) = P(vt+1 = w | vt = v), t = 0, 1, 2, . . .

In the paper, vt follows a random walk: vt+1 = vt + εt+1, and hence the transition density is

ft(w, v) = N (w − v, 0, σv).

The dealer’s uncertainty about the fundamental value is summarized by the public density,

which is the density of vt just before trading at t, conditional on all the information available

at t, that is, the sequence of actions observed by the dealer at 0, 1, . . . , t − 1. Denote by

φt(·) the public density, and let µt be its mean (called the public mean) and σt its standard

deviation (called the public volatility).

At each t = 0, 1, 2, . . . the dealer observes an action at that belongs to a general action

space A.2 We assume that the action at depends on the asset value vt and on some random

shock ηt, and thus it is a mapping that takes (vt, ηt) to an element of A. Let gt(at, vt, ηt) be

the density of at conditional on vt and a random shock ηt, where we omit the dependence of

at on φt (or its moments).3

1As in the paper, we assume that all densities are rapidly decaying at infinity.
2In the paper, the actions are either a buy or a sell order, that is, A = {B,S}. In models of limit order

markets, the actions are elements of the set of possible orders, A = {BMO,BLO,SLO,SMO,NO}.
3Note that the action at typically depends also on the dealer’s prices, which in turn depend on the public

density φt. For instance, in the paper an informed trader who observes vt chooses a buy order if vt is above
the ask At, but the ask itself depends on the public density φt.
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Denote by ψt(v|a) = P(vt = v | at = a) the posterior density of vt after observing at.

Using Bayes’ rule, we compute:

ψt(v|a) =
P(vt = v, at = a)

P(at = a)
=

P(at = a | vt = v) · P(vt = v)∫
v
P(at = a | vt = v) · P(vt = v)

=

∫
η
P(at = a | vt = v, ηt = η) · P(vt = v)∫

v,η
P(at = a | vt = v, ηt = η) · P(vt = v)

=

∫
η
gt(a, v, η) · φt(v)∫

v,η
gt(a, v, η) · φt(v)

.

(IA.1)

We want to compute the posterior public density φt+1(·), which is the density of vt+1 just

before trading at t + 1. Suppose the action at = a was observed at t. Then the posterior

public density at t+ 1 is φt+1(w|a) = P(vt+1 = w | at = a), which is equal to:

φt+1(w|a) =

∫
v

P(vt+1 = w | vt = v, at = a) · P(vt = v | at = a)

=

∫
v

P(vt+1 = w | vt = v) · P(vt = v | at = a) =

∫
v

ft(w, v) · ψt(v, a)

=

∫
v,η
ft(w, v) · gt(a, v, η) · φt(v)∫
v,η
gt(a, v, η) · φt(v)

.

(IA.2)

Note that in the second equation in (IA.2) we are implicitly assuming that the evolution of

vt is independent on the action at undertaken at t.

Thus, we can consider the whole evolution of the game as a Markov chain with state

variable (vt, φt). Note that the transition density ft(w, v), the action density gt(at, vt, ηt), and

the update equation (IA.2) together describe the evolution of this Markov chain.

A natural concept associated to a Markov chain is the stationary density, which describes

how likely it is for each state to eventually occur in the game. This is a well defined concept in

most cases, except when the fundamental value is not stationary, e.g., if vt follows a random

walk. In that case, nevertheless, one can show that it is still possible to define a stationary

density as long as one does not require it to integrate to 1 over v. But when the fundamental

value follows a stationary process, the construction of the stationary density is relatively

straightforward. In Section 2 of this Internet Appendix we consider a stationary setup in

which the fundamental value switches between two values according to a Poisson process. In
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that case, we show that the construction of the stationary density reduces to a functional

equation, and we show numerically how to solve that equation.

2 Dealer Model with Switching Value

2.1 Environment

The setup is as in Section 2 in the paper, except that the fundamental value is no longer

following a random walk, but switches randomly between 0 and 1 with a fixed probability

ν ∈ (0, 1
2
).4 At each t = 0, 1, . . . a trader is selected at random from a population with a

fraction ρ of informed traders and a fraction 1− ρ of uninformed traders. The trader can buy

or sell at most one unit of the asset, and trading takes place at the quotes set by a competitive

risk-neutral dealer: the ask At and the bid Bt. If the trader at t is uninformed, then he is

equally likely to buy or to sell. If the trader at t is informed and observes the value vt, then

she submits either (i) buy order if vt > At, (ii) sell order if vt < Bt.
5

2.2 Equilibrium

The advantage of this setup is that densities on {0, 1} are binomial, and can therefore be

described by a single number, µ ∈ [0, 1], which is the probability that the value is 1. Thus, if

we use our previous notation, the public density φt can be described simply by its mean µt.

Proposition IA.1 shows how µt evolves over time, and how the ask and bid are determined.

Proposition IA.1. Suppose the public density before trading at t has mean µt ∈ (0, 1). Then

at t the ask is At = µt+1,B and the bid is Bt = µt+1,S, where µt+1,Ot is the mean of the public

4We avoid the case ν ∈ ( 1
2 , 1) as less realistic, as it would mean that in each period the value has more

than 50% probability of shifting from 0 to 1 or vice versa.
5Here vt cannot lie in between the bid and the ask: the value is either 0 or 1, while the ask and bid must

lie between these two extreme values.
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density at t+ 1 after an order Ot ∈ {B, S}, and these numbers satisfy:

At = µt+1,B =
ν 1−ρ

2
(1− µt) + (1− ν)1+ρ

2
µt

1−ρ
2

+ ρµt
,

Bt = µt+1,S =
ν 1+ρ

2
(1− µt) + (1− ν)1−ρ

2
µt

1+ρ
2
− ρµt

.

(IA.3)

The bid-ask spread st = At −Bt satisfies:

st = ρ(1− 2ν)
1
4
−
(

1
2
− µt

)2

1
4
− ρ2

(
1
2
− µt

)2 . (IA.4)

Proof. See Section 2.3 of this Internet Appendix.

Note that as a function of µt the bid-ask spread st is symmetric around µt = 1
2

and has

an inverted U-shape. It attains its maximum value ρ(1− 2ν) when µt = 1
2
, and it approaches

0 when µt is either 0 or 1. Also, the bid-ask spread is increasing in ρ for a fixed value of µt.

But this does not mean that the average bid-ask spread is also increasing in ρ. In order to

compute the average bid-ask spread, one must let µt evolve over time. When ρ is larger, one

expects µt to be more often closer to either 0 or 1 (the possible values of vt) due to the faster

learning by the dealer; and when µt is closer to 0 or 1, the bid-ask spread is closer to 0. Thus,

it is not obvious ex ante how the average bid-ask spread should depend on ρ. To settle this

issue, we need to determine how µt evolves over time and how often it reaches certain values.

The concept is that of the stationary density.

To formally determine the stationary density, we describe the evolution of the system as a

Markov process. The state is given by the pair (vt, µt) ∈ {0, 1} × (0, 1). The value vt evolves

by switching with probability ν from one value to the other. The mean µt evolves according

to the formulas (IA.3): if vt = 1, with probability ρ + 1−ρ
2

= 1+ρ
2

it becomes µt+1,B and with

probability 1−ρ
2

it becomes µt+1,S; if vt = 0, with probability 1−ρ
2

it becomes µt+1,B and with

probability 1+ρ
2

it becomes µt+1,B.

The stationary density is a triple (θ, λ0, λ1), where θ ∈ (0, 1) is a number, and λ0, λ1 are
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densities on (0, 1):

θ = P(vt = 1), λ0(x) = P(µt = x|vt = 0), λ1(x) = P(µt = x|vt = 1). (IA.5)

We show how to compute the stationary density. Let ε ∈ {+1,−1}. Define the functions m+

and m− for x ∈ (0, 1) by:

mε(x) =
ν 1−ερ

2
(1− x) + (1− ν)1+ερ

2
x

1−ερ
2

+ ερx
, ε ∈ {−1,+1}, (IA.6)

where for simplicity we denote m+ = m+1 and m− = m−1. Lemma IA.1 summarizes the

properties of mε.

Lemma IA.1. The functions m+ and m− are increasing and bijective between (0, 1) and

(ν, 1 − ν), and satisfy m+(x) > m−(x) for x ∈ (0, 1). Each mε has a unique fixed point

xε ∈ (0, 1), with:

x+ =
ρ− ν +

√
ρ2(1− 2ν) + ν2

2ρ
, x− =

ρ+ ν −
√
ρ2(1− 2ν) + ν2

2ρ
. (IA.7)

Moreover, x+ +x− = 1, and the difference x+−x− = (1−2ν)/
(
(1−2ν+ ν2

ρ2
)1/2 + ν

ρ

)
is positive

and increasing in ρ. For any x ∈ (0, 1), the sequence defined by x0 = x and xk+1 = mε(xk)

converges to xε. The inverse functions n+ and n− and their derivatives are, respectively,

nε(y) =
(1− ερ)(y − ν)

1− 2ν + ερ(1− 2y)
, n′ε(y) =

(1− ρ2)(1− 2ν)(
1− 2ν + ερ(1− 2y)

)2 . (IA.8)

The inverse functions nε are increasing and bijective between (ν, 1 − ν) and (0, 1). Each of

the functions mε or nε takes the interval [x−, x+] into itself.

Proof. See Section 2.3 of this Internet Appendix.

To understand why the image of mε is in (ν, 1− ν), we provide intuition why mε(x) > ν

for x very close to 0. First, note that Proposition IA.1 implies that the public mean evolves

according to µt+1 = mε(µt), with ε = +1 after a buy order or ε = −1 after a sell order. Thus,
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even if µt is very close to 0, with probability ν the fundamental value at t+ 1 switches from

0 to 1, hence we expect µt+1 to be larger than ν.

The stationary density essentially describes the long run distribution of µt, and thus we

are interested in the properties of sequences of the form mε1

(
mε2

(
· · ·mεt(µ0) · · ·

))
for very

large t. But the image of mε is (ν, 1 − ν), hence the support of the stationary densities λ0

and λ1 must be included in (ν, 1− ν). As m+ > m− on (0, 1), the support of λ0 and λ1 must

be also included in
(
m−(ν),m+(1 − ν)

)
. Repeating this argument after a sufficiently large

sequence of mε, since mε has a unique point xε it follows that the support of λ0 and λ1 must

be included in [x−, x+]. Proposition IA.2 shows that this is indeed the case.

Proposition IA.2. Let θ = 1
2
, and let λ0 and λ1 be two two functions defined on [x−, x+]

and extended by 0 elsewhere on (0, 1) that satisfy the system:

λ0(y) = (1− ν)
1− ρ

2
λ0

(
n+(y)

)
n′+(y) + (1− ν)

1 + ρ

2
λ0

(
n−(y)

)
n′−(y)

+ ν
1 + ρ

2
λ1

(
n+(y)

)
n′+(y) + ν

1− ρ
2

λ1

(
n−(y)

)
n′−(y),

λ1(y) = ν
1− ρ

2
λ0

(
n+(y)

)
n′+(y) + ν

1 + ρ

2
λ0

(
n−(y)

)
n′−(y)

+ (1− ν)
1 + ρ

2
λ1

(
n+(y)

)
n′−(y) + (1− ν)

1− ρ
2

λ1

(
n−(y)

)
n′−(y).

(IA.9)

Then, (θ, λ0, λ1) constitute a stationary density of the model.

Proof. See Section 2.3 of this Internet Appendix.

Proposition IA.2 shows that the existence of the stationary density reduces to a functional

system of equations that can be solved numerically. This can be done by starting with arbi-

trary densities λ0 and λ1, and iterating the equations in (IA.9) until convergence is achieved.

Because of symmetry, we expect that λ1(y) = λ0(1 − y). It turns out that the cumulative

density Λi(y) =
∫ y

0
λi(u)du, i = 1, 2, satisfies a simpler equation, which is the same as (IA.9)

but with no derivative of nε in the formula (see equation (IA.19 below). Thus, we work

directly to obtain Λ0, and then compute λ0 as its numerical derivative.6

6To obtain better numerical results, we smooth the resulting cumulative density Λ0 by using a moving
average with parameter N/10, where N is the number of division points (we choose N = 106). The results are
qualitatively similar when we do not smooth the results, but then the density λ0 appears quite discontinuous,
especially since for large values of ρ the derivative of λ0 at x+ and x− approaches infinity.
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Figure IA.1: bid-ask Spread with Switching Value.
This figure shows the average bid-ask spread, computed using the stationary density, against the frac-

tion of informed trading (ρ), for two values of the switching probability parameter ν ∈ {0.01, 0.02}.
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Figure IA.1 computes the average bid-ask spread as a function of the fraction of informed

trading ρ. For each value of ρ, we compute the stationary density using the numerical method

described above, and then compute the average bid-ask spread using the weights given by the

stationary density: save =
∫ 1

0
s(x)λ0(x)dx (by symmetry, the same result is produced if we

use λ1 instead). We do not use values of ρ above 0.6 as the numerical procedure does not

work well in that case (see Footnote 6).

As values for the switching parameter we choose ν ∈ {0.01, 0.02}. We are interested in

small values of ν relative to ρ for two reasons. First, it is more realistic to assume that

the value does not change very frequently. Second, one of the goals of this exercise is to

compare the effect of informed trading in the switching-value model and compare it with the

diffusing-value model. But when ν is large (relative to ρ), the main uncertainty about the

fundamental value in the switching-value model arises from the value frequently switching
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between 0 and 1, and not so much from the action of informed traders. In particular, in the

diffusing-value model the public volatility depends strongly on ρ, while this dependence is

small in the switching-value model when ν is large.

By inspecting Figure IA.1 we see that the average bid-ask spread increases with ρ, but

also that the slope becomes less steep for larger values of ρ. The reason is that the dynamic

efficiency effect (which in the diffusing-value model exactly cancels the adverse selection effect)

here is dampened by the constraint that the value be only 0 or 1. Indeed, when ρ is low we

normally would expect very imprecise knowledge of the dealer, but this imprecision is not

allowed to go above 1. Nevertheless, when ρ is large, the dynamic efficiency effect becomes

stronger, and as a result the dependence of the average bid-ask spread on ρ is weaker, and

the equilibrium approaches the one in the diffusing-value model where the average bid-ask

spread is independent of ρ.

2.3 Proofs

Proof of Proposition IA.1. The transition density is binomial: for all v ∈ {0, 1}, we have:

ft(w, v) = (1− ν)1w=v + ν1w 6=v. (IA.10)

Next, we describe the density gt(a, v) = P(at = a | vt = v) which is used in equation (IA.1).7

Suppose that At, Bt ∈ (0, 1). Then, if v ∈ {0, 1} the condition v > At is equivalent to v = 1,

and the condition v < Bt is equivalent to v = 0. We compute:

gt(B, v) = ρ1v=1 + (1− ρ)1
2
, gt(S, v) = ρ1v=0 + (1− ρ)1

2
. (IA.11)

7Technically, gt should also depend on the public density φt, which in the current setup is summarized by
its mean µt. But as we see in (IA.11) below, gt(a, v) does not depend on µt.
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Suppose the public density φt(v) is binomial with coefficient µt. As in equation (IA.1), the

posterior density of vt conditional on the order Ot ∈ {B, S} satisfies:

ψt(v|B) =

(
ρ1v>At + 1−ρ

2

)
· φt(v)∫

v

(
ρ1v>At + 1−ρ

2

)
· φt(v)

=

(
ρ1v=1 + 1−ρ

2

)
·
(
(1− µt)1v=0 + µt1v=1

)
1−ρ

2
(1− µt) + 1+ρ

2
µt

,

ψt(v, S) =

(
ρ1v<Bt + 1−ρ

2

)
· φt(v)∫

v

(
ρ1v<Bt + 1−ρ

2

)
· φt(v)

=

(
ρ1v=0 + 1−ρ

2

)
·
(
(1− µt)1v=0 + µt1v=1

)
1+ρ

2
(1− µt) + 1−ρ

2
µt

.

(IA.12)

We now compute the posterior public density φt+1(w|Ot) =
∫
v
ft(w, v) · ψt(v|Ot):

φt+1(w|B) =
∑

v∈{0,1}

(
(1− ν)1w=v + ν1w 6=v

)
·
(
ρ1v=1 + 1−ρ

2

)
·
(
(1− µt)1v=0 + µt1v=1

)
1−ρ

2
+ ρµt

,

φt+1(w|S) =
∑

v∈{0,1}

(
(1− ν)1w=v + ν1w 6=v

)
·
(
ρ1v=0 + 1−ρ

2

)
·
(
(1− µt)1v=0 + µt1v=1

)
1+ρ

2
− ρµt

.

(IA.13)

As φt+1(w|B) is a density, we have φt+1(w = 1|B) +φt+1(w = 0|B) = 1, and therefore we only

need to compute:

φt+1(w = 1|B) = ν ·
1−ρ

2
(1− µt)

1−ρ
2

+ ρµt
+ (1− ν) ·

1+ρ
2
µt

1−ρ
2

+ ρµt
. (IA.14)

Similarly, for φt+1(w|S) we only need to compute:

φt+1(w = 1|S) = ν ·
1+ρ

2
(1− µt)

1+ρ
2
− ρµt

+ (1− ν) ·
1−ρ

2
µt

1+ρ
2
− ρµt

. (IA.15)

The density φt+1(·|Ot) is binomial, hence its mean µt+1,Ot is simply φt+1(w = 1|Ot). Thus, if

we rewrite the formulas for φt+1(w = 1|B) and φt+1(w = 1|S), we obtain:

µt+1,B =
ν 1−ρ

2
(1− µt) + (1− ν)1+ρ

2
µt

1−ρ
2

+ ρµt
, µt+1,S =

ν 1+ρ
2

(1− µt) + (1− ν)1−ρ
2
µt

1+ρ
2
− ρµt

. (IA.16)

The dealer’s pricing conditions are that At = µt+1,B and Bt = µt+1,S, which proves the

equations in (IA.3). Using these equations, one verifies directly that the difference st = At−Bt

satisfies (IA.4).
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Proof of Lemma IA.1. The derivative of mε is m′ε(x) = (1−ρ2)(1−2ν)
(1−ερ+2ερx)2

> 0, and one checks

that mε(0) = ν and mε(1) = 1 − ν. Hence, mε is increasing and bijective between (0, 1)

and (ν, 1− ν). We compute the difference m+(x)−m−(x) = ρ(1− 2ν) 1−(1−2x)2

1−ρ2(1−2x)2
> 0, hence

m+(x) > m−(x) for all x ∈ (0, 1). Also, x+ − x− = 1−2ν

(1−2ν+ ν2

ρ2
)1/2+ ν

ρ

, which is increasing in ρ.

We compute mε(x) − x = ν(1−ερ)+2(ερ−ν)x−2ερx2

1−ερ+2ερx
. Hence, m+(x) = x has two solutions

x = ρ−ν±
√

∆
2ρ

, with ∆ = ρ2(1− 2ν) + ν2. Similarly, m−(x) = x has two solutions: x = ρ+ν±
√

∆
2ρ

.

We see that x+ + x− = ρ−ν+
√

∆
2ρ

+ ρ+ν−
√

∆
2ρ

= 1, and one verifies that x+, x− > 0, ρ−ν−
√

∆
2ρ

< 0,

and ρ+ν+
√

∆
2ρ

> 1. This proves that xε is the unique fixed point of mε in (0, 1). Also, as

mε(0) = ν > 0, we have that mε(x)− x is positive on (0, xε) and negative on (xε, 1).

Consider the sequence given by xk+1 = mε(xk) for some value x0 > xε. As mε is increasing

and xε is a fixed point of mε, we have x1 = mε(x0) > xε, and by induction xk > xε for all n.

As mε(x)−x is negative on (xε, 1), it follows that xk+1−xk < 0 for all n, that is, the sequence

xk is decreasing. Thus, xk is convergent and its limit is xε. A similar argument works for the

case when x0 < xε, and it follows that xk converges to xε for all initial values x0 ∈ (0, 1).

The computation of the inverse function nε and its derivative is straightforward, as is

the fact that nε is increasing and bijective between (ν, 1 − ν) and (0, 1). Finally, we have

x+ = m+(x+) > m+(x−) > m−(x−) = x− and x+ = m+(x+) > m−(x+) > m−(x−) = x−,

which implies that mε

(
[x−, x+]

)
⊆ [x−, x+], and the same argument works for the inverse

function nε.

Proof of Proposition IA.2. The stationary density is determined by one number: θ =

P(vt = 1), and two densities: λ0(x) = P(µt = x|vt = 0) and λ1(x) = P(µt = x|vt = 1). To

find θ, we impose the stationarity condition θ = P(vt+1 = 1). Recall from (IA.10) that the

transition density from vt to vt+1 is ft(w, v) = P(vt+1 = w|vt = v) = (1 − ν)1w=v + ν1w 6=v.

We compute P(vt+1 = 1) =
∑

v∈{0,1} P(vt+1 = 1|vt = v)P(vt = v) = ν(1− θ) + (1− ν)θ =

θ + ν(1 − 2θ). As this last term is equal to θ, the unique solution is θ = 1
2
. This equality

also implies that λ0(x)dx = P(µt = x, vt = 0)/P (vt = 0) = 2P(vt = 0, µt = x), hence

P(vt = 0, µt = x) = 1
2
λ0(x)dx. Similarly, P(vt = 1, µt = x) = 1

2
λ1(x)dx.

Recall that the state variable is the pair Kt = (vt, µt). The stationarity condition requires
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that P(Kt+1 = k′) =
∫
k
P(Kt+1 = k′|Kt = k)P(Kt = k), therefore:

1
2
λ0(y)dy =

∫
v∈{0,1}
x∈(0,1)

P
(
vt+1 = 0, µt+1 = y | vt = v, µt = x

)
P(vt = v, µt = x)

=

∫
x∈(0,1)

P
(
vt+1 = 0, µt+1 = y | vt = 0, µt = x

)
1
2
λ0(x)dx

+P
(
vt+1 = 0, µt+1 = y | vt = 1, µt = x

)
1
2
λ1(x)dx

.

(IA.17)

From (IA.11), the density gt(Ot, v, µt) = P(Ot | vt = v, µt = x) does not depend on µt and

satisfies gt(B, v) = ρ1v=1 + (1 − ρ)1
2

and gt(S, v) = ρ1v=0 + (1 − ρ)1
2
. In general, P

(
vt+1 =

w, µt+1 = y | vt = v, µt = x
)

=
∫
Ot∈{B,S} P

(
vt+1 = w, µt+1 = y | Ot, vt = v, µt = x

)
gt(Ot, v).

From (IA.16), we have µt+1,B = m+(µt) and µt+1,S = m−(µt), where m+ and m− are defined

in (IA.6). Recall that n+ and n− are the inverses of m+ and m−, respectively. For y ∈ (0, 1)

we compute:

λ0(y)dy =

∫
x∈(0,1)
Ot∈{B,S}

P
(
vt+1 = 0,mOt(x) = y | Ot, vt = 0, µt = x

)
gt(Ot, vt = 0) λ0(x)dx

+P
(
vt+1 = 0,mOt(x) = y | Ot, vt = 1, µt = x

)
gt(Ot, vt = 1) λ1(x)dx

=

∫
x∈(0,1)

P
(
vt+1 = 0 | vt = 0

)
P
(
m+(x) = y

)
gt(B, vt = 0) λ0(x)dx

+

∫
x∈(0,1)

P
(
vt+1 = 0 | vt = 0

)
P
(
m−(x) = y

)
gt(S, vt = 0) λ0(x)dx

+

∫
x∈(0,1)

P
(
vt+1 = 0 | vt = 1

)
P
(
m+(x) = y

)
gt(B, vt = 1) λ1(x)dx

+

∫
x∈(0,1)

P
(
vt+1 = 0 | vt = 1

)
P
(
m−(x) = y

)
gt(S, vt = 1) λ1(x)dx

= (1− ν)
1− ρ

2
λ0

(
n+(y)

)
d
(
n+(y)

)
+ (1− ν)

1 + ρ

2
λ0

(
n−(y)

)
d
(
n−(y)

)
+ ν

1 + ρ

2
λ1

(
n+(y)

)
) d
(
n+(y)

)
+ ν

1− ρ
2

λ1

(
n−(y)

)
) d
(
n−(y)

)
,

(IA.18)

where by convention λ0,1

(
nε(y)

)
is set to 0 when y is outside of (ν, 1 − ν), the definition

interval for nε. A similar computation produces the recursive equation for λ1(y). Putting

together the equations for λ0 and λ1, we get (IA.9). We also obtain that λ0(y) = λ1(y) = 0

when y is outside of (ν, 1− ν).

It remains to prove that the support of λ0 and λ1 is included in the interval [x−, x+],
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where xε is the unique fixed point of mε in (0, 1). Consider the sequence ak defined by a0 = 0

and ak+1 = m−(ak), and the sequence bk defined by b0 = 1 and bk+1 = m+(bk). From the

proof of Lemma IA.1, we know that the ak is increasing and converges to x−, and bk is

decreasing and converges to x+. Note that a1 = ν and b1 = 1 − ν. We have proved above

that λi(y) = 0 when y is outside of (a1, b1) and i ∈ {0, 1}. Suppose we have already proved

that λi(y) = 0 when y is outside of (ak, bk) for some integer k ≥ 1. In the induction step, we

show that λi(y) = 0 when y ∈ (ak, ak+1] (and a similar argument works for y ∈ [bk+1, bk)). We

have n−(y) ∈ (n−(ak), n−(ak+1)] = (ak−1, ak], hence n−(y) ≤ ak. But n+(y) < n−(y), hence

n+(y) ≤ ak as well.8 As nε(y) lie outside (ak, bk) for ε ∈ {−1,+1}, we have λi
(
nε(y)

)
= 0

for y outside of (ak+1, bk+1). Thus, equation (IA.18) shows that λi(y) = 0 for y outside of

(ak+1, bk+1), and the induction step is finished. Since the intersection of the intervals (ak, bk)

is [x−, x+], it follows that λi(y) = 0 for y outside [x−, x+].

Note that by integrating equation (IA.18) from 0 to y, we obtain the following equation

for the cumulative stationary density Λi(y) =
∫ y

0
λi(u)du, i ∈ {1, 2}:

Λ0(y) = (1− ν)
1− ρ

2
Λ0

(
n+(y)

)
+ (1− ν)

1 + ρ

2
Λ0

(
n−(y)

)
+ ν

1 + ρ

2
Λ1

(
n+(y)

)
+ ν

1− ρ
2

Λ1

(
n−(y)

)
,

(IA.19)

and a similar equation for Λ1.

8As m+(x) > m−(x) for all x ∈ (0, 1), the inverse functions satisfy the opposite inequality: n+(y) < n−(y)
for all y ∈ (ν, 1− ν).
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